
Pervasive Edge Data Sharing in MANET
Xintong Song⇤, Yaodong Huang†, Qian Zhou†, Fan Ye†, Yuanyuan Yang† and Xiaoming Li⇤

⇤School of Electronics Engineering and Computer Science, Peking University, Beijing
{songxintong, lxm}@pku.edu.cn

†Department of Electrical and Computer Engineering, Stony Brook University, New York
{yaodong.huang, qian.zhou, fan.ye, yuanyuan.yang}@stonybrook.edu

Abstract—The proliferation and daily congregation of modern

mobile devices have created abundant opportunities for peer

edge devices to share valuable data with each other. The short

contact durations, relatively small sharing sizes, and uncertain data

availability, demand agile, light weight peer based data sharing.

In this paper, we propose Peer Data Sharing (PDS) that enables

edge devices to discover which data exist in nearby peers, and

retrieve interested data robustly and efficiently. We use Wi-Fi

ad hoc network as an example to demonstrate that PDS can

leverage different underlying network and link technologies with

proper adaption. Extensive evaluations show that PDS discovers

and retrieves almost 100% data in tens of seconds, and remains

robust despite wireless contention, simultaneous consumer requests

and user mobility.

I. INTRODUCTION

The proliferation of modern sensor-rich mobile devices (e.g.,
smartphones) and opportunistic congregation of users have
created novel opportunities for peer data sharing. Many times
spontaneous, agile data exchange among nearby users is desired.
For example, during large outdoor events (e.g., music festivals,
university commencements), smartphones carried by people can
capture diverse data, including human activities, their locations,
and image/video clips. When shared among peer devices, such
data can help people avoid food stands of long lines, discover
interesting souvenirs and artifacts, or enjoy images, video clips
of special, memorable moments.

Peer data sharing in such pervasive edge environments has
some unique characteristics. Each user may possess certain data
and need data by others. However, which devices are around,
and what kinds of data they carry, occur opportunistically and
cannot be foretold. The limited durations (e.g., a few to tens
of minutes) devices are in proximity, and the modest amount
yet unforeseeable kinds of data, stipulate fast, light weight
discovery and exchange on a peer basis. This decentralized
sharing differs from most crowdsensing [1] applications where
a central backend receives data from all devices and then
distributes among them.

We propose Peer Data Sharing (PDS) that enables mobile
devices to quickly discover what data exist in nearby peers
and retrieve desired data from possibly multiple devices. PDS
discovers all existing data and retrieve required data faithfully
across opportunistically gathered peers, under limited wireless
bandwidth and potentially frequent message losses, with low
overhead and latency. PDS differs from existing data discov-
ery and sharing work in mobile ad hoc networks [2]–[4]. It
adopts a content centric design [5], [6] where data are self-
contained entities that can be referenced, stored and accessed
independently from their original producers. Thus data can be
widely cached at and retrieved from any willing and capable

The work in this paper was supported in part by the grant from US National
Science Foundation under grant number CSR-1513719.

nodes. The consumer can retrieve data from a close by cached
copy, or different chunks from multiple cached copies, to reduce
latency and aggregate bandwidth. PDS also differs from existing
content centric networks [5], [6] in terms of wireless medium
and network scale, which will be discussed in Section V.

PDS is designed at application level above the network stack.
It can leverage different underlying network (e.g., IP) and
link technologies (Wi-Fi infrastructure/ad hoc mode, Bluetooth,
ZigBee, Wi-Fi Direct [7], D2D [8], etc.) with proper adaption.
In this paper, we use Wi-Fi ad hoc mode as an example and
demonstrate how to improve PDS performance by adapting it
to this particular link technology.

We make the following contributions: 1) We devise robust
and efficient pervasive data discovery (PDD) and retrieval
(PDR) mechanisms. PDD returns all data existence information
faithfully, despite dynamic changes in both device and data sets,
while PDR retrieves different portions of data from multiple
cached copies robustly and efficiently. 2) Dispte that PDS can
leverage different underlying network and link technologies, we
develop mechanisms to combat the consequence of possibly
heavy contention losses in Wi-Fi ad hoc network specifically.
3) We perform large scale simulation to evaluate our proposal.
The results show that consumers can discover almost 100% data
in several seconds time.

The rest of this paper is organized as follows: In Section II,
we present the general design of PDS. Then in Section III, we
discuss how to adapt PDS to Wi-Fi ad hoc network. We present
simulation based evaluation results in Section IV. Finally we
compare related work in Section V and conclude our work in
Section VII.

II. PEER DATA SHARING

A. Assumptions and Goals
We make the following assumptions: the environment is un-

certain and dynamic. Which devices are in proximity and what
data they possess, are opportunistic and not known beforehand.
Although users are free to move in/out any time, many of
them stay for extended periods of time from a few to tens of
minutes. The geographical area where users congregate (e.g.,
restaurants, parks, airports) and thus the network size are usually
limited. Devices have reasonable storage (e.g., 16GB or higher).
The amount and duration of data exchange are usually mod-
erate (e.g., a few MBs and minutes). To enable opportunistic
caching, we assume nodes will overhear transmitted frames
whenever possible and act on the content. PDS does not assume
any specific radio technology. Devices can connect to each
other through different technologies (e.g., Wi-Fi ad hoc, Wi-
Fi Direct [7], D2D [8], Bluetooth, etc.). However, for different
technologies certain adaption is needed. In this paper we use
multi-hop Wi-Fi ad hoc network as an example to demonstrate

such adaption. All devices are cooperative and play by the
rules. Only publicly sharable data are exchanged and we do
not consider security or privacy issues in this work.

Each device can be a consumer that requests desired data,
or a producer that provides them (either generated locally or
cached). We focus on a typical scenario where the consumer
needs one large, possibly popular data item (e.g., a video
clip) consisting of many small chunks. A large data item can
be consistently divided into small chunks when generated by
the producer. Such dividing allows each chunk to be stored
and accessed independently, which avoid excessive resource
consumption on each node that holding the data item. As a
result, chunks of popular data items can be available from
multiple nearby devices.

Due to the uncertainty, a consumer has to discover what
data exist in nearby devices. The Peer Data Discovery (PDD)
provides such a “menu” of available data as completely and
faithfully as possible. Peer Data Retrieval (PDR) should return
at least one copy of each requested data item/chunk. Both are
best effort: occasionally missing existing or reporting disap-
peared data is allowed because applications are not mission
critical.

B. Data Descriptors, Metadata and Queries
When generating a new data item, a node creates and as-

sociates to it a data descriptor (i.e., metadata) consisting of
multiple attributes each having a name and taking a certain
value of some primitive type (e.g., string, integer, float, Unix
time). For example, an NO

x

pollutant sample may have data
type of NO

x

, time of the sample generation at 2016-01-01
08:00:00, and location the GPS coordinates of the sample.
To avoid conflicts, a namespace where the data type is defined
(e.g., environment monitoring) can be added.

Each descriptor is a metadata entry that indicates the po-
tential availability of the corresponding data item/chunk. Thus
all such entries together describe what data may exist in the
environment. Because metadata entries have small sizes and
are frequently requested by many consumers, they are widely
cached. Any node receiving, relaying or overhearing metadata
entries will cache them to serve potential future requests. If a
metadata entry is cached by a node without respective payload,
an expiration time is added to this entry. Upon expiration, the
node removes the entry if it does not yet have the payload. These
simple rules make metadata and corresponding data roughly
synchronized in the network.

A consumer sends queries to specify desired data and retrieve
them from other devices. A query consists of a collection
of predicates specifying desired values on attributes using a
relation (e.g., =, >, 2, etc.) to a value or value range. Queries
can be specified for data items, chunks and metadata. The
retrieval of them follows similar query-response mechanisms,
to be presented in Section II-C and II-D.

C. Peer Data Discovery (PDD)
Peer Data Sharing (PDS) consists of two components: Peer

Data Discovery (PDD) and Peer Data Retrieval (PDR). They
share similar message formats, processing procedures and rout-
ing mechanism. We present PDD in this section, and introduce
PDR design in Section II-D focusing on its differences.

PDD collects metadata through multi-round requests. In each
round the consumer sends a query message requesting metadata,

Fig. 1. PDD Query Processing: When receiving a query, a node should perform
4 steps: Lingering Query Table Lookup, Data Store Lookup, Receiver Check
and Forwarding.

Fig. 2. PDD Response Processing: When receiving a response, a node should
perform 5 steps: Recent Responses Lookup, Data Store Lookup, Receiver
Check, Lingering Query Table Lookup and Forwarding.

and waits for response messages carrying metadata entries to
return. Each node receiving that query should reply all the
metadata entries it holds back to the consumer. The consumer
dynamically decides whether and when to start a new round,
or terminate the data discovery if it determines that almost all
data entries are returned.

A metadata query contains the namespace (set to system),
data type (set to metadata since metadata is also a type of
data), a globally unique query ID to detect redundant copies, an
expiration time beyond which the query is removed, the ID of
the node transmitting the query (at the current hop) for returning
the response, an optional list of receiver IDs of the intended next
hop receivers (when not all neighbors), and an optional set of
filters that further narrow down the query based on attributes
of interested metadata entries. A response contains a namespace
(system), data type (metadata), an optional set of attributes
corresponding to filters in the query, a random thus globally
unique response ID to detect redundant copies, a list of receiver
IDs of the intended next hop receivers, and metadata entries as
the payload.

1) Query Processing: Figure 1 show how PDD processes
incoming queries. A node first examines whether the query has
been received before (LQT Lookup). A redundant copy should
be discarded. Otherwise, the new query is inserted into the LQT.
Then the node examines whether it has matching data in its Data
Store (DS Lookup). Since metadata are requested, it creates and
sends a response message that contains all its metadata entries.
Next, the node examines the receiver list of the query. If it
is one of the intended receivers, the node should continue to
forward the query (Receiver Check). Before relaying the query,
it updates the receiver ID list with intended next hop receivers,
and changes the sender ID to that of its own (Forwarding).

2) Response Processing: Figure 2 show how PDD processes
returning responses. A node first examines whether the response
has been received before (RR Lookup) from other neighbors
(e.g., overheard). To enable opportunistic caching, new metadata
entries in the response will be added to the node’s data store
(DS Lookup). Then the node examines the receiver list of the
response to see whether it should relay the response (Receiver

Check). This ensures only nodes on the right path (e.g., reverse)

will relay the response. Before relaying the response, it finds
unexpired matching lingering queries in LQT (LQT Lookup),
and sets the Receiver IDs to neighbors who transmitted these
queries, then sends the message (Forwarding).

3) Multi-round Discovery: Depending on network quality
and node mobility, messages can get lost and nodes can be
temporary disconnected. Thus the above single round method
may fail to discover some data items. PDD adopts a multi-
round discovery algorithm to obtain as many metadata entries
as possible.

The consumer makes two decisions: when the current round
is finished, and whether to start the next round. Upon each
response, it computes the ratio of number of responses received
within a recent time window T to that since sending the query.
If the ratio is less than a threshold T

r

, the current round
is considered (almost) finished. As time goes, less and less
responses return. Thus the rule detects the “diminishing” of
this trend. It then computes the proportion of new metadata
entries received in this round compared to all received, including
previous rounds. If the proportion is greater than a threshold T

d

,
showing many new entries are received in the current round and
more might be out there, the consumer starts a new round.

D. Peer Data Retrieval (PDR)

After nearby data are discovered, a consumer can retrieve
interested data items. Data items are usually much larger than
metadata, and might be divided into many chunks and dis-
tributed carried by different nodes. PDR has two phases: chunk

distribution information (CDI) retrieval and chunk retrieval.
In phase 1, the consumer requests the large data item’s CDI,
which describes where the nearest copy of each chunk can be
found. The CDI is built on demand by propagating a query in
the network and soliciting responses. In phase 2 the consumer
requests and retrieves each chunk from its nearest provider.

1) Chunk Distribution Information Retrieval: When chunk
distribution information does not exist or outdated, CDI retrieval
is conducted in manner similar to PDD. We focus on the
differences: the query specifies namespace “system”, data type
“cdi” and “descriptor” whose value is the requested data
item’s metadata, which includes possibly its unique name. A
node creates a response if its Data Store (DS) has chunks or
unexpired CDI entries of the requested data item. An entry
contains a chunk id, a hop count to the nearest chunk copy,
and a neighbor id via which the copy can be retrieved. When
a chunk can be retrieved with the same least hop count via
multiple neighbors, a CDI entry is created for each neighbor. If
a node does not have the chunk in its Data Store, the respective
CDI entry is removed after an expiration time.

A CDI response has namespace “system”, data type “cdi”,
the same “descriptor,” and a list of ChunkId-HopCount
pairs each indicating which chunk can be retrieved at the
specified hop count from the transmitting node. Upon a re-
sponse, a node creates a new CDI entry for each received
ChunkId-HopCount pair, with hop count = HopCount + 1,
and neighbor id set to the transmitting neighbor. Responses will
return to the consumer along reverse paths of query propagation.
Eventually CDI entries are created on demand at each node,
indicating which neighbors have the shortest paths to which
chunks.

2) Recursive Chunk Retrieval: Since one large data item
may have many chunks, the consumer sends multiple chunk
queries, each requesting a subset of the chunks and directed at
a different neighbor closest to those chunks. A node receiving
a chunk query will reply requested chunks that it holds, and
further divides the subset of remaining chunks into multiple
sub-queries, each directed at a different neighbor. This recursive
query division allows simultaneous requests of different chunks
from different (and nearest) neighbors, both aggregating the
bandwidth and reducing latency. Given CDI entries, each chunk
should always be retrieved from the neighbor with the least hop
count. When multiple such neighbors exist for one chunk, any
one is fine.

III. ADAPTION TO MULTI-HOP WI-FI AD HOC NETWORK

Although PDS are designed to be able to leverage differ-
ent underlying network and link technologies, certain proper
adaption for each technology is necessary in order to achieve
reasonable performance. In this section, we present how PDS
is adapted to multi-hop Wi-Fi Ad Hoc Network as an example.
For simplicity in enabling overhearing, all messages are sent by
UDP broadcast.

As we will show in Section IV, the above baseline design
suffers high data loss due to contentions in wireless broadcasts
because mechanisms (e.g., RTS/CTS, ack/retransmission) for
robust unicast are absent.

We apply three techniques and compare how they can im-
prove PDS performance: random back off, acknowledgement
and retransmission, redundancy detection. They can be applied
individually or in combination.

A. Random Back Off.
In random back off, a node waits for a certain back off time

before sending the message. The back off time is randomly
picked within the range from 0 to MaxBackoffTime. The
back off separates transmission attempts of neighboring nodes,
so as to reduce the chance of simultaneous transmission and thus
collision. The cost is increased latency, which we will evaluate
in Section IV.

B. Ack/Retransmission.
Ack/retransmission is used for messages with receivers spec-

ified and within one hop only. Because queries are flooded, a
node can hear multiple broadcasts of the query from neighbors.
The chance of losing all of them is small. After sending a
response, a node waits for the ack from intended receivers.
A receiver should send back an ack, including the ID of the
response and its own ID, so that the sender knows which
receiver has received which response. Upon a RetrTimeout,
if the sender has not received acks from all intended receivers,
it broadcasts the response again with receiver IDs from those
not yet ack’d only. This is repeated until a MaxRetrTime
threshold is reached.

C. Redundancy Detection
To avoid receiving redundant entries, the consumer applies

a redundancy detection technique. It appends to the query
a Bloom filter including entries already received. 1 Bloom

1We have compared histogram, wavelet [9] and Bloom filter and found Bloom
filter has the highest compression ratio for discrete and unrelated individual
items like metadata entries. We do not elaborate due to space limit.

filter [10] is a space-efficient data structure representing a set
of elements and widely used to test whether a given element is
in the set. Upon receiving a query, the Bloom filter is cached
together with the lingering query.

Nodes rewrite response and query messages en-route to avoid
redundancy. When sending back or relaying a response, a node
should test each metadata entry against the Bloom filter in the
matching query. It should send back only those not included
in the Bloom filter (thus not yet received by the consumer);
it also inserts them in the Bloom filter of the lingering query
in LQT, so such entries from other nodes will not be relayed
again. When propagating a query, the node should rewrite the
query by inserting into its Bloom filter new entries that it just
sent in response. It updates the query in LQT and forwards the
updated one. Thus downstream nodes will not send the same
entries.

We also tried erasure coding [11] that can tolerate the loss of
up to m out of k+m data blocks. However, we find it has little
effect: it chops the response into k and then adding m more
encoded blocks, thus increasing the transmission attempts and
collision chances multiple folds.

IV. PERFORMANCE EVALUATION

A. Methodology
We implement PDS in NS-3 [12], a widely used network

simulator that can accurately mimic lower layer stack behavior
such as 802.11 MAC. Nodes are configured with 802.11b
protocols and 1Mbps broadcast data rate. We distribute 100
nodes as a 10 by 10 grid at proper neighboring distances such
that each node can communicate directly with its 8 surrounding
neighbors. For experiments with only one consumer, it is at the
center of the grid. For multi consumer scenarios, the consumers
are randomly selected from a 5 by 5 sub-grid at the center. The
size of each metadata entry is 30 bytes, enough to cover the
most common data type, time and location attributes.

We use several metrics to quantify the performance of PDS:
recall is the fraction of distinct metadata entries received by
the consumer, latency is the time from the consumer sending
the query to the arrival of the last returned metadata entry,
and p%-latency is the time till receiving p% of all returned
metadata entries; message overhead is the number of bytes of
all messages. We distribute metadata entries among all nodes
uniform randomly at the beginning of simulation.

We prepend letter ‘B’, ‘A’ and ‘R’ to PDS to indicate
whether random back off, ack/retransmission and redundancy
detection is used respectively. Moreover, we use letter ‘S’ to
indicate single round PDS and ‘M’ for multi round. E.g., SBA-
PDS is for single round PDS with both random back off and
ack/retransmission.

Several factors impact the performance: metadata amount is
the number of different metadata entries; total metadata amount

is that of all entries including redundant copies; redundancy

is the number of copies of each entry. We also evaluate
how parameters in different variants (e.g., MaxBackoffTime,
MaxRetrTime, RetrTimeout, T

d

) affect their performance.
Unless specified, results are averaged over 5 runs.

B. Single Round Pervasive Data Discovery (S-PDD)
First we study how the metadata amount and redundancy

impact the performance of the baseline single round pervasive

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4000 8000 12000 16000 20000

Re
ca

ll

Metadata Amount

Redundancy=1
Redundancy=2
Redundancy=3
Redundancy=4
Redundancy=5

Fig. 3. Recall of S-PDD. It is pretty
low (less than 0.5) in most cases. The
saturation point is around 10,000 total
metadata amount.

 0
 1
 2
 3
 4
 5
 6
 7
 8

Re
ce

pt
io

n
Co

un
t

Fig. 4. Heatmap of reception count
of S-PDD where roughly half of the
neighbors lose the message every-
where.

data discovery (S-PDD). Figure 3 shows that the recall decreases
in general when data amount increases. We find a saturation
point of around 10,000 total metadata amount, beyond which
the recall becomes much lower. E.g., with one copy, the recall
remains around 0.4, then starts to decrease obviously beyond
10,000 distinct entries; with two copies, it remains around
0.55 before 5,000 distinct entries (10,000 total entries). Similar
observations can be made from other curves. The latency
increases as more distinct entries or redundant copies exist since
more time is needed to deliver them, also it plateaus around 1.5-
2s beyond 10,000 entries, and the message overhead increases
almost linearly with more entries or copies. Those figures are
omitted due to the space limitation.

To verify our conjecture that heavy contention caused the
poor recall, we draw a heatmap (Figure 4) showing the reception
count of how many neighbors successfully receive a message
broadcast from each node, with 5,000 metadata amount and
1 redundancy. Most nodes (except those on edge) have 8
neighbors. Thus a reception count of close to 8 is desired.
We can see that most nodes have the count around 4, meaning
roughly half of the neighbors lose the message. Thus at each
hop, the neighbor on the reverse path has about 50% chance of
losing the message, which explains the poor recall.

Next we study how to achieve high recall while maintaining
reasonable latency and overhead. We use 5,000 distinct entries
as the normal load and those beyond 10,000 for stress tests.
Redundancy is always set to 1 since each entry initially has
only copy one on its original producer.

!"#

!"$

!"%

!"&

!"'

!"(

!")

*

! * + # $ % & ' () *!

!
"#
$%
%

&$
'"
(#
)*
+,

,-./-01233456789:

Fig. 5. Recall of SB-PDD keeps grow-
ing until MaxBackoffTime reaches
5s. Latency of SB-PDD keeps growing
linearly.

 0
 1
 2
 3
 4
 5
 6
 7
 8

Re
ce

pt
io

n
Co

un
t

Fig. 6. Heatmap of reception count of
SB-PDD with nearly perfect reception
count everywhere.

1) SB-PDD: Random Back Off: We increase
MaxBackoffTime and evaluate how it affects the
performance. Figure 5 shows steady recall improvement
to 0.8 until the MaxBackoffTime reaches 5s, beyond which
the recall increases marginally. The latency increases linearly
with larger MaxBackoffTime. At MaxBackoffTime of
5s, the latency is around 30s, much higher than S-PDD (⇠ 2s).
Given the average back off time of 2.5s, the roughly 10-hop
back and forth path between the consumer and a farthest node
requires 25s. The message overhead (figure omitted) is about 3
times of that of S-PDD (1.57MB vs. 0.42MB at 5,000 entries),

part of which is simply because that messages travel longer
hops and reach the consumer with much higher chances.

We also examine the heatmap (Figure 6) and finds that
most nodes (except those on edge) have 8 or close to 8
reception counts. This shows that random back off is effective to
space transmissions among neighbors such that the contentions
become very few. Overall SB-PDD increases recall but at the
cost of much higher latency.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Re
ca

ll

RetrTimeout(s)

MaxRetrTime=1
MaxRetrTime=2
MaxRetrTime=3
MaxRetrTime=4

Fig. 7. Recall of SA-PDD improves as
RetrTimeout and MaxRetrTime
increase.

Fig. 8. Recall of M-PDD becomes
stable when T reaches 1.0s.

2) SA-PDD: Ack/Retransmission: We evaluate the impact
of RetrTimeout and MaxRetrTime on the performance
of SA-PDD. Figure 7 shows that as RetrTimeout or
MaxRetrTime increases, recall improves. This is because
longer RetrTimeout allows more time for ack to return.
Thus the sender does not prematurely retransmit and this
reduces contention. More retries directly improve the chances
of reception. However, the benefits have diminishing returns:
beyond 0.6s RetrTimeout or 4 MaxRetrTime the gain is
marginal.

From the above, we decide to use 0.6s RetrTimeout
and 4 MaxRetrTime as the best combination (giving 0.7
recall). SA-SPPS achieves slightly less recall (72.3% vs. 82.7%)
but significantly less latency (2.89s vs. 35.13s) and message
overhead (0.69MB vs. 1.57MB) comparing to SB-PDD.

3) SBA-PDD: Random Back Off and Ack/Retransmission:
We perform extensive evaluation on all combinations of ran-
dom back off, ack/retransmission and erasure coding. We find
that mechanisms enabling erasure coding always have worse
performance (lower recall, larger latency and message over-
head) compared to those with the same configuration only
disabling erasure coding. Among all the combinations, SBA-
PDD achieves the best performance with 96.5% recall, 33.3s
latency and 2.18MB message overhead.

We conduct stress test on SBA-PDD to evaluate its robustness
to network saturation. When metadata amount increases from
5,000 to 15,000/20,000 (50%/100% beyond saturation), recall of
SBA-PDD drops from 96.5% to 83.8%/66.5%. The latency stays
roughly the same (27.5s/29.9s vs. 28.8s). However, message
overhead grows up to 4/8 times (9.17MB/16.85MB vs. 2.18MB)
despite metadata amount only grows to 3/4 times. It shows that
SBA-PDD is not very robust against saturation.

C. Multi-round Pervasive Data Discovery (M-PDD)
We perform extensive evaluation with different values of the

three parameters that affect the number of rounds and their
durations, and find that T

d

=T
r

= 0, and T= 2s give the
best performance. Using the above parameters, we evaluate
all combinations of random back off, ack/retransmission and
redundancy detection on baseline M-PDD (Table I). Due to
multi-round, many of them achieve recalls over 90%, some

TABLE I
M-PDD NORMAL TEST

-PDD MR MBR MAR MBAR

Recall (%) 100.0 88.5 100.0 99.2
Latency (s) 18.7 37.2 11.7 32.7
95%-latency (s) 14.4 29.7 8.9 27.4
Message Overhead (MB) 9.10 2.80 5.56 2.72

TABLE II
MAR-PDD STRESS TEST

Data Amount 5,000 10,000 15,000 20,000

Recall (%) 100.0 100.0 100.0 100.0
Latency (s) 10.9 18.1 21.9 25.5
Message Overhead (MB) 5.05 9.76 15.83 22.79

even achieve 100%. Among all variants, MAR-PDD achieves
the highest recall (100%) and the smallest latency (11.7s), at a
lower overhead (5.56MB). It also beats the performance of the
best single round variant SBA-PDD (96.5% recall and 36.8s
latency).

We also find that 95%-latency for MAR-PDD is only 8.9s,
indicating that among all metadata entries collected 95% of
them are received within the first 76% time. Similar observa-
tions can be made in other variants. This means applications
can probably start whatever they need to do next with most
of returned metadata entries at 70%-80% latency time, without
needing to wait for the long tail of the last 5% entries.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 6 12 18 24 30 36

Re
ca

ll

Time(s)

SBA-PDDS
MAR-PDDS

Fig. 9. Recall of SBA-PDD and MAR-
PDD change over time with 5,000
metadata amount. The starting point of
each round of MAR-PDD are indicated
with black vertical lines.

Fig. 10. Latency and message over-
head of PDR with multiple consumers.

To understand why MAR-PDD beats SBA-PDD on both
recall and latency, we plot how recall changes over time for both
of them with 5,000 metadata amount, and mark the beginning
of each round for MAR-PDD with a vertical line (Figure 9).
We find that although MAR-PDD achieves less recall in the
first round (0.7 vs. 0.95), it has much shorter first round (2.5s
vs. 35s) because there is no back off. Thus it quickly starts
subsequent rounds, getting over 95% and finally 100% in the
second and third rounds. Its 4 rounds combined take less than
a third of the latency of SBA-PDD.

MAR-PDD achieves high recall because: 1) There are less
and less metadata entries to collect in subsequent rounds.
Redundancy detection filters out already received entries. 2)
Metadata entries lost in previous rounds leave cached copies
along the return path, and more copies are created progressively
closer to the consumer. Thus it takes much less hops to retrieve
them.

Table II shows the stress test results on MAR-PDD. As
metadata amount increases from 5,000 to 20,000, recall remains
at 100%, with sub-linear latency and roughly linear message

TABLE III
SEQUENTIAL MULTIPLE CONSUMER TEST

-th Consumer 1 2 3 4 5

Recall (%) 100.0 100.0 99.6 100.0 100.0
Latency (s) 9.0 10.5 7.1 4.5 0.2
Message Overhead (MB) 5.05 4.71 6.07 6.96 0.002

overhead increases. This shows the robustness of MAR-PDD
against network saturation.

D. Multiple Consumers
We evaluate MAR-PDD when there are multiple consumers

sending queries sequentially. The intervals between consecutive
consumers’ requests are set large enough for the previous data
discovery to be completed. Table III shows the results. We
find that all consumers achieve nearly 100% recall, and latency
becomes smaller for later consumers: 9-11s for the first two,
7.1s, 4.5s for the third and fourth. This is due to the overhearing
and caching: more redundant copies are created and closer to
consumers. So a consumer has more cached entries and needs
to collect less entries from closer copies. The last one takes
only 0.2s because it has already cached more than 95% entries
even before sending its own query.

E. PDR Performance
We also evaluate the performance of PDR when there are

multiple consumers. Recall in our experiments is always 100%.
Figure 10 shows that, from the 1st consumer to the 5th, latency
of sequential consumers decreases from 46.1s to 38.1s, while
message overhead decreases from 54.22MB to 23.11MB. The
significant overhead drop is because more copies of chunks
are cached during previous retrieval, thus the average hop
each chunk is transmitted become much smaller. Closer chunk
distance also decreases latency. Chunks from different directions
eventually have to wait for the consumer to receive, thus the
drop in latency is somewhat limited.

V. RELATED WORK

PDS differs from existing data discovery and sharing work
in mobile ad hoc networks [2]–[4]. They are mostly designed
for traditional endpoint based networks, where data are bond to
specific nodes with certain network address. Existing endpoint
based ad hoc routing protocols [13], [14] focus on finding one
path to a specific destination address. PDS adopts a content
centric design where routing entries are for data instead of
addresses. Data are cached opportunistically by any capable
and willing nodes. Thus consumers do not need to know or
care at which addresses the data exist, as long as existing data
are discovered and at least one copy (probably the nearest one)
is retrieved.

Information centric networks [5], [6] have been studied
extensively. PDS shares similar query-response processing to
Content Centric Network (CCN) [5] and Named Data Network
(NDN) [6]. Due to differences in wireless medium, network
scale, PDS differs from them in important aspects: 1) Both
CCN and NDN are initially intended for wired networks,
whereas PDS leverages the broadcast wireless medium to reduce
message overheads and enable opportunistic overhearing. 2)
Bandwidth is a scarce resource in shared wireless medium.
In CCN/NDN, each Interest is removed upon the return of
any matching Data, and Interest/Data are delivered as-is. While

PDS uses lingering queries each can guide the return of many
response messages to avoid repeating a query many times.

VI. DISUCSSION AND FUTURE WORKS

Caching and reusing of overheard data is one of the key
advantages of PDS’ content centric design. In our current
implementation, we assume devices have enough space to cache
everything they overheard. However, in reality storage space of
devices is limited. Thus proper caching strategy are needed to
decide which data item or chunk should be cached/replaced,
which becomes one of the future works of this paper.

In this paper, we evaluate PDS with NS-3 based simulation
without nodes’ mobility. This is based on the observation from
real world that although people are moving around from time
to time, the chance of network topology changing a lot during
several seconds is very low. To make this work more realistic,
building smartphone based prototype and evaluate it in dynamic
scenarios in the real world becomes another future work of this
paper.

VII. CONCLUSIONS

In this paper, we propose content centric data discovery and
retrieval among peer edge devices, which is fundamental to
many novel applications where opportunistically congregated
devices need to share each other’s sensing data. We demonstrate
how our proposal can leverage different underlying network
and link technologies by adapting it to Wi-Fi ad hoc network.
Evaluations show almost 100% data retrieval in short time under
multiple consumers and real world mobile scenarios.

REFERENCES

[1] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and
future challenges,” Communications Magazine, IEEE, vol. 49, no. 11, pp.
32–39, 2011.

[2] A. N. Mian, R. Baldoni, and R. Beraldi, “A survey of service discovery
protocols in multihop mobile ad hoc networks,” IEEE Pervasive comput-
ing, vol. 8, no. 1, pp. 66–74, 2009.

[3] F. Sailhan and V. Issarny, “Scalable service discovery for manet,” in Third
IEEE International Conference on Pervasive Computing and Communi-
cations. IEEE, 2005, pp. 235–244.

[4] G. Ding and B. Bhargava, “Peer-to-peer file-sharing over mobile ad
hoc networks,” in Pervasive Computing and Communications Workshops,
2004. Proceedings of the Second IEEE Annual Conference on. IEEE,
2004, pp. 104–108.

[5] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies. ACM, 2009, pp. 1–12.

[6] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Papadopou-
los, L. Wang, B. Zhang et al., “Named data networking,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 66–73, 2014.

[7] “Wi-Fi Direct,” http://www.wi-fi.org/discover-wi-fi/wi-fi-direct.
[8] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device

communication in cellular networks,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 1801–1819, 2014.

[9] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine, “Synopses for
massive data: Samples, histograms, wavelets, sketches,” Foundations and
Trends in Databases, vol. 4, no. 1–3, pp. 1–294, 2012.

[10] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The bloomier filter: an
efficient data structure for static support lookup tables,” in Proceedings
of the fifteenth annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics, 2004, pp. 30–39.

[11] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding vs. replication:
A quantitative comparison,” in Peer-to-Peer Systems. Springer, 2002, pp.
328–337.

[12] “NS-3,” https://www.nsnam.org/.
[13] “RFC 3561: Ad hoc On-Demand Distance Vector (AODV) Routing,”

http://www.rfc-base.org/rfc-3561.html.
[14] “RFC 4728: The Dynamic Source Routing Protocol (DSR) for Mobile Ad

Hoc Networks for IPv4,” http://www.rfc-base.org/rfc-4728.html.

