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Abstract—Basic vital signs such as heart and respiratory rates
(HR and RR) are essential bio-indicators. Their longitudinal
in-home collection enables prediction and detection of disease
onset and change, providing for earlier health intervention.
This type of data collection, interpretation and evaluation is
especially valuable for older adults facing myriads of health
challenges. However, respiration harmonics and intermodulation
cause strong disturbances to much weaker heartbeat signals,
thus robust vital signs monitoring remains elusive. In this paper,
we propose VitalHub, a robust, non-touch vital signs monitoring
system using a pair of co-located Ultra-Wide Band (UWB) and
depth sensors. By extensive manual examination, we identify four
typical temporal and spectral signal patterns and their suitable
vital signs estimators. We devise a probabilistic weighted frame-
work (PWF) that quantifies evidence of these patterns to update
the weighted combination of estimator output to track the vital
signs robustly. We also design a “heatmap” based signal quality
detector that achieves near-human performance differentiating
signal corruptions from large motion. To monitor multiple co-
habiting subjects in-home, we leverage consecutive skeletal poses
from the depth data to distinguish between individuals and their
activities, providing activity context important to disambiguating
critical from normal vital sign variability. Extensive experiments
show that VitalHub achieves 1.5/3.2 “breaths/beats per minute”
(denoted by “bpm”) errors at 80-percentile for RR/HR, ap-
proaching the 1.2/1.5 bpm error “ceiling” of an idealistic but
impractical oracle. We also reveal how existing techniques for
harmonics and intermodulation rely on presumed signal patterns
thus may fail under real-world dynamic changes.

Index Terms—Vital signs monitoring, non-touch sensing, lon-
gitudinal in-home data collection, aging

I. INTRODUCTION

Basic vital signs including respiration and heart rates are
predictors for assessing overall changes in health status, and a
myriad of medical conditions including respiratory, cardiac,
and sleep [1, 2]. Continuous vital signs data collected in
individuals’ home environment can be analyzed to monitor
disease onset/progression/resolution, and the impact of new
or changed medications. Such in home assessment can have
tremendous benefits for anyone living with a chronic health
condition, especially for older adults who face a myriad of
chronic diseases and health conditions.

Longitudinal in-home monitoring requires low-cost, robust
and passive sensing. Traditional hospital equipment such as
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Fig. 1: VitalHub leverages depth camera for body detection and
context annotation. The location of detected human body is used
to segment the UWB signal correspodning to the chest wall of
the interested subject, and vital signal is extracted for vital signs
estimation.

electrocardiograms (EKG) are expensive, not designed for
continuous in-home data collection, and require well-trained
medical personnel to set up and monitor the output. De-
spite their popularity, wearables (e.g., Apple Watch, Fitbit)
have inconvenient and restraining daily maintenance overheads
(e.g., charge, wear), especially difficult among physically and
cognitively challenged older adults.

Recent radio-based passive-sensing solutions [3] exempli-
fied by Wi-Fi [1, 4, 5], FMCW [6], and UWB [7, 8] hold
promise for longitudinal in-home monitoring. Temporal and
spectral methods extracting vital signs against multipath [5],
cluttered environments [9] have been proposed.

However, robustness against harmonics and intermodulation
has not received sufficient attention. Because neither heartbeat
nor respiratory signals are pure sinusoidal and the human
body presents a non-linear channel, high-order harmonics and
intermodulations (i.e., linear combinations of RR and HR)
exist, and frequently carry energy stronger than the heart
rate fundamental frequency. They produce high spectral peaks
within the normal heart rate range, e.g., 50–150 beat per
minute (bpm). Thus, spectral methods simply pick highest
peaks to identify HR easily fail (1/3 of the time in our
experiments). Making matters worse, we observe that their
frequencies and magnitudes are time-varying, and their pattern
keeps changing over time, defying simple predictions. In



recent radio sensing work, these issues are not described
nor appear tackled. The electrical engineering community has
completed some studies to address this issue [8, 10], but in-
depth validation and conclusive comparison are still lacking.

Similarly, robustness against signal corruption remains elu-
sive. Due to inevitable large body motion, the signal might
be corrupted beyond recognition by even well-trained humans.
Such signals must be detected and excluded to avoid producing
erroneous results. Existing methods [3, 6] rely on spectral
energy or temporal waveform assumptions that are susceptible
to dynamic changes, thus not reliable enough.

In this paper, we propose VitalHub, a robust vital sign
sensing system for longitudinal in-home monitoring using a
pair of co-located UWB and depth sensors (as illustrated
in Figure 1). Based on a manual examination of over 6000
data samples, we identify four typical temporal and spectral
patterns (present in 98.55% of the data) and a suitable RR/HR
estimator for each. To handle harmonics and intermodulation,
we devise a probabilistic weighted framework (PWF) that
quantifies the cumulative evidence of these patterns to adap-
tively update the weighted combination of estimator outputs
to track the vital signs robustly. To detect corrupted signals,
we generate a 2D “heatmap” representing the likelihood of
different RR/HR estimates and train a ResNet [11] model
to produce a confidence value of how likely the signal is
corrupted.

To facilitate longitudinal in-home monitoring in cohabiting
scenarios, we leverage the depth sensor to detect human
subjects and differentiate their identities from the skeletal
walking patterns [12]. Built upon mature pattern recognition
methods, VitalHub automatically annotates sensed vital signs
with respective context information (e.g., identities and phys-
ical activities) for unambiguous vital signs association.

We implemented a VitalHub prototype and conducted ex-
tensive experiments. We collected data from 8 volunteers
in 56 sessions (2–10 min per session) in both stationary
(e.g., sitting still) and non-stationary (e.g., natural upper body
swaying) poses at 3 different distances/angles. We spent over
72 man-hours to manually label more than 40,000 30s time-
windowed signals whether they were corrupted beyond human
recognition to provide training data.

Our PWF aided by the detector achieves 1.5/3.2 bpm error
at 80-percentile for RR/HR, even though individual estimators
may produce 10–20 bpm errors in heart rates. 1 These are
very close to 1.2/1.5 bpm errors from an idealistic oracle that
always knows whether the signal is corrupted, which are the
best instantaneous range bin and estimator (none of which
practically feasible).

We make the following contributions in this work:

• We describe in depth the challenges caused by harmonics
and intermodulation, and their serious consequences on
heart rate estimation. We do not find sufficient description
nor treatment in recent radio sensing work.

1The respiration rate is more accurate due to the stronger energy.

• We design a probabilistic weighted framework (PWF)
that constantly adjusts the weights in combining the
outputs of four estimators based on quantitative evidence
of respective patterns, and demonstrate it achieves within
0.3/1.7 bpm error to the upper limit of an idealistic oracle,
demonstrating the robustness of PWF.

• We compare three representative methods dealing with
harmonics and intermodulation. We show that VitalHub
achieves ≤5bpm error of HR estimation for 98.5% of the
time, while others achieved only 51.2–81.3%. We share
insights as to how assumptions they rely on may not hold
in reality.

• We compare the heatmap detector against 4 other com-
mon methods, and find it achieves near-human perfor-
mance at 96% for both precision and recall, while others
at best 89/83%.

II. RELATED WORK

Three main categories of techniques have been explored for
contactless ubiquitous vital sign monitoring: remote PPG [13],
acoustic [2, 14], and microwaves including WiFi [1, 5] and
other RF based methods [6, 15]. Remote PPG measures the
HR from an RGB video of the user’s face [13]. It has privacy
issues. Reliable data collection may be impacted by skin color,
make-up and lighting. Both active [2, 16] and passive [14]
acoustic methods leveraging smart speakers or phones have
been studied for sensing distance as well as minute chest
movement for RR monitoring. However, acoustic methods are
limited to near-field monitoring (usually within a distance
of 50 cm) due to attenuation. WiFi based methods leverage
channel state information (CSI) [1, 5] or received signal
strength (RSS) [4]. Other RF methods have exploited tech-
niques including mmWave [15], doppler radar [17], FMCW
radar [6], and UWB radar [7]. We observe that respiration
harmonics and intermodulation severely disrupt spectral based
HR estimation, yet we do not see this described or treated
sufficiently in the above work.

The challenges of harmonics and intermodulation is an-
alyzed in [9]. Work from the electrical engineering com-
munity [7, 8, 18] has proposed methods based on certain
assumptions of the signal’s temporal and spectral patterns (e.g.,
magnitudes between fundamental and harmonic components,
gradual changes in HR). We observe such patterns are far
from stable, thus these methods often fail. WiBreathe [19]
adaptively selects an output from multiple respiration esti-
mators closest to the previous estimate. It assumes at least
one estimator gives good estimation, which we find does not
hold for detecting heart rate due to much weaker spectral
energy, thus easily dominated by respiration harmonics and in-
termodulation. We combine multiple estimators by quantifying
respective evidence of their suitable patterns in a probabilistic
framework to enable robust HR tracking (see §V-C2).

Most radio sensing based work targets quasi-stationary
settings. To detect large motions that corrupt signals, many
methods use a fixed threshold for phase change or spectrum
sharpness [1, 3, 6, 20]. We observe that such fixed thresholds



cannot handle complex signal dynamics. Our heatmap feature
incorporates the full spectral characteristics of the vital signs
and uses a deep neural network to achieve near human
performance (see §V-B).

Measuring and cancelling motion disruptions require extra
accelerometers [21, 22], regular RGB cameras or radio sensor
pairs [23]. We focus on harmonics and intermodulation in this
paper and will explore robust measurement under motion in
future work.

III. DESIGN CONSIDERATIONS

A. Hardware Choices for Passive Sensing

Passive sensing does not need any cooperative efforts from
users (e.g., charging batteries, wearing devices, or annotating
the signal), thus it is critical for longitudinal monitoring in
realistic scenarios, especially for older adults with cognitive
and physical challenges. To this end, we choose a co-located
UWB and depth sensor pair that complements each other: the
UWB signal is sensitive to tiny displacements of the chest wall
due to heartbeat and respiration for vital signs extraction; the
depth sensor provides context information to help identify the
person and segment the UWB signal for further processing.

B. Rationales of Vital Signs Extraction

Heart and respiratory rates are two of the five vital signs
collected at each physical examination. It is the combination of
heartbeat and respiration that comprises chest displacements.
The chest displacement sensed by the UWB sensor can be
modeled as:

d(t) = d0 +D(t)

= d0 + dr sin (2πfrt) + dh sin (2πfht) ,
(1)

where d0 is the nominal distance between the UWB sensor
and the targeted chest wall (i.e., provided by the depth sensor
to select the proper “range bin”), dr and dh are the chest
displacement amplitudes, and fr and fh the rates of respiration
and heartbeat, respectively.

The phase modulated by the chest displacement can be
modeled as:

φ(t) = φ0 + φD(t), (2)

where φ0 is the initial phase of the received signal at the
nominal distance d0, and φD(t) = 2πfcD(t)/c is the phase
modulated by the physiological movements, fc is the center
frequency of UWB pulse.

C. Robustness Challenges

Robust vital sign extraction based on the derived phase
model in (2) is challenging due to the following issues. First,
the perceived phase can be noisy due to imperfect hardware.
As the UWB signal is sampled at extremely high frequencies
(23.328 GHz in our case), imperfect synchronization between
the transmitter and receiver would result in a sampling time
offset (STO), thus a time-variant phase drift φSTO(t). There-
fore, the phase model (2) needs to be updated as:

φ(t) = φ0 + φD(t) + φSTO(t), (3)
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Fig. 2: The overall framework of VitalHub.

and this makes direct extraction difficult especially when the
phase drift from desynchronization becomes larger than that
(φD(t)) from physiological motion.

Second, the chest wall movements due to either heartbeat
or respiration are not purely sinusoidal, thus harmonic compo-
nents exist for both. As normal HRs span a wide range (e.g.,
50–150 bpm), the higher order harmonics of respiration can
co-exist in the same range as HR. Larger respiration motions
also produce strong harmonics, making it difficult to decide
the correct fundamental component of HR.

Third, as the realistic channel exhibits non-linearity, the
perceived phase due to physiological motion can be more
complex than φD(t) = 2πfcD(t)/c. The complex non-linear
signal can be approximated by its Taylor series as follows:

φD(t) =
2πfc
c

(a1D(t) + a2D
2(t) + a3D

3(t) + . . .), (4)

where ai is the coefficient of the i-th order term. The higher or-
der terms result in intermodulation products between heartbeat
and respiratory signals, manifested as spectral components
at frequencies of linear combinations of RR and HR (i.e.,
{mfh±nfr|m,n ∈ N0}). Such components could exist in the
normal HR range, making it even more difficult to determine
the correct frequency component for heartbeat. The non-linear
channel thus coefficients ai in (4) are time-variant, resulting
in unpredictable and dynamic magnitudes of intermodulation
components. Therefore, a method that relies on certain as-
sumptions on signal patterns may fail under different patterns.

IV. VITALHUB OVERVIEW

Figure 2 illustrates the overall framework of VitalHub,
which fuses inputs from a pair of co-located UWB and depth
sensors to tackle challenges described in §III-C for robust vital
signs monitoring.

We develop a pre-processing pipeline (in §V-A) to deal
with STO issues and extract the vital signal (i.e., the phase
change in UWB signal due to physiological motions). We
introduce a signal quality detector (in §V-B) to tell signals
where vital signs are “available” for estimation from corrupted
ones due to inadvertent movements, even in the presence of
harmonics and intermodulation. We propose a probabilistic
weighted framework (PWF) in vital signs estimation (in §V-C)
to specifically deal with the challenges in robust HR estimation
in the presence of dynamic signal patterns.

While UWB sensor is sensitive to minute movements for
vital signs estimation, it is relatively “blind” to the context
information (e.g., where the subject of interest is located,



which subjects are present, and what activities each sub-
ject is conducting). To support unambiguous monitoring in
cohabiting scenarios, respective context (e.g., identities and
activities) must be correctly associated with the UWB echo
pulses from different subjects. We use existing techniques
to enable context annotation (in §VI) built upon an existing
human pose recognition model [12].

V. VITAL SIGNS MONITORING

In this section, we describe the vital signs monitoring mod-
ule, which consists of three stages: 1) signal pre-processing
to extract vital signals from received noisy UWB echoes; 2)
signal quality detector; and 3) vital sign estimation to robustly
measure RR/HR in presence of unpredictable and dynamic
signal patterns.

A. UWB Signal Pre-processing

We design a UWB signal pre-processing pipeline to extract
vital signals (i.e., phase changes due to physiological move-
ments) from the reflected UWB pulses.

Signal Segmentation. This step locates the segments of
received UWB signals corresponding to the target (i.e., chest
walls). The pulses reflected from different distances are re-
ceived at different arrival times. Thus we segment signals into
range bins each corresponding to a different 5 cm depth range.
Our UWB sensor has a range of 10 m, leading to about 200
range bins. We leverage the human body distance measurement
from context annotation module (in §VI) to decide which
range bin corresponds to which identified human body, thus
further processing signals in those bins. The 5cm size is
decided based on the amplitude of motion, the penetration
effects of signals and errors in distance measurement.

Vital Signal Sanitization. Next we remove the time-variant
phase drift φSTO(t) due to sampling time offset (STO) (an-
alyzed in §III-C). Because φSTO(t) is caused by unknown
jitters in the sampling system, it is impossible to describe
with a mathematical model. Fortunately, the same jitters exist
in signals from all range bins, and the direct path (i.e.,
the signal received from the transmitter, without reflection
from any object). The direct path signal can be expressed as
φr(t) = φr0 + φSTO(t), where φr0 is the inital phase of the
direct path signal and is static. Therefore, we can simply use
φr(t) as a reference to cancel out φSTO(t) as follows to obtain
sanitized vital signals in the form of relative phases:

φ′(t) = φ(t)− φr(t) = φD(t) + φ0 − φr0, (5)

where φ0 and φr0 are both static, and φD(t) is the phase
modulated by the physiological movements from which we
estimate vital signs.

B. Signal Quality Detector

Next we describe how to detect whether the signal is cor-
rupted beyond recognition, or vital signs are still “available”.
Large body motions (e.g., swaying) cause severe disruptions
in the signal. Such “unavailable” signals must be detected
and excluded to avoid producing erroneous results. Motion

detection [1, 6, 20] based on periodicity in the time domain
and/or condensed energy in the frequency domain have been
proposed. However, strong respiration harmonics and inter-
modulation can dominate and mingle with such features from
the much weaker heartbeat, and thresholding-based detectors
cannot reliably tell them apart.

We propose a 2-D “heatmap” based detector that incor-
porates the spectral amplitudes at different frequencies. The
heatmap HM(fr, fh) borrows the concept of “joint proba-
bility distribution” and the value of each pixel is defined at
the RR/HR candidate pair {fr, fh}:

HM(fr, fh) =
∑

z∈Z(fr, fh)

A(z), (6)

where A(z) denotes the spectral amplitude of the signal at the
frequency of z, and Z(fr, fh) is a set of potential harmonic
and intermodulation frequencies, which can be expressed as
{mfh ± nfr|m,n ∈ N0}. When the signal is not corrupted
much, harmonic and intermodulation frequencies of (fr, fh)
close to the true RR/HR would have significant energy. Thus
HM(fr, fh) would gain relative large values of A(z). This
will visually appear as vertical and horizontal lines of large
HM values in the heatmap. We show three representative sam-
ples in Figure 3, 4, and 5 for “available”, partially “available”,
and “unavailable” signals. In Figure 3, the ground truth RR
and HR are 21 and 60 bpm. The heatmap shows a horizontal
line near 20 bpm on RR and a vertical line near 60 bpm on
HR with red color (i.e., larger values). Such visual patterns
are used to detect whether a signal is “available”. 2

To learn the spatial-invariant features from the 2-D heatmap,
we adopt the ResNet-18 model as the detector. ResNet [11]
was initially proposed for image recognition, and takes 3-
channel image data (i.e., RGB images) as input. We modify
the first convolutional layer to process the heatmap, which
is in the format of 1-channel grey-valued image. We also
adjust the final layer to output a vector of two numbers (α, β),
both within [0, 1], indicating the normalized probabilities of
availability and unavailability. The larger one determines the
binary classification result of signal availability. Therefore, the
probability of availability α can be used to indicate the signal
quality.

The method of training and validation of the signal quality
detector is described in §VIII-A. Signals detected as “avail-
able” are passed for vital signs estimation.

However, signals from the range bin that was directly
located by the depth camera may not be suitable for vital
signs estimation due to the offset error of the depth measure
and the imperfect placement between UWB and depth sensors.
We note that adjacent range bins need to be considered to
measure vital signs with better signal quality. To be specific,
we flag a period as “available” when at least one range bin
among 7 adjacent range bins (i.e., within ±15 cm range) is

2Horizontal lines near 10 bpm on RR exist because the true 20 bpm
respiration peak could be interpreted as second order harmonic. Still, such
incorrect lines have weaker supporting evidences, thus smaller values and
fainter colors.
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Fig. 3: An “available” sample: the heatmap shows an obvious red
horizontal line near 20 bpm on RR, and a red vertical line near 60
bpm on HR. It matches the ground truth.
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Fig. 4: A partially “available” sample: the heatmap shows a red
horizontal line near the 20 bpm ground truth RR but no strong vertical
line around 75 bpm ground truth HR.
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Fig. 5: An “unavailable” sample: the heatmap is noisy and shows no
obvious lines around ground truth RR and HR of 17 and 85 bpm.

classified as “available”. With α as the signal quality indicator,
we select a range bin with the largest α among adjacent range
bins for vital signs estimation during “available” period.

C. Vital Signs Estimation

1) Respiration Rate Estimation.: As the respiration fre-
quency is usually from 0.1 to 0.3 Hz, we use a 2-order
butterworth bandpass filter with a pass band of 0.1–0.8 Hz
to remove the DC component and high frequency noise.

Since the whole chest moves upon respiration, it has larger
radar cross section (RCS) and displacement. Thus the phase
signals are stable enough that we can easily estimate the
respiration rate by counting the peaks. We use a time window
of 30 s (which usually contains 5–8 breathing cycles), and
calculate the time intervals between adjacent peaks. Then we
average the interval to obtain the respiration rate fr.

2) Heart Rate Estimation.: Extracting the heart rate is more
challenging due to its much smaller RCS and displacements,
thus much weaker magnitudes in both temporal and spectral
domains. As explained earlier (in §III-C), harmonics and inter-
modulation from respiration can easily dominate the heartbeat
signal and their patterns are dynamic.

To robustly measure the HR, we propose a probabilistic
weighted framework (PWF) that 1) incorporates four HR
estimators each suitable to one of four identified temporal
and spectral patterns; 2) adaptively combines HR candidates
generated by the estimators with the quantified cumulative
evidence of each pattern; and 3) leverages limits in HR
temporal changes to smooth continuous measures.

Heartbeat Signal Extraction. In this step, we filter noises
and respiration signals, and enhance the heartbeat signal for es-
timation. While the heartbeat signal presents periodic changes,
noises behave randomly and can be modeled as Gaussian.
We use auto-correlation to zero-out the noise and enhance
the periodic pattern of heartbeat. We observe that because of
its higher frequency, heartbeat causes larger changes among
adjacent sampling points than respiration. We use the second
order difference to make the heartbeat more prominent.

Then we use the Discrete Wavelet Transform (DWT) as
the filter bank [5] to extract heartbeat signals because DWT
can retain the inherently irregular shape of the vital signals
while the conventional filters (e.g, Butterworth filter) would
smooth the shape and result in loss of information for temporal
analysis. We progressively split the signal into approximation
coefficients (from the low-pass filter) and detail coefficients
(from the high-pass filter) with the previously decomposed
coefficients and reconstruct the signal with the coefficients in
the interested frequency range (0.625–5 Hz, which covers both
fundamental and second order harmonics). With L iterations
(corresponding to L scales), an approximation coefficient γ(L)

and a sequence of detail coefficients υ(1), υ(2), ..., υ(L) are
calculated in (7).{

γ
(L)
k =

∑
n∈Z s[n]ϕ

(L)

2Ln−k, L ∈ Z,
υ
(l)
k =

∑
n∈Z s[n]ψl2ln−k, l ∈ {1, . . . , L},

(7)

where ϕ denotes the scaling function and ψ the wavelet. The
signal can be reconstructed using inverse DWT (8).

s[n] =
∑
k∈Z

γ
(L)
k ϕ

(L)

2Ln−k +

L∑
l=1

∑
k∈Z

υ
(l)
k ψl2ln−k. (8)

In VitalHub, we select Daubechies(db4) wavelet as the
mother wavelet, and split signal into 4 levels. The detail
coefficients υ(3) + υ(4) (ranging from 0.625 Hz to 2.5 Hz)
are used to reconstruct the heartbeat signal. The coefficients
υ(4) + γ(4) (ranging from 1.25 Hz to 5 Hz) are used to
reconstruct the second order harmonic component of the
heartbeat signal.

Ensemble of Heart Rate Estimators. Based on manual
examination of over 6000 data samples, we identify four
typical temporal/spectral patterns (present in 98.55% of the
data) and identify a suitable estimator for each, including: 1)
zero-crossing (ZC); 2) peak interval (PK); 3) local maximum
detection in the spectrum of the HR range (LMD); and 4)
spectral peak detection in the range of the heartbeat signals’
second order harmonic (SOH).

The first two handles two temporal patterns. ZC estimates
HR by counting the number of zero-crossings in a time



window,dealingwithaperiodicpatternoftemporalchanges
betweennegativeandpositivevalues.Higherorderharmonics
ofrespirationmaycausemorenegative-to-positivetransitions,
thusfalselyhigher HR.PK measurestheaverageinterval
betweenadjacentlocalmaximainatimewindow,thusHR.It
isrelativelyimmunetosignalsoflargerenergy,butsensitive
tohighfrequencyjitters.

Thelattertwohandlestwospectralpatterns. Whenthe
fundamentalspectralpeakofheartbeathassignificanten-
ergy[6],LMDdetectssuchhighpeaksintheHRrange(50–
150bpm). Whenhigherorderharmonicsorintermodulationof
respirationhasstrongenergy,they mayoverwhelmtheheart
peakinthisrange.SOHselectsspectralpeaksintherangeof
thesecondorderharmonicoftheheartbeat(100-300bpm),
thenhalvethemasestimates. Weobservethatrespiration
harmonicsandintermodulationhave much weakerenergy
inthisrange[8]. Duetopartialoverlap withtheheartbeat
fundamentalfrequencyrange,sometimesrespirationmaystill
producesignificantpeaksthuserroneousHRestimation.

Usingasliding window, weproducea HRcandidateset
Ctattimet,includingCF

t,2estimatesfromZC,PKand3
largestpeaksfromLMD,andCS

t,3largestpeaksfromSOH.
Unlessexplicitlystated,acandidate cm

t ischosenfromthe
combinedsetCt=CF

t ∪CS
t.

Probabilistic Heart Rate Tracking. Weformulatethe
continuousHRestimationastrackingthe“trend”ofchanges,
withthestateupdateequationasfollows:

x̂t=xt−1+̇xt−1 t+εp, (9)

wherext−1isthestate(i.e.,HR)estimatedattimet−1,̂xtis
HRpredictedattimet, tistheestimationinterval(setto1
secondinourconfiguration),andεp∼N(0,σ2p)istheprocess
noise.Becauseerrorsaccumulateovertime,thepredictions
mustbecalibratedusingevidencesfromobservations.

Thefourtemporal/spectralpatternsarepresentmostofthe
time(> 98%),thusthe HRcandidateset Ct verylikely
includesthecorrectone.Thekeyistodeterminewhichone.
Wequantifytheevidenceofeachcandidate cm

t todetermine
itsweightandcalibratepredictions.

• RespirationHarmonics.Assumethefundamentalrespi-
rationfrequencyisfr

t,thenitsharmonicsarerepresented
asHr

t={fr
t,2fr

t,...,Nfr
t},whereN isempiricallylim-

itedat5becausethosebeyondthe5tharenegligible[8].
Thecloseracandidateistoanyrespirationharmonic,
thelesslikelyitistrue,whichcanbeformulatedinthe
followingweight:

Pr(cm
t)=1−gr(min

m,n
(abs(cm

t −n·fr
t)), (10)

wheren∈{1,2,...,N},gr(·)∼N(0,σ2r)isaGaussian
distributionandσrisempiricallysetto2.

• HeartbeatHarmonics.Heartbeatsignalalsohasharmon-
ics,whilerandomnoise maynot.Thustheexistenceof
highorderharmonicscanbeusedasanevidenceofthe
heartbeatfundamentalfrequencyfh. Astheheartbeat

signalisrelatively weak, weonlyconsideritssecond
orderharmonic.Thisweightcanbecalculatedasfollows:

Ph(cm
t)=gh(min

n
(abs(cm

t −cn
t)), (11)

Ph(cn
t)=gh(min

m
(abs(cm

t −cn
t)), (12)

wherecm
t ∈CF

t,cn
t ∈CS

t,gh(·)∼N(0,σ2h)isanother
Gaussian,andσh isempiricallysetto2.

• PeakProminence.Weobservethatrealpeaksareusually
“sharp”(i.e.,higherprominence),eventhoughtheampli-
tudemaybesmall. Weuseanexponentialdistributionto
representthisweight:

Pp(cm
t)=1−e−α·p(cm

t ), (13)

where p(cm
t)isthepeakprominence whichquantifies

how muchthecandidatecm
t peakstandsoutduetoits

heightandlocationrelativetoothernearbypeaks,and
thescalefactorαisempiricallysetto1.

• Temporallocality.HRisnotlikelytochangeabruptly
inashorttime(e.g.,onesecond),andthenext HRis
usuallyclosetothecurrentone.Therefore,wequantify
howcloseacandidateistopreviousestimationas:

Pl(c
m
t)=g(abs(cm

t −xt−1)), (14)

where gl(·)∼ N(0,σ2l)isanother Gaussian.σlisthe
varianceofheartratetrend.

Wedefinethelikelihoodofacandidatetobetheheartrate
asthecumulativeevidenceinaproductform:

Lm
t =Pr(cm

t)·Ph(cm
t)·Pp(cm

t)·Pl(c
m
t). (15)

Thenormalizedweightforacandidateisexpressedas:

ωm
t =

Lm
t

Mt

j=1 Lj
t

,m=1,2,...,Mt. (16)

Then,wetaketheweightedaverageofallthecandidatesasa
newmeasurement:

c̄t=
cn

t∈Ct

ωn
t·cn

t. (17)

Weobservethattheerroroftheweightedmeasurementcanbe
consideredzero-meanGaussian(usingKolmogorov-Smirnov
statisticstatisticfoundat0.036,lessthan0.05,thethreshold
whentwodistributionsareconsideredthesame[24]).There-
fore,weapplyKalmanFiltertoiterativelyrepeatthefollowing
stepstoupdatetheheartrateatdiscretetimestepsuponeach
newcandidateset:

Kt=
σ2

t 1

σ2
M +σ2

t 1
,

σ2
t=(1−Kt)σ2

t−1,
xt=̂xt+Kt(̄ct−x̂t)

(18)

whereKtistheKalmanGain,σ2
M andσ2

t arethevariances
ofmeasurementnoise(fromc̄t)andprocessnoiseinitialized
withσ2

p.



VI. CONTEXT ANNOTATION

We leverage the skeleton data tracked from the depth
sensor as features for user identification and activity context
recognition.

User Identification. As the walking pattern is discriminative,
we use the consecutive skeleton data in a two-second time
window (a few steps when the user enters the monitoring zone)
as input for identification. We leverage a deep recurrent model
with two stacked standard LSTM layers, each with 128 hidden
units, and a fully connected layer with Softmax activation to
produce prediction results.

Activity Context Recognition. Since the pre-trained LSTM
model has learned sophisticated features from sequential skele-
ton data, we apply transfer learning by feeding them to a new
classifier to recognize activity context.

VII. TESTBED

In this section, we describe the implementation of our
testbed and experimental setup for evaluation.

A. Implementation

VitalHub uses a COTS IR-UWB sensor XeThru x4m03 [25]
as its frontend for wireless sensing. The transmitted pulse is
configured to be within the frequency band 7.25-10.2 GHz
centered at 8.75 GHz, and the sampling frequency is 23.328
GHz. The frame rate of the UWB sensor is configured to be
10 frame-per-second (fps), and each frame includes samples
of the echo pulses reflected from the objects within the range
of 10 m. Kinect XBox serves as the depth sensor in Vital-
Hub. Its SDK incorporates the human body pose recognition
model [12] to detect human bodies present in the field of view
at 60 fps. Both modalities stream data to the same backend
PC via serial port. We run the whole pipeline on a backend
PC, which has an Intel i7-8750 2.2GHz CPU, 16GB RAM
and NVIDIA RTX 2060 GPU. We implement deep learning
models with PyTorch and run them using the GPU.

B. Experimental Setup

Figure 6(b) shows the hardware setup of a Kinect XBox
One sensor with the RGB camera covered and a co-located
UWB sensor. We conduct experiments in a room with a size
of 4.5× 9 m2 (shown in Figure 6(a)).

We invited 8 students as participants for data collection
(heights 156–192 cm, weights 49–108 kg), following a pre-
established protocol that protected the anonymity of the stu-
dents. We use two FDA approved medical devices, Nonin
LifeSense II [26] and Masimo Pulse Oximeter [27] to obtain
heart and respiratory rates as ground truth. Although results
for each module are presented separately, VitalHub inherently
integrates and produces data in a holistic pipeline concurrently.

VIII. EVALUATION

We start with a few microbenchmarks to demonstrate the
performance of signal quality detector in §VIII-A. Then, we
evaluate the end-to-end performance of VitalHub in §VIII-B

UWB & Depth CameraTesting Locations

(a) Testing environment setup.

Covered RGB Camera

Y
X

Z

TX RX
Depth Camera

UWB SoC

(b) Hardware configuration.

Fig. 6: The experiment environment and hardware setup.

and §VIII-C. The data are retrieved according to the recog-
nized identities based on context annotation; the pre-trained
signal quality detector is used to filter in the time domain (i.e.,
sliding windows) and in the space domain (i.e., range bins) for
robust vital signs estimation against inadvertent motions.

A. Signal Quality Detector

We first evaluate the signal quality detector for the classi-
fication of signal availability. Then we demonstrate how the
detector can boost the performance of vital signs monitoring
by reducing erroneous results from corrupted signals.

Classification. We compare the heatmap based detector
(HM) against 4 existing detectors based on moving average
(MABD) [20], moving variance (MVBD) [20], average vari-
ance energy (AVE) [1], and flat spectrum (FSD) [6].

We build a balanced data set consisting of 20, 000 data
samples, with equal number of “available” and “unavailable”
samples randomly selected from 40, 782 manually labeled
ones. Each data sample is the vital signals in a 30-second
time window from one of 7 adjacent range bins centered at
the depth sensor reported human body distance. We label a
data sample as “available” if well-trained human observation
identifies sufficient temporal periodicity and/or spectral peaks
for both respiration and heartbeat, even under strong noises;
otherwise, it is “unavailable”. Therefore, for an identified
“available” data sample, we know for sure the vital signs
information exists. Thus failure to extract accurate readings
indicates limitations of estimation algorithms.

We use precision (P ), recall (R) and F-score (= 2 P ·R
P+R )

as metrics. Precision is the fraction of true positives among
all identified positives, defined as P = TP

TP+FP ; recall is the
fraction of identified positives among all true positives, defined
as R = TP

TP+FN . A high precision means unavailable data
is unlikely to be falsely identified as “available”; and a high
recall means the available data can be correctly identified thus
utilized for monitoring. F-score quantifies the balance between
precision and recall.

We apply 5-fold cross validation, and in each iteration we
take 80% of the data set for training our detector or searching
thresholds of others, and the rest 20% for testing. For fair
comparison, each threshold is selected when respective F-score
is maximized. The HM detector uses Adam optimizer [28] that
minimizes cross entropy as the loss function, which measures
the discrepancy between predicted and actual labels.



TABLE I: Precision, recall and F-score of signal quality detectors.
Precision (%) Recall (%) F-score (%)

MABD 93.11 47.80 63.17
MVBD 80.08 49.17 60.93
AV E 97.82 50.90 66.59
FSD 89.37 83.39 86.28
HM 96.41 96.29 96.35
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Fig. 7: Boosted performance with signal quality detector.

Table I shows that the time domain methods MABD,
MVBD and AVE have relatively low recall. This is because the
temporal signal is dominated by respiration signal in the shape,
and sensitive to noises (e.g., environment, body movements).
Achieving high precision requires “strict” selection, thus low
recall and loss of available data. The frequency domain method
FSD has better performance, but still about 10% worse than
our HM detector. It assumes that the spectral peak sharpness
(i.e., how condensed is the energy) indicates the availability of
both respiration and heartbeat signals, however it is not always
the case. Besides, respiration harmonics and intermodulation
can also reduce the sharpness even if both respiration and
heartbeat signals are available.

The HM detector requires more computation. The genera-
tion of and inference on the heatmap take 72.49 ± 6.99 ms
and 7.26 ± 6.84 ms respectively, short enough for real-time
measurements updated every 1 second.

Range Bin Selection. We observe that the distance reported
by the depth sensor may not give the range bin with the best
signal quality. Thus we search 7 adjacent range bins (±15 cm)
centered at the depth camera reported one, and select the one
with the highest signal quality indicator α (provided by the
trained HM detector).

Ablation Study. To study the effectiveness of the signal
quality detector on the end-to-end system, we compare the
performance in vital signs estimation with the progressive
ablation of range bin selection (Sel.) and availability classifica-
tion (Clf.) against an impractical “Oracle” that always knows
whether the signal is available, which is the best range bin, and
best estimator (among the four used in PWF) at each moment.

Figure 7 shows obvious performance degradation each time
bin selection or classification is removed. With both of them,
VitalHub achieves end-to-end RR/HR estimation at 1.5/3.2
bpm errors at 80-percentile, very close to 1.2/1.5 bpm errors by
the idealistic oracle. This shows the necessity of the detector,
which enables VitalHub to approach the “ceiling” of the oracle.

B. Vital Signs Estimators

We compare different methods in estimating vital signs and
dealing with non-linearity issues (e.g., harnomics, intermodu-
lation, and dynamic signal patterns as described in §III-C).
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Fig. 9: Typical spectrum when SHAPA and HMLD both fail.
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Fig. 10: Vital signs estimation under different orientations.

1) Individual Estimators: We evaluate the effectiveness of
all the 4 estimators for heart rate estimation (Figure 8). We
define a “working ratio” metric as the fraction of time when
an estimator has < 5 bpm error, which is an acceptable error
range for long-term monitoring. The second order harmonic
estimator (SOH) has the highest working ratio, because the
second order harmonic of the heart rate is spectrally free of
the high order harmonics of respiration. Temporal methods
zero-crossing (ZC) and peak interval (PK) have relatively low
working ratio due to sensitivity to noise and interference. How-
ever, they produce more gradual changes in output compared
to spectral methods LMD and SOH, helping avoid large jumps
between spectral peaks for smooth tracking. VitalHub com-
bines all of them and achieves over 98% working ratio. This
demonstrates the effectiveness of PWF framework combining
weak estimators to achieve more robust estimation.

2) Robustness against Harmonics and Intermodulation:
We identify two representative methods, SHAPA [7] and
HMLD [18], dealing with harmonics and intermodulation and
compare with them. They leverage the frequency relation
between harmonics. SHAPA tries to find three spectral peaks
(i.e., “harmonic path”) with 1 : 2 : 3 ratio in frequency with
magnitude larger than some preset threshold. HMLD tries
to find a pair of stable spectral peaks with 1 : 2 ratio in
frequency. Figure 10(a) shows while VitalHub reaches 98%
working ratio, SHAPA and HMLD deliver only 51.2% and
76.3% respectively. Both methods rely on presumed signal



patterns, which may not always happen in reality.
SHAPA is very sensitive to SNR. The preset threshold

is supposed to filter out most noise peaks while leaving
those from fundamental and harmonics of heartbeat. However,
when SNR is low, even with a well tuned threshold (one
that just below all harmonic peaks), noise can easily cause
incorrect estimation. Figure 9(a) shows a typical case where
the threshold set at the minimum magnitude of all harmonic
peaks. However, many noise peaks exist above the threshold,
and some may cause SHAPA fail to locate the true harmonic
path. HMLD has similar problems as shown in Figure 9(b).
The above shows that algorithms relying on presumed signal
patterns are not robust enough.

3) Dealing with Unpredictable and Dynamic Signal Pat-
terns: We implement WiBreathe [19] for comparison as it is
a most related work that identifies and addresses unpredictable
and dynamic vital signal patterns. We caution that WiBreathe
was designed for respiration only, so the comparison serves not
to criticize, but to shed light on how applicable its techniques
are for heart rate. WiBreathe adaptively combines several
estimators’ output, under the assumption that the majority
of them would produce correct estimations. For fairness, we
compare only the strategies in combining estimator outputs,
while all other components such as preprocessing pipelines are
the same. Figure 10 shows that the working ratio of WiBreathe
can be up to 81.3% of the time, much lower than VitalHub’s
98%. We find the majority of the HR candidates from the
estimators can be incorrect, causing WiBreathe fail to make
the correct estimation. Our PWF strategy uses the cumulative
evidence thus can still select the correct candidate even it is not
in the majority but possessing stronger evidence, thus dealing
with dynamical signal patterns more effectively.

C. User and Environment Factors

We study the impact of user and environment factors to
end-to-end vital sign monitoring performance.

1) Impact of Distances: We vary the distance between 1.5–
4.5 m with a step length of 1 m, while keeping the orientation
of the subject at 0 degree (facing frontally). The results are
shown in Figure 11. We can see that RR/HR estimations are
very stable even at 4.5 m, up to the range of the depth sensor.

2) Impact of Orientations: We vary the orientation of
the subject at 0, 45, and 90 degrees while keeping 2.5 m
distance (shown in Figure 12). Interestingly, we observe that
HR accuracy is not affected much by the orientation, but RR
error at 90 degree more than triples. The issue of RR being
sensitive to the orientation will be discussed in §IX.

3) Impact of Ambient RF sources: To evaluate the impact
of ambient RF sources, we compare the performance in two
settings: low Wi-Fi traffic where Wi-Fi signal comes from
nearby buildings but no Wi-Fi device running indoors, and
intense Wi-Fi traffic where 3 Raspberry Pis, 4 laptops, 4
smartphones and 2 Wi-Fi routers keep streaming data indoors.
Figure 13 shows negligible decrease in the accuracy of RR/HR
measurement. This is because UWB spreads the energy on a
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Fig. 11: Vital signs estimation under different distances.
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wide frequency bandwidth thus narrow band Wi-Fi signals in
2.4/5 GHz do not present severe interferences.

4) Multi-User Minimum Resolvable Distance: The mini-
mum resolvable distance, i.e., how close adjacent subjects can
be without interfering each other, is a very critical factor for
co-habiting scenarios. We invite 3 volunteers, separated at 1 m
initially, gradually decreased at 10 cm steps, until any two of
them appear identical in measurement, meaning they are too
close for the system to differentiate. We find all 3 volunteers
can be reliably monitored even when separated at only 20 cm,
with performance comparable to the single user setting.

IX. DISCUSSION

Extensible Framework. In our vital sign monitoring mod-
ule, we combine several estimators’ output and leverage prior
knowledge about vital signs to produce a weighted sum
estimation to deal with the challenges from harmonics and in-
termodulation. Our framework can easily accommodate more
estimation methods and other prior knowledge to improve the
performance as advances are made in these fields. Evidence
for signal patterns suitable for such methods will be quantified
to update respective weights.

Trade-offs between Precision and Recall. We observe
that for small fractions of time (less than 4%), the signal
quality detector may fail. When this happens, none of the
estimators can produce a correct HR estimate. If this continues
long enough, the PWF may fail to smooth out such erroneous



output and converge to produce some wrong HR estimate. This
problem can be alleviated by combining signals in consecutive
time windows, but at the cost of reduced recall of the data.
We leave it to the future work to find a proper balance.

Sensing Orientation and Range. We observe relatively
high errors in RR when the orientation of the subject is near 90
degrees. It is because the chest movement in the mediolateral
dimension is much smaller than the frontal dimension, but is
comparable to the displacement attributed to the heartbeat. A
native but effective solution is to use multi-sensor deployment
so the 90-degree orientation of the subject can be avoided by
at least one sensor. While the effective range of the current
prototype is limited by the UWB and depth sensors we use,
it is sufficient for room-size monitoring. We will also explore
multi-sensor deployment for scalable coverage.

X. CONCLUSION

We present VitalHub, a robust, non-touch, passive sens-
ing system for longitudinal in-home vital signs monitoring
leveraging UWB and depth sensors. We describe how respira-
tion harmonics and intermodulation cause strong disturbances
to robust heart rate monitoring. We propose a probabilistic
weighted framework that adaptively combines an ensemble of
estimators based on the quantified cumulative evidence of their
suitable temporal and spectral signal patterns. Experiments
show that VitalHub achieves performance close to an idealistic
but impractical oracle, and we share insights on why existing
methods do not handle harmonics and intermodulation well.
We believe VitalHub offers a suitable solution for longitudinal
in-home vital sign monitoring.
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