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Abstract—Edge devices (e.g., smartphones, tablets, connected
vehicles, IoT nodes) with sensing, storage and communication
resources are increasingly penetrating our environments. Many
novel applications can be created when nearby peer edge devices
share data. Caching can greatly improve the data availability,
retrieval robustness and latency. In this paper, we study the unique
issue of caching fairness in edge environment. Due to distinct own-
ership of peer devices, caching load balance is critical. We consider
fairness metrics and formulate an integer linear programming
problem, which is shown as summation of multiple Connected Fa-
cility Location (ConFL) problems. We propose an approximation
algorithm leveraging an existing ConFL approximation algorithm,
and prove that it preserves a 6.55 approximation ratio. We further
develop a distributed algorithm where devices exchange data
reachability and identify popular candidates as caching nodes.
Extensive evaluation shows that compared with existing wireless
network caching algorithms, our algorithms significantly improve
data caching fairness while keeping the contention induced latency
similar to the best existing algorithms.

I. INTRODUCTION

Our surrounding environments are increasingly penetrated
with various kinds of edge devices, including mobile phones,
tablets, connected vehicles, road-side cameras, and diverse
Internet-of-Things (IOT). These devices possess sensing, com-
puting, storage and communication capabilities. They produce
pervasive sensing data about physical phenomena in the en-
vironment. By sharing sensing data among such peer edge
devices, numerous novel applications can be created.

Consider a large outdoor public event (e.g., music festival,
university commencement). Smartphones carried by people can
capture diverse data, including human activities, their locations,
and image/video clips. When shared among peer devices, such
data can help people avoid food stands of long lines, discover
interesting souvenirs and artifacts, or enjoy images, video clips
of special, memorable moments.

Caching is a critical mechanism to enable such peer data
sharing among edge devices. The movements of people thus
devices, the varying availabilities of data and resources (e.g.,
battery, storage), constitute a highly fluid environment full
of uncertainty and dynamics. By caching the data at willing
and capable devices, the availability of data, the robustness
and latency in their retrieval, can all be greatly improved.
Recent content centric networks [1] even integrate caching as
a fundamental component in their design.
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Despite some earlier works [2], [3] on caching in wireless
networks (MANET), the critical issue of fairness has not been
addressed. These works focus on reducing the contention, thus
latency in data retrieval. They can cause extremely unbalanced
caching load, e.g., a few fixed devices are always chosen as
cache [2], [4]. Although this may not be an issue in MANET
if all devices listen to one authority, it is simply infeasible
in edge environments: each device may belong to a different
owner, and caching decisions can only be voluntarily accepted,
not forcefully mandated.

In this paper, we study how to ensure caching fairness among
peer devices in pervasive edge computing environments. We
formulate the problem in integer linear programming form, and
show that it is the summation of multiple Connected Facility
Location (ConFL) problems. We propose an approximation
algorithm and prove that it preserves a 6.55 approximation
ratio to the optimal solution. We can also achieve very good
caching fairness when 75% of data are cached on 71.4%
of nodes. We further develop a distributed algorithm where
nearby devices exchange data availability to make collaborative
caching decisions.

We make the following contributions in this paper:
• We consider caching fairness in data sharing among peer

edge devices. On top of contention costs thus retrieval
latency, the fairness costs are incorporated into an integer
linear programming problem, which is the summation of
multiple traditional ConFL problems.

• We design an algorithm by leveraging one of the exist-
ing ConFL approximation algorithms. We prove that our
algorithm preserves the same approximation ratio as the
original ConFL algorithm.

• We further design a distributed algorithm where devices
exchange data retrieval costs among 2-hop neighbors to
identify candidates with the smallest costs, and popular
candidates volunteer to cache data.

• We implement our algorithms and compare against other
algorithms for distributed wireless network caching. The
results show that our algorithms significantly improve data
caching fairness while keeping the contention induced
latency similar to the best existing algorithms with O(N3)
complexity, where N is the number of nodes in the
network.

To the best of our knowledge, this is the first work to
consider caching fairness for peer data sharing among edge



devices. The rest of the paper is organized as follows: In Section
II we discuss some related work on mobile caching and facility
location problem. In Section III we give the system model
and the formulation of the problem. We provide algorithms
in Section IV to solve the problem. We evaluate our design
and compare with other previous works in Section V. Finally,
we conclude our work in Section VI.

II. RELATED WORK

Caching is one classical mechanism to improve data access
robustness and performance. It has been applied in various
scenarios. Cooperative caching shares and coordinates data
caching decisions among nodes has been applied in ad hoc
networks. Yin et al. [5] propose two caching schemes and
a method to obtain data in mobile networks. Hara et al. [6]
propose a strategy to remove redundancy in neighborhood,
and Hamlet [7] minimizes access costs by leveraging content
diversity of different data in the neighborhood.

There are also some existing works that focus on improving
data access rates by caching in wireless networks. One basic
idea is to place cache based on content popularity such that the
cached content can be used frequently. WAVE [8] decides pop-
ularity based on recommendation from upstream node request
counts. Li et al. [9] dynamically place caching replicas on the
en-route path in named data networks (NDN) [10], and MPC
[11] caches only popular content adapted in Content-Centric
Networks (CCN) [12]. Another approach is to find caching
locations that minimize data access latency. Nuggehalli et al.
[13] use the hop-count as the delay model to find the best places
to caching data. Later, Fan et al [3] propose a contention aware
caching algorithm, which is more accurate than the hop-count
based algorithm since the packet contention incurs the most
latency in MANET. Similarly, Sung et al. use contention as a
key factor in determining the delay. They introduce a contention
based solution on flat wireless networks [14], extend to two-
tier wireless content delivery networks [4]. Caching also helps
dealing with mobility in edge computing scenarios. Proactively
caching data near where nodes need data can improve the data
accessing rate despite the high node mobility [15], [16].

The problem of determining caching locations is closely
related to the classical Facility Location (FL) problem. Most
caching studies map their problems into different FL problems
or modify FL problems to solve caching placement. Usually
they use either Uncapacitated Facility Location (UFL) problem
[17] or rent-or-buy problem [18]. The more general case for
these two problems are Connected Facility Location (ConFL)
problem [19]. However, UFL does not consider the content dis-
semination cost in ConFL problem, while rent-or-buy problem
does not consider the facility building costs in ConFL.

In this paper, we design our algorithms by leveraging the
ConFL problem. Since ConFL is a NP-hard problem, previ-
ous work has generated many approximation algorithms. The
best deterministic constant approximation ratio is achieved by
Jung et al in 2009 [20] with a 6.55-approximation primal-
dual algorithm. The best approximation algorithm is a 4.00-
approximation randomized algorithm [21], in which the authors
argue that through a derandomization process, it could reach

a factor of 4.32-approximation ratio. However, the derandom-
ization process is a non-polynomial process, thus limiting the
ability to solve ConFL problem. Heuristic [22] and greedy
[23] solutions are also proposed. Though such algorithms may
not have solid approximation bounds, they may still achieve
good performance in practice. We focus on the algorithms
with bounded approximation ratios and leverage them in our
algorithms.

III. PROBLEM FORMULATION

In this section, we introduce our system model and discuss
how we quantify fairness and contention of the network. Then
we provide an integer linear programming (ILP) formulation
for the problem and explain its relation to the ConFL problem.

A. System Model

Let graph G = (V, E) be a connected undirected graph
representing the network topology for the multi-hop wireless
network. Vertexes (V) represent nodes in the network. Edges
(E) represent connection links between nodes. In pervasive
edge environments, nodes (e.g., customers in cafes) exhibit low
to moderate mobility, and the amount of exchanged data is
limited (e.g., a few MBs). Thus we assume that the network
topology remains relatively stable before caching decisions are
made.

Assuming some data should be shared among all nodes, the
goal is to find an optimal way to distribute the data so as to
achieve fairness while ensuring low data access latency. There
are two phases. First, we divide these data into multiple equal
size data chunks N and proactively disseminate them, letting
certain node i ∈ V cache certain chunk n ∈ N . We call this
process the dissemination phase. Then, the node who desires
data chunk n will acquire the data from a nearby node who
has already cached it. We call this process accessing phase.

As the first step towards caching in edge environments,
we will not discuss more advanced issues such as caching
replacement or caching coherency. We do not assume any
specific data fetching or transmission techniques. To simplify
data requesting, we also assume that every node wants to
acquire all the cached data.

B. Fairness Degree Cost

Data caching fairness is a critical issue in edge computing
environments where many nodes are owned by different users.
Both storage and battery are important resources, and the user
can decide how much resource to contribute to caching. Any
fixed selection (e.g., the same group of nodes) for caching will
consume excessive resources on chosen nodes, thus their users
may stop participation.

The key to achieve fair caching is to cache less data on
nodes with less resources. We quantify the caching fairness of
a node by defining a Fairness Degree Cost based on current
node resource consumption conditions. For a node, the higher
Fairness Degree Cost is, the fewer resources available, and
the less likely to cache data on it. Intuitively, the ratio between
used and remaining storage for caching can represent the usage



of storage of a node. 1 Those who cache more data and have
less storage left will have higher Fairness Degree Cost. The
Fairness Degree Cost for node i is defined as

fi =
S(i)

Stol(i)− S(i)
(1)

where Stol(i) is the total caching storage of the node, and
S(i) is the storage used. Thus, Stol(i) − S(i) is the storage
still available. Intuitively, it represents a “penalty”: the less
resources a node has, the more “cost” the network must pay
to cache data on it. A “cost” of 0 indicates that the node has
not cached anything, and ∞ means the storage of node is full
and no further caching is possible. To reduce the cost, nodes
with little storage thus high costs should not be chosen. Since
all chunks have the same size, we define Stol(i) as the total
number of chunks the node can cache, and S(i) as the number
of chunks the node has cached.

Fairness also unifies the solution to cache multiple data
items. Previous wireless caching works, e.g., [13], only con-
sider caching one piece of data. Although some of them argue
that they can be extended to multiple data items, the exact
process is unclear and may involve changes in the network
topology, which may change the underlying problem into a
different instance. When fairness is considered, the reduced
available resources on nodes already caching some data make
them less likely to be chosen for caching future data.

C. Contention Cost

Contention is one of the most important factors affecting
per hop latency in multi-hop wireless networks. To minimize
contention caused packet loss, back-off time and retransmission
are adopted, both increasing the data access latency.

To decrease data access latency, we want to minimize the
overall contention. The contention delay model that describes
the delay due to contention has been considered in [3], [14],
[4]. We call it Contention-induced Delay Cost, or simply
Contention Cost. We define Node Contention Cost wk as the
Contention Cost on a specific node k ∈ V . It is affected
by the number of its contending neighbors, the number of
cached data chunks and the amount of transmissions. In this
scenario, we define the Node Contention Cost wk as the number
of data packet transmissions through node k, both receiving
and sending. The accurate mathematical representation of this
contention makes the problem very difficult to solve, and
almost impossible for distributed algorithms. Thus, inspired
by [4], we propose an estimation solution adopting a similar
approach. For a node k, all the neighbors will send requests
to it and the node will return all the data chunks it receives
to direct neighbors. Thus, wk can be regarded as its degree,
which equals the number of data chunks the node will send to
its neighbors (i.e., one chunk per neighbor).

The Path Contention Cost between two nodes i and j is
based on the Node Contention Cost alongside the path. We
formulate it as

1For simplicity, we only consider storage fairness. A Fairness Degree Cost
on the battery can be defined similarly and considered together in weighted
summation form of the two costs.

cij =
∑

k∈PATH(i,j)

wk[1 + S(k)] (2)

where all the Node Contention Costs are summed along the
shortest path which the data packet will go through. Note that
previously cached data chunks also affect the contention. Each
of these data chunks (cached or new) increases the contention
by the value of the node degree, since each chunk should be
transmitted to all neighbors throughout the process.

The Contention Cost defined above focuses on the delay of
the network caused by the contention in sending and receiving
messages. Yang et al. give a delay estimation of contention in
[24]. Such Contention Cost is roughly a linear transformation
of the Contention Delay model for evaluating the delay pro-
posed in [24]. Basically, it considers the processing (DCF Inter-
Frame Space in 802.11) delay, back-off delay, transmission
delay and collision delay for a hop, represented as

d(k, c) = DIFS +mkε+ wkTd +mc
kTc

where for node k, DIFS is DCF Inter-Frame Space in 802.11,
mk is the number of back-off slots, ε is the length of back-off
slot, wk is the number of chunks transmitted in neighboring
nodes, Td is the transmission duration of a data chunk. mc

i is
the number of collisions and Tc is the duration of a collision.
Since the back-off slot time and collision duration are much
smaller relatively, we can assume Td ≈ Tc ≈ ε. mk = S(k) is
the number of stored data chunks of nodes. mc

i = (wk−1)S(k)
is the maximum number of collisions when all neighbors except
one send their stored chunks. 2 Thus, d(k, c) ≈ DIFS +
Td(wk+S(k)+(wk−1)(S(k))) ≈ DIFS+Td(wk+wkS(k)),
which means that the one-hop Contention Delay is roughly a
linear transformation of the one-hop Contention Cost. We will
use contention cost to represent access latency in the following.

D. Problem Formulation

We now provide an Integer Linear Programming formulation
for the problem discussed above. Note that cij is used for
Contention Cost for both accessing and dissemination phases
where the network topology remains the same.

The basic idea is to add the Fairness Degree Cost and
Contention Cost in a weighted form, and expand each decision
variable for different chunks. For simplicity, we consider them
of the same weight in the following ILP formulation

min
∑
i

∑
n

fiyin+∑
i

∑
j

∑
n

cijxijn +
∑
e∈E

∑
n

cezen
(3)

s.t.
∑
i

∑
j

xijn = 1, (∀n ∈ N ) (4)

yin − xijn ≥ 0, (∀i, j ∈ V,∀n ∈ N ) (5)∑
i∈Yn

xijn ≤
∑

e∈δ(Yn)

zen, (∀j ∈ V,∀n ∈ N ,∀Y ⊆ E)

(6)
xijn, yin, zen ∈ {0, 1}.(∀i, j ∈ V,∀e ∈ E ,∀n ∈ N ) (7)

2Only one node sending causes no collision.



where ce = cij if node i and node j are the two end points of
edge e. xijn, yin and zen are assignment variables. xijn is the
accessing variable. If xijn = 1, node j will access data chunk
n from node i. yin is caching indicator variable. yin = 1 means
data chunk n will be stored in node i. zen is the dissemination
variable. zen = 1 means the data chunk n will disseminate
through edge e in dissemination phase.

There are three terms in (3), the objective function: the
Fairness Degree Cost of the whole network, the Contention
Cost for the accessing phase and the dissemination phase of
the whole network. Here, fi is defined in (1) and cij is defined
in (2). Constraint (4) ensures that every node j should get a
specific data chunk n from exactly one node i. It is clearly
not optimal if a node gets the same data chunk multiple times.
Constraint (5) ensures that if node j gets a data chunk n from
node i, node i must store that chunk. Constraint (6) is the
connectivity constraint. Here, Yn is any subset of nodes, and
δ(Yn) indicates all the edges that connect to Yn. This is to
ensure that for any subset of chosen nodes to cache data chunk
n, they are connected in a Steiner tree [25]. We need these
nodes to be connected to disseminate the data chunks along
the Steiner tree. zen = 1 means edge e is chosen in the Steiner
tree so that data chunk n will be disseminated through this
connection link.

Our problem is an extended case for the Connected Facility
Location (ConFL) problem. It can be transformed as the
summation of multiple ConFL problems. fi can be regarded as
the construction cost for a facility in ConFL problem, which in
this case represents the cost that the network is willing to pay to
select nodes caching a data chunk. cij and ce can be regarded
as modified distance cost, adding the factor of contention of
the network. The yi, xij and ze have similar meanings in each
problem. They represent node i as facility or caching nodes in
each problem and node j wants to access to it through edge e.
As shown in [19], the original ConFL problem is NP hard.
The summation of all the different chunks is a polynomial
time mapping, which maps our problem to the ConFL problem.
Thus, our problem is also NP hard.

It is very difficult to directly solve the problem. Fortunately,
for the ConFL problem, there are many existing approximation
algorithms, among which the best algorithm has a 4.23 approx-
imation ratio. To take advantage of approximation algorithms
for ConFL, we make another transform of our problem as

∑
n

(min
∑
i

fiyin +
∑
i

∑
j

cijxijn +M
∑
e∈E

cezen) (8)

We transform from one optimization goal of getting the min-
imization from variables with the chunks into the summation
of multiple minimization problems for each chunk individually.
We can apply the approximation algorithm to problem (8)
by using it multiple times for different chunks. Although (8)
is different from (3), we will later show that under certain
conditions, we can use this iterative solution to (8) to solve
(3), and the approximation ratio in the original approximation
algorithm is preserved.

IV. ALGORITHMS

A. Approximation Algorithm

In our approximation algorithm, we obtain the input informa-
tion from the network and leverage an existing approximation
algorithm to solve the problem. To show that our design
indeed can solve the problem, we implement the algorithm
[20], which has an approximation ratio of 6.55. This algorithm
approximates the largest possible value of the dual problem.
Basically, nodes with sufficient resources lying in the path
between multiple nodes and an existing caching node or
producer will be picked as caching nodes. The algorithm we
propose is described in Algorithm 1.

Algorithm 1 Approximation algorithm
Input: G ← (V, E), Pv
Output: L(n)

1: L(n)← ∅
2: for all Data chunks n do
3: F ← ∅, T ← ∅, Cd ← ∅, Ci ← ∅, A← ∅, B ← ∅
4: αj ← 0, βij ← 0, γij ← −1, θSj ← 0. ∀i, j, S
5: for all nodes i do
6: Update fin ← S(i)/[Stol(i)− S(i)]
7: end for
8: for all nodes i do
9: for all nodes j do

10: Get shortest path PATH(i, j)
11: Get cij ←

∑
a∈PATH(i,j) wa[1 + S(a)]

12: end for
13: end for
14: for all edges e do
15: Update cen ← cij
16: end for
17: while F 6= V − Pv do
18: αj+ = Uα. ∀j ∈ V, j /∈ F
19: βij+ = Uβ . ∀i, j ∈ V, j /∈ F,

∑
i βij < fin

20: γij+ = Uγ . ∀j ∈ V, j /∈ F, T [j] = i,
∑
i βij ≥ fin

21: for all nodes i, nodes j do
22: if αj ≥ cij then
23: T [j]← i, F ← F ∪ {j}
24: Ci[j]← i(i ∈ A) or B[i](i ∈ B)
25: end if
26: end for
27: for all nodes i, nodes j, locations l do
28: if γij ≥ cij then
29: if i ∈ A then
30: Ci[j]← i, F ← F ∪ {j}
31: else if i ∈ B then
32: Ci[j]← B[i], F ← F ∪ {j}
33: else
34: A← A ∪ {i}, B[i]← i
35: R← ∅
36: if γij ≥ ciln or βij > 0 then
37: Cd[j]← i, F ← F ∪ {j}
38: R← R ∪ {j}
39: end if
40: B[k]← i. ∀k ∈ T [R]
41: Ci[k]← B[i]. ∀k ∈ T [i] /∈ R
42: F ← F ∪ {k}. ∀k ∈ T [i] /∈ R
43: end if
44: end if
45: end for
46: end while
47: Construct Steiner tree between i ∈ A
48: L(n)← A
49: end for



For each chunk, we conduct one iteration (line 2). After
some initialization steps, we update the Fairness Degree Cost
for all nodes in the network (lines 5-7) and then estimate the
Contention Cost of all links based on Equation (2) (lines 8-
16). Lines 17-46 are phase 1 of the approximation algorithm.
It iterates until every node finds at which place they can
obtain the data chunk, (aka the state FROZEN in the original
approximation algorithm [20]). First, the algorithm increases
the price it is willing to pay for establishing a connection to a
caching node (lines 18-20). Note that here the increasing step
units Uα, Uβ and Uγ can be different, since the increasing steps
of the three parameters represent different meanings of cost in
the dual problem.

As mentioned earlier, choosing the parameter wisely can
make the solution better. If this price is larger than the cost
of accessing one existing caching node, it can establish a
connection to that node (lines 21-26), which is the first and
second condition in phase 1 of the original approximation
algorithm in [20]. If not, it goes to the third condition. Lines
29-30 and 31-32 are conditions in 3(a) and 3(b) respectively
in [20]. Lines 33-42 deal with condition 3(c) in [20] where
all direct connections, inactive nodes set and ADMIN set are
created. This ends phase 1. Phase 2 is to connect the locations
of corresponding nodes together. A lot of algorithms can be
used to address the problem, from which we choose [25]. We
will not discuss in detail here. Finally, for chunk n, the ADMIN
set A are the nodes that will cache the chunk. We save this
into L(n) and start the next round until we find all the caching
nodes for all chunks.

The best approximation ratio so far is 4.23 [21]. However,
this algorithm can only obtain a deterministic approximation
ratio with a derandomization process which needs to solve
an exponential size linear programming relaxation. Thus this
algorithm is practically inefficient and very hard to implement.
The 6.55-approximation algorithm has the lowest deterministic
approximation ratio of polynomial time to ConFL problem for
now.

B. Approximation Algorithm Analysis

We now discuss the time complexity of the algorithm. We
assume there are N nodes, Q chunks, and number of iterations
of line 17 is C. Then the complexity of the algorithm in a grid
network is O(N3). Apparently, the bottleneck of the algorithm
is line 27. If we simplify the locations as the location of
nodes in line 27, which is practical in real implementation,
there will be O(N3) complexity by the number of loops.
Note that lines 8-13 in Algorithm 1 requires the shortest

TABLE I
NOTATIONS USED IN OUT APPROXIMATION ALGORITHM

L(n) The caching nodes set for
data chunk n

Pv The producer of this data
chunk

F FROZEN nodes set T TIGHT node pair set
A ADMIN nodes set B INACTIVE node pairs set
Cd Direct connection pairs set Ci Indirect connection pairs

set
Ux The unit increase value of

var x
R Regional village

path between two nodes, which costs at most O(N3) using
Floyd-Warshall algorithm; if the network topology is simple,
such as a grid network, it might drop the complexity to
O(N2). Meanwhile, Steiner tree problem has polynomial time
approximation algorithms. The work like [25] can achieve 1.55
approximation ratio at the time complexity of O(N3). The
number of iterations is related to the chosen unit step Uα. If the
unit step is large, it might quickly finish but may select fewer
nodes and increasing the Contention Cost of accessing phase;
or if the unit is small, it might take a long time. However, it
will not exceed max{cij}/Uα. If we increase αj to be larger
than the maximum of all cij , the data chunks can be placed at
anywhere. In this case, the iteration will end. So the iteration
time is no more than C = max{cij}/U . After all, in the
worst case for each chunk the complexity is O(CN3). For the
algorithm in total, its complexity is no more than O(QCN3).
For max{cij}, it depends on the data chunks of the network as
well as the connection complexity. Some networks may have
less complexity. For example, for a grid network, the number
of maximum hops of the network is fixed. O(C) = O(Q)
since the size of {cij} is fixed. We argue that in practical
edge computing environments, the number of data chunks
is a constant not relevant to the size of network. Thus, the
overall complexity in a grid network is O(N3). The original
approximation algorithm can be executed in polynomial time,
which can still offer 6.55 approximation ratio to the ConFL
problem, and our own problem as well.

Now we show that this iterative solution under proper
increment unit settings will achieve the same approximation
ratio as (3).

Theorem 1. The above iterative algorithm can achieve 6.55
approximation ratio to the optimization problem (8).

Proof. Equation (8) is the summation of a series of mini-
mization problems. To address the problem, first, we must
obtain the dual problem of each chunk represented in one
of minimization problems in (8). For a linear programming
problem, the maximum value dual problem is the same as the
original problem. In this problem, it is easier to solve the dual
problem than the original one. The dual problem formulation
can be induced from [20]. For each minimization problem, we
have

max
∑
j

αjn −
∑
j

βvjn (9)

s.t. αjn ≤ cijn + βijn +
∑
Yn

θYn,jn, (∀i 6= v, j) (10)

αjn ≤ cvjn + βvjn, (∀j) (11)∑
j

βijn ≤ fij , (∀i) (12)∑
j

∑
e∈δ(Yn)

θYn,jn < cen, (∀e) (13)

αjn, βijn, θYn,jn ≥ 0. (14)

In (9), α, β and θ are three dual variables of xn, yn
and zn in (3). We need to find the values of dual variables



to get the optimal value of the original problem. We let
Dualn = max(

∑
j αjn−

∑
j βvjn) be the approximate optimal

value (not the real optimal value) of (9). Optn is the optimal
value for each chunk n of (8). Similarly, we let Dual(n) =
n(
∑
j αjn−

∑
j βvjn) be the approximate optimal value for the

dual problem of (3) and Opt(n) be the optimum value of (3).
The approximation algorithm is based on improving the dual
value to approximate the objective value. We can conclude that
if there was only one chunk in the network, Dual(1) = Dual1.
We assume that the cost is always lower if we use caching
rather than directly getting all data from the producer. Thus,
according to (9)-(11), Dualn <

∑
j cvjn. The result is the

same to Dual(n) <
∑
n

∑
j cvjn. We then define ε1n and ε2n,

where ∀n, ε1n, ε2n > 0. Let Dual(n) =
∑
j cvjn − ε1n and

Dualn = n
∑
j cvjn−nε2n. For the first chunk, ε1,1 = ε2,1. We

assume that adding a cache should lower the total cost of facil-
ity construction. We want to choose Uα and Uβ properly, so that
after the first chunk, ε1n ≥ ε2n. When all the chunks are cached
into the network,

∑
nDualn =

∑
n

∑
j cvjn −

∑
n ε1n =

n
∑
j cvjn −

∑
nε1n ≤ n

∑
j cvjn −

∑
nε2n = Dual(n).

Since there is a 6.55-approximation algorithm for the primal-
dual problem, we set k as the approximation ratio. Then
Dualn = k × Optn and Dual(n) = 6.55 × Opt(n). Thus,
we have

∑
nDualn = nDualn = nk × Optn ≤ Dual(n) =

6.55 × Opt(n). Since nOptn = Opt(n), We get k ≤ 6.55.
We conclude that it will achieve the same approximation ratio
by using the algorithm with fixed approximation ratio multiple
times.

C. Distributed Algorithm

Sometimes nodes may not have the connection topology
of the whole network. To address this issue, we make some
extension from the approximation algorithm and propose a
distributed algorithm. The basic idea is 1) keeping the variables
associated with a node and let the node itself maintain them,
2) and sending control messages in k-hop range to get the
contention and inform the state change of a node.

In the distributed algorithm, the initial states of nodes are the
same as the approximation algorithm. Let’s assume there is a
new data chunk waiting to be cached. First there will be an NPI
(New Packet Info) packet informing the network of this new
data chunk waiting to be cached. Then, nodes will exchange
information about contention. The exchange will be limited in

TABLE II
MESSAGES IN THE DISTRIBUTED ALGORITHM

Packets Content Range
NPI Inform there is a new data chunk to be

cached
Broadcast

CC Contention collection request Local
TIGHT Inform a node for tight (bid larger than

contention cost)
Local

SPAN Inform a node for span (bid larger than relay
cost)

Local

FREEZE Response message to freeze a certain node Local
NADMIN Inform self admin for those nodes who

tights with this node
Local

BADMIN Inform self admin for those nodes who has
adequate resources

Broadcast

Algorithm 2 Distributed algorithm
Receive NEW PACKET INFO(NPI)

Send Contention Collection (CC(i)) Request in k hops
while True do

Gradually increase αj Until αj larger than one of the Conj
received.

Send TIGHT(i) Request to j.
Gradually increase βj , γj
if γj larger than Conj then

Send SPAN(i) Request to j.
end if

end while
end Receive
Receive CC(i)

Con+ = 1
Send Con back

end Receive
Receive TIGHT/SPAN(i)

T = T ∪ {i}
if Node is INACTIVE then

Send FREEZE(a) to ∀j ∈ T
else if Node is ADMIN then

Send FREEZE(i) to ∀j ∈ T
else if Node is ACTIVE and Message is SPAN then

c+ = 1
end if
if Node is ACTIVE and c >=M then

Make myself ADMIN
Send NADMIN(i) to ∀j ∈ T
Broadcast BADMIN(i)
Proactively request Data chunk from Producer

end if
end Receive
Receive FREEZE(i)

a = i
Stop increasing αj , βj , γj

end Receive
Receive NADMIN(i)

a = i
Stop increasing αj , βj , γj
Send FREEZE(a) to ∀j ∈ T

end Receive
Receive BADMIN(i)

if Node is ACTIVE and βj > Conj then
a = i
Stop increasing αj , βj , γj
Send FREEZE(a) to ∀j ∈ T

end if
end Receive

k-hop range to avoid flooding. Then node i will increase a bid
denoted as αj . If the bid can cover the estimated contention cost
between two nodes i and j, node i will send a TIGHT request
to node j, meaning “Can I get data from you?”, and start a bid
for relay cost γj and resource cost βj . If the bid for relay cost
covers the contention cost, the node will send a SPAN request,
“Can you fetch data for me from other nodes?” A node that
has received enough SPAN requests will make itself an ADMIN
node and send response back to the nodes who sent these SPAN
requests and whose bit for recourse cost was large enough.
Those served nodes will stop biding. Algorithm 2 shows the
detailed process for a particular data chunk. It is basically event
driven. Every node that receives a request or response message
will call one of the receive processes listed below. Whenever a



node determines itself to be an ADMIN node, it will proactively
request the data chunk from the producers. Note that all types
of messages, except NPI messages and BADMIN messages,
are only limited in k-hop range.

D. Distributed Algorithm Analysis

We now discuss the number of messages of the distributed
algorithm. All messages that will be transmitted in the network
are listed in TABLE II. We assume there are N nodes and
Q chunks. The number of messages is of O(QN +N2). The
number of NPI messages equal to the number of chunks. Every
node will send out CC packets for each chunk, so the total
number is O(QN) which is the number of chunks times the
number of nodes. The number of TIGHT and SPAN messages
are both O(N2), whose worst case is sending every other node
a TIGHT message. This is unlikely to happen since there will
always be nodes that have data copies and send responses.
FREEZE message is O(N), since every node will send it
at most once when it finds a node who can provide cache.
NADMIN and BADMIN are all messages sent from a node
that decided to become a caching node. Each caching node
will only send these two messages once. Thus, the worst case is
the number of caching node, at most O(N). We can conclude
that the total number of messages is O(QN + N2), where
TIGHT, SPAN and CC are the most dominating messages in
the network.

V. EVALUATION

We evaluate the performance of the proposed approximation
algorithm and distributed algorithm, and compared them with
the most relevant work on caching in wireless networks.

A. Simulation Scenarios

We test our algorithms on grid network topologies and
random network topologies. To compare the performance of
our algorithms with the optimal solution, we first use PuLP
Linear Programming modeler [26] to get the optimal solution
by brute-force. We implement our two algorithms in Python.
Meanwhile, to compare with existing work, we also implement
the algorithms of Nuggehalli et al. [13] and Sung et al. [4].
The delay cost of [13] is based on the hop count between
nodes, and [4] considers the contention of the network as
delay cost, which is one major concern in edge computing
environments. In the following, we denote these two schemes
as Hop Count-based algorithm (Hopc) and Contention-based
algorithm (Cont) respectively. For simplicity, we set the λ in
both their algorithms to 1.

We conduct our simulations using Python 2.7 on a computer
equipped with an Intel Core i7-5820K and 16 GB RAM. In
simulations, we assume that all data chunks are of the same
size. All the nodes will have the same caching storage capacity,
and in simulations we set it to 5 chunks. The algorithm
may also be applied on hundreds of chunks and thousands
of nodes, but that are not representative for mobile network
edge computing environments. We also assume that the caching
storages are empty for all the nodes, including the data provider
node, at the beginning. We assume that the producer node

will not store data on its caching storage, and therefore, the
calculation of costs will not include the producer node. Unless
specified, node 9 is the data producer. Finally, as mentioned
earlier, we consider all nodes requesting all data chunks. A
node will find the nearest copy of a chunk and go through the
shortest hop path. For the distributed algorithm, we limit all
local messages exchanged within 2 hops.

In grid network topologies, all nodes can connect to other
four neighbors except those on the network boundary. In
random networks, we assume that the nodes within a certain
range are connected, and make sure the random network is a
connected graph.

3

1 1

3

1

2

2

3

2

1 11

1 1 2

21 1

1 1

1 1 1

(a) Approximation algorithm

3

1

5

3

1

2

3

4

3

2

11

1

1

21 1

1

1 1

2

2

2 2

2 2 3

(b) Distributed algorithm

3

1 5

3

1

2

3

4

3

2 11

1

1

1 1

1

2

2

1

2 5 4

4 3

3

2

4 4 11

4 2 4 3

(c) Contention-based algorithm

3

1

3

1

2

4

3

1

1

12

1

2

5 4

4 3

3

4 4

4 4 3

3 4

3 4

4 3

3

4 4 4

3

(d) Hop-count based algorithm

Fig. 1. The distribution of data chunks in a 6× 6 grid network. The area size
of and number in each circle show the difference in the number of stored
chunks from the optimal solution on respective node. The star indicates the
producer.

B. Performance Evaluation

We first compare the Contention Cost among the approx-
imation algorithm (denoted in figures as Appx), distributed
algorithm (Dist), brute-force algorithm (Brtf) and other algo-
rithms mentioned earlier. In the network, we have 5 distinct
data chunks needed by all nodes, each with a maximum storage
capacity of 5. We illustrate the caching results of these four
algorithms in Fig. 1 in a grid network of 6 × 6. The area of
and number in each circle are the difference in the number
of chunks stored on respective node, for the four algorithms
compared to the brute-force optimal algorithm. Ideally, they
should all be 0.

Other two algorithms choose nodes based on the cost (hop-
count or contention) obtained from the current network topol-
ogy, without considering already cached data. They will always
choose the same group of nodes for each chunk. Thus, in these
two algorithms, all the 5 chunks are cached at the same group
of nodes. We can see that in our algorithms, more nodes are
selected and data chunks are much more evenly distributed.



The difference between the results of our algorithms and the
optimal solution is relatively small.
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Fig. 2. Contention cost of 5 different algorithms. Grid size from 4 × 4 to
15× 15

As mentioned earlier, Contention Cost can be translated into
data access latency. Fig. 2 shows the result on Contention Cost,
the summation of the cost from Accessing and Dissemination
phases, for small and large networks. We first test them in small
networks and compare with optimal results from the brute-force
algorithm. The proposed approximation algorithm preserves the
approximation ratio, which at maximum is 5.6. Our algorithms
achieve similar Contention Costs to the contention based al-
gorithm, since the contention is the cost calculation of both
algorithms. In most cases, the proposed approximation algo-
rithm and the contention based algorithm are about the same
on total Contention Cost, where on average the approximation
algorithm is no more than 9% worse than the Contention-based
algorithm on total Contention Cost. However, our algorithms
are much better than Hop Count-based algorithm, with average
52.1% lower on total Contention Cost. We also obtain results
for larger networks (from 100 to 255 nodes) where brute-force
fails to obtain results within meaningful time (e.g., days). The
approximation algorithm is still much better (62%) than the
Hop Count-based algorithm and slightly worse (8%) than the
Contention-based algorithm. It shows that our algorithms can
also achieve a comparable result in larger scale.

As mentioned earlier, in the distributed algorithm, we limit
the request message within certain hops to avoid excessive
overhead. To study how this hop limitation affects the per-
formance, we test the Contention Cost under different hop
limitations (Fig. 3). When it is limited in 1 hop, the infor-
mation exchange range is too small. Thus, nodes get too little
information about the surrounding network. Finally, very few
caching nodes are selected. This will cause high Contention
Cost in Accessing phase because traffic is concentrated on
these nodes. When the limitation is 2 or more hops, the
difference between the total Contention Cost on different hop
limitations is relatively small, since the nodes know more about
the network and more nodes are selected as caching or relay
nodes. To balance between message overhead and caching
performance, we choose 2-hop limitations for the distributed
algorithm.

We also conduct simulation on random networks to address
more general cases. We tested the networks containing 20
to 180 nodes, using both our algorithms and the other two
algorithms. Fig. 4 shows the result averaged over 5 runs.
The approximation algorithm and distributed algorithm achieve
4.54% and lower delay costs than the Contention-based algo-

rithm and are much better (62.0%) than the Hop Count-based
algorithm. The results show that our algorithms can achieve
comparable performance in random networks, especially under
large network size.
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The running time of algorithms is also a crucial factor.
For the Hop Count-based algorithm, in grid networks, the
complexity is O(|V||E|3), where |V| and |E| are the numbers
of nodes and edges in the network, respectively. For the
Contention-based algorithm, the complexity is O(|V|3) in grid
networks. In our approximation algorithm, we also achieve
O(|V|3) when the number of chunks is constant. In Fig. 5
we can see that to compute the caching locations of one data
chunk in grid networks, our algorithm is much faster than
other two algorithms, with average 21.6% and 85.1% less in
running time. We do not include the running time of distributed
algorithm, because it is based on message transmissions and
totally different from other three algorithms.
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C. Fairness Evaluation

We evaluate fairness in different aspects between our algo-
rithms and other algorithms. First, we evaluate how the data
chunks in the network are distributed on nodes. Fig. 6 shows
the number of nodes needed to store a certain ratio of all data.
We can see that 50% of the total data chunks are distributed
in one node in the hop-count based algorithm, 5 nodes in
the Contention-based algorithm and about 20 nodes in both
approximation and distributed algorithms. By including more
nodes for caching, we avoid overload and achieve more robust
data access. We define p-percentile fairness as the fraction of
nodes needed to cache p% of the total data. Ideally, when
all nodes have the same caching load, p-percentile fairness is
strictly p%. The smaller it is, the more uneven the load, thus
less fair. We find that 75-percentile fairness in this 6× 6 grid
network is 71.4%, 68.6%, 4.28%, 22.8% for the approximation,
distributed, Hop Count-based and Contention-based algorithms



respectively. The higher the number, the fairer it is. The
approximation algorithm and the distributed algorithm achieve
on average 3 times higher than Contention-based algorithm,
as well as 16 times higher than Hop Count-based algorithm.
We can see that the proposed approximation algorithm and
distributed algorithm can improve the fairness for caching.

We also evaluate the fairness by Gini coefficient, which is
widely used to depict incoming disparity [27]. The definition
is as follows:

G =

∑
i

∑
j(ti − tj)

2
∑
i

∑
j tj

where ti and tj are the numbers of chunks stored in nodes
i and j respectively. Note that in the denominator, tj and ti
are commutable. It measures the inequality of cached chunks
among different nodes. The higher the p-percentile fairness,
the lower the Gini coefficients, and the fairer the network
is. We calculate the Gini coefficients of all five algorithms
in both grid and random networks. Fig. 7 shows the Gini
coefficients of three algorithms in the grid network and random
network, respectively. Our algorithms have Gini coefficient
less than 40%, thus, the chunk distribution is fairer among
all nodes. In addition, when the network size grows, the Gini
coefficient of our algorithms drops while others remain roughly
the same or even increasing. This shows that our algorithms can
leverage larger network size and spread chunks more evenly,
thus decreasing the Gini coefficient.
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Fig. 7. Gini coefficient of the grid network (a) and an arbitrary network (b).

When many chunks exist, we want to avoid caching data
on those nodes that have already cached a lot. Selecting only
a few nodes will exhaust their caching storage. Other two
algorithms select nodes based only on the network topology.
They are not designed for multiple data items. Thus, in the
simulation, all chunks are put on a few selected nodes until
they are full. After that, no more data can be cached. Although
one of the authors argued that it is easy to modify the algorithm
to accommodate multiple data items, exact details are not
specified. We extend both algorithms for multiple data items
based on our understanding. We then compare ours with the
extended versions of these algorithms for a fair comparison.

We modify these algorithms as follows. If a set of nodes
is chosen, we will put all data chunks in these nodes until
none of them has vacancy for caching. Then we construct
a new subgraph consisting of other nodes, i.e., nodes not in
the first set, which are connected to form the new subgraph.
We perform the same operations on these nodes: we pick

a set of nodes as caching nodes using the same algorithm.
These nodes are selected continuously until their storage is
exhausted. This process is repeated, until all chunks are cached,
or if a subgraph becomes disconnected, we will perform the
operations on the largest connected component. For each round,
an accessing strategy is produced for a node to get one chunk
from a certain caching node. After all the dissemination is done,
we calculated the contention by putting all the chunks to the
original connected graph based on which nodes access which
chunks in all rounds to calculate the Contention Cost.

We tested the number of distinct chunks in the network and
the total contention costs on the grid network size of 4×4 and
8×8. We gradually increase the number of distinct data chunks
from 1 to 10. Each distinct chunk may have multiple copies
stored on different nodes. The result in Fig. 8 shows that both
of our algorithms can handle more distinct chunks. With the
increasing of chunks, the total costs grow slower than other
two algorithms, for about 25% less than Hop Count-based and
4% less than Contention-based algorithm. Other two algorithms
have a large increase when the number of data chunks goes
from 5 to 6. This is because that they start to put the data on
the next set of nodes. These operations will increase the cost for
both the contention of old ones and new ones. Meanwhile, our
algorithms offer better performance if the network has multiple
data items.
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Fig. 8. Accumulate contention cost on grid networks of 4× 4 (a) and 8× 8
(b).

Dividing large data items into multiple chunks is easy to
maintain and can be cached separately to enhance robustness.
However, all chunks belonging to one data item must be ob-
tained for completeness. The Contention Cost of these chunks
should be roughly even, such that they are obtained at about the
same time. Otherwise one chunk with long latency can delay
the completion of the whole data item. We tested such per
chunk fairness by putting 10 distinct chunks into the network
and calculating the total Contention Cost of each chunk, which
may have multiple copies stored on different nodes. We tested
on grid networks of the size of 4× 4 and 6× 6. Fig. 9 shows
the result of all the four algorithms. We can see that other
two algorithms always choose the same nodes for the first
five chunks, and the same nodes for the next five chunks. The
Contention Cost is evener in our algorithms and lower than
other two algorithms for most chunks. Evener Contention Cost
means shorter and more consistent latency for data access, thus
better user experience.
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Fig. 9. Accessing cost of each chunk in grid networks of size 4× 4 (a) and
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VI. CONCLUSION AND DISCUSSION

In this paper, we propose two caching algorithms to achieve
fair workload among selected caching nodes for data sharing in
pervasive edge environments. We consider fairness in caching
multiple data items while keeping contention cost low for
data access. We propose an approximation algorithm and a
distributed algorithm. Comparison with two existing algorithms
on wireless network caching shows that our algorithms can
achieve comparable or even lower latency while greatly im-
proving fairness, thus data access robustness and performance.

We would like to stress that the accurate representation of
contention cost or actual delay is very difficult. There are
many factors that can affect them. The accurate formulation
of contention cost is not the primary goal of our work in
this paper. Thus, we adopt the contention-induced delay, a
mature, well-studied model used in recent works to represent
the contention cost.

Fair caching naturally produces solutions to multiple chunks
because nodes caching more chunks will be less likely selected.
Currently our algorithms only consider a constant number
of data chunks. We use iterations to calculate the caching
placement for each chunk. It is easy and efficient to apply when
the number of chunks is small. However, when the number of
chunks increases, it might become inefficient. Over long time
periods, some chunks may become out-dated, necessitating
cache replacement. We plan to further address these two issues
and develop online distributed solutions to the problem in our
future work, making it more applicable for the edge computing
environment.
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