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Abstract—Many smartphone apps routinely gather various
private user data and send them to advertisers. Despite recent
study on protection mechanisms and analysis on apps’ behavior,
the understanding about the consequences of such privacy losses
remains limited. In this paper we investigate how much an adver-
tiser can infer about users’ social and community relationships
by combining data from multiple applications and across many
users. After one month’s user study involving about 200 most
popular Android apps, we find that an advertiser can infer
90% of the social relationships. We further propose a privacy
leakage inference framework and use real mobility traces and
Foursquare data to quantify the consequences of privacy leakage.
We find that achieving 90% inference accuracy of the social and
community relationships requires merely 3 weeks’ user data.
The discoveries underscore the importance of early adoption of
privacy protection mechanisms.

I. INTRODUCTION

The huge success of smartphones is largely fueled by the

availability of millions of phone apps that provide functions

covering all aspects of our lives. A large portion of these apps
are free. Their developers get financial support from adver-

tisers by embedding their advertisement libraries to display

mobile advertisements to users. Many advertisers exist and
some of the major players include Google, DoubleClick and

AdMob [1], [2]. To gain better understanding of user habits

and behaviors for accurate ad targeting, these apps customarily
scavenge private user data, ranging from the phone’s IMEI

number, MAC addresses of nearby access points, the user’s
location, even the contact list, and send it to advertisers [3],

[4]. Ultimately, these “free” apps are not entirely free: users

pay the price of their privacy.

There has been quite some recent work that investigates

the privacy leakage and potential defense mechanisms. Taint-

Droid [3] can track the flow of different kinds of private infor-
mation (e.g., IMEI, location) within an app and log the leaking

of such information through network interfaces. Barrera et
al. [5] and Felt et al. [6] examined permissions requested by

about 1,000 apps and found requests for unnecessary permis-

sions commonly exist. A number of tools [7], [8] can help
users manage permissions granted to apps such that they do

not have access to certain private information. Sowayway [9]

and Kirin [10] can detect over-privileged apps or identify

requests of dangerous combinations of permissions. Agarwal
et al. [11] proposed a crowdsourcing based mechanism to help

users decide proper privacy settings for iOS apps.

In this paper, we seek to answer an important but different
question: how much does the advertiser know about the user, in

particular, her social and community relationship (e.g.,family,
colleagues and friends) from the leaked private data? This is

motivated by a couple observations. First, there is only limited

study of apps’ dynamic leakage behavior at run-time. Existing
study [4]–[6], [9], [12]–[14] is mostly on the static aspects of

apps’ permissions. TaintDroid [3] and D2Taint [15] can be

used to log the leaking activities but the papers did not focus
on a systematic study on the destinations, frequencies and

types of apps’ run-time privacy leakages. Second, the conse-

quences of such leakage, especially when an advertiser gathers
such private data from many users and across many apps, is

not known either. It is easy to conjecture that the advertiser

may gain additional information when cross-examining private
data, but exactly what can be learnt, remains an open issue.

We focus on one important aspect of that perspective, the
social and community relationships of a user, such as her

family, colleagues and friends. Such knowledge is an important

channel for the advertiser to push relevant advertisements since
people tend to take note on things their acquaintances have

done (e.g., bought). For example Facebook has largely relied

on people voluntarily publicizing such relationship. However,
many real world relationships are not publicized online yet

they are equally important to advertisers; and there is a trend

for Facebook users of various age groups to go for other
“small-circle” social networks, or become less and less active

due to privacy concerns [16].

In particular, we quantify to what extent an advertiser can
learn and infer users’ relationships by developing a privacy

leakage inference framework. Our systematic study on privacy
leakage inference involves both real experiments with multiple

volunteers as well as trace-driven studies with human mobil-

ity traces obtained from two data sets, namely MIT reality
trace [17] and Foursquare trace [18]. By examining the privacy

leakages of participants from a diverse background ranging



from academia to city environments (i.e., our real experiments
and the MIT trace are academia whereas the Foursquare trace

represents a city environment), we discover that the privacy

leakage enables an advertiser to infer a significant portion of
a user’s real world relationships that have physical interactions.

Specifically, we make the following contributions:

• We conduct a manual study of the frequencies, destina-
tions and types of the run-time privacy leakages of nearly

200 most popular apps across 19 categories in Google

Play. We discover that major advertisers can easily gather
all types of private data in short time from many users.

• We model the relationship inference process in a three-

layer framework and define the concept of connection,
which is exemplified by two users sharing similar patterns

in their leaked data (e.g., common Wi-Fi access points).

We conduct a one-month real experiment of 10 partici-
pants of family, colleague and friend relationships, using

various apps in their daily lives. We find that by aggre-
gating data across users and apps, an advertiser can infer

over 90% of the relationships from the “connections”.

• We further propose two models, Activeness Based Profile
and Probability Based Profile, for users’ temporal privacy

leakage profiles based on the experimental study. To

verify the generality of findings from the real experiments
based on privacy leakage inference, we conduct trace-

driven studies by populating the derived user profiles to

the human mobility traces in the MIT reality [17] and the
Foursquare datasets [18]. We find that the advertiser can

infer 80-95% of a regular user’s relation in academia and

city environments after gathering only 3 weeks of private
data.

The rest of the paper is organized as follows: we present

an overview of our approach in Section II and describe the
run-time privacy leakage study in Section III. We define the

relationship inference framework and the connection concept,

conduct experimental study, and propose the privacy leakage
profiles in Section IV. In Section V, we conduct trace-driven

evaluation of relationship inference using MIT and Foursquare
datasets. We put our work into the context of the related work

in Section VII. Finally, we conclude in Section VIII.

II. APPROACH OVERVIEW

To facilitate the understanding on the consequences of

privacy leakages, we take a four-step approach: run-time

privacy leakage study, privacy leakage inference framework
construction, experimental study and profile modeling, and

inference framework evaluation via trace-driven study, as

depicted in Figure 1.

From the advertiser’s perspective, we study two types of

relations: social relationship and social community. The social

relationship is defined as a pair-wise relationship between two
users with certain kind of physical interactions such as col-

leagues, families, and friends (not virtual friends from online
social networks). Whereas a social community involves more

than two users, who usually appear at a location during the

same time period for certain common interests. For example,
a group of students taking the same class twice every week or

people eating in the same restaurant every Tuesday. We believe
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Fig. 1. We take a four-step approach to understand the advertiser’s perspective
on users’ social and community relationships.

identification of both kinds of relationships help advertisers

design better targeted advertising strategies.
Run-Time Privacy Leakage Study. First we want to sys-

tematically study the destinations, frequencies and types of the

leaking behavior to understand the flow of common practice of

privacy leakages in apps. We study their spatial and temporal
privacy leakage characteristics to complement the existing

work, which focuses on static aspects of permissions [7], [14],

[19], or provides the capability of logging the leakage but stops
short of a systematic study [3]. The Wall Street Journal (WSJ)

study [20] in 2010 investigated the types of leakages for about

50 most popular apps, but not destinations and frequencies,
and it was a bit outdated given the fast pace of the mobile

market. Thus we conduct a series of experiments over a two-

month period to obtain the most up-to-date picture of privacy
leakages.

After manual testing of 190 most popular apps from 19
categories in Google Play (i.e., the largest Android application

market), we find that major destinations commonly receive dif-
ferent types of private data from multiple apps, including ge-

ographical locations (GPS-location, network-based location),

personal identities (phone number, IMEI), and communication
information (contact list). We also find changes in the types

of leakages for about half of the apps studied in [20].
Privacy Leakage Modeling. To understand the conse-

quences of privacy leakages when an advertiser combines the
data received from different users, we develop a three-layer

privacy leakage inference framework (as depicted in Figure 1)
including Privacy Leakage Aggregation, User Connection

Derivation and Relation Inference.
We introduce an important concept connection, which exists

when two users share similarities in leaked data. The con-

nection helps bridge the gap between raw privacy leakage
data and higher level relationship inference. The intuition is

that each type of particular relationship has certain temporal-
spatial patterns in users’ physical interactions, which can be

captured by connection. For example, two family members

usually stay together at home during late night and early
morning; while classmates encounter each other frequently

in classrooms during the daytime of weekdays. Although

exceptions to such patterns exist, it can usually identify most
relationships and is the standard practice widely adopted in

social community inference [21], [22].
We further conduct an experimental study of 10 participants
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for over one-month time period. Their privacy leakages are
captured and analyzed. We find that an advertiser can infer

over 90% of the pairwise relationships by using connections

(e.g., IMEI and GPS location). Furthermore, we observe that
the temporal-spatial similarities between people who have

friend relationship is not as regular as that between people
of other relationships that have repetitive interactions (e.g.,

colleagues and families).

Evaluation of User Privacy Inference. To understand
whether the above observations can be generalized to larger

scale user population with various backgrounds, we extract

user privacy leakage profiles, apply them to user mobility
traces generated from two datasets with over 500 participants.

We verify that using 3 weeks of private data, an advertiser

can infer colleague-based relationships of regular users at
around 90% accuracy in an academia environment, and friend-

based relationships above 95% in a city environment. When

an advertiser uses hierarchical clustering to infer social com-
munities, 80− 90% of those of regular users’ are revealed in

academia environments, and over 80% in a city environment.

III. RUN-TIME PRIVACY LEAKAGE STUDY

Current smartphone operating systems only have coarse-

grained control on whether an application can access users’
private data [13]. For example, Android controls the access

through the install-time permission system [23]. Once the

access is granted, the application is free to access it as
frequently as possible and send it to wherever it wants over

the Internet [1], [3], [9].

The most similar study to ours is the WSJ one [20] in
2010, which focuses on 5 privacy leakage types (i.e., contacts,

location, phone id, and phone number) among 50 most popular
apps from Google Play. The results are interesting but there

is no analysis on the frequencies and destinations of privacy

leakages. Our study aims to provide a more comprehensive and
up-to-date analysis including the frequencies and destinations

of the leakages. We also investigate how much private data

an advertiser can collect and aggregate from multiple apps.
This helps the user understand the scope and extent of privacy

leakages when running apps; it also serves as the basis for

the formulation of the privacy leakage inference in the next
section.

A. Methodology

We choose the top 10 most popular applications from each

of the 19 categories in Google Play as of January 2013,
totaling 190 applications. We expect that these most popular

apps are installed by the majority of users, thus their behavior

analysis is representative to the majority of users. To analyze
the apps’ behavior, we developed a tool leveraging certain

capabilities of TaintDroid, which helps to track and log the

privacy leakages of the applications. Some of the apps crash
during the test, and we are able to gather complete results

for 145 apps. We use two types of Android phones, Google
Nexus One and Google Nexus S. To capture the application’s

behavior at different times in a day, we test about 4-5 apps in

three different time periods (i.e., morning, noon and night) in
each day. During each period, the selected apps are tested one

at a time (i.e., we reboot and uninstall each application after

0

20

40

60

80

100

120

140

160

180

P
ri

v
a
cy

 l
e
a
k

a
g

e 
co

u
n

ts
 

IMEI

Accelerometer

Last known Location

NET-based Location

GPS Location

Phone Number

Contacts

Fig. 2. Privacy leakage counts of destinations that collect private data from
more than one app during one-day testing.

testing it) for about 5 minutes. This procedure helps to avoid
interference between applications.
B. Findings

Per App Privacy Leakage. During our study, we find that

about 50% of the apps in the WSJ report have changed their

privacy leakage behavior. In particular, we find that 97 out
of the 145 applications send out private data of the user. The

data includes GPS location, network-based location (provided

by Android based on cellular ID and Wi-Fi networks), WiFi

Access Point SSID list, contact list, phone number, Interna-

tional Mobile Station Equipment Identity (IMEI), accelerome-

ter readings, but not those of microphone, camera and text
message log, which are accessed by the applications but

not leaked out. We also find that there are 8 applications
sending Wi-Fi SSID list (scanned by the smartphone) through

SSL, and 3 of the 8 applications (i.e., Compass, CNN App,

Yelp) send this information to the same destination (with
IP address 173.194.73.104 belonging to Google according to

www.iplocation.net). This type of WiFi AP list is most likely

the company’s effort to build a WiFi address database for geo-
location purposes [24]. It could be employed to infer the user’s

location, thus potentially her mobility pattern during a day.

Per Destination Privacy Leakage. We further investigate

how the private data could be collected by a single destination

(e.g., an advertiser’s server) through multiple apps. We identify
22 “common” destinations(i.e., the destinations receiving data

from more than one app) in 19 categories. Specifically, we
find that three Google destinations collect 7 types of private

data from more than 30 applications. Figure 2 shows that

during one day’s testing of the 97 applications, most of the
22 destinations collect more than 3 types of private data, and

Google is the most active one among these destinations.

Privacy Leakage Frequency. During our testing, we find

that the Location and IMEI are the first and second most

common privacy leakage types, which involves 71 and 61
applications respectively. We present the leakage count de-

composition of 28 apps that leaks more than 10 times in its 5-
minute usage in Figure 3. We observe that 7 apps have leaked

more than 4 types of private information, 3 of them have

even leaked all 7 types of private information (i.e., Pandora
Jewelry, Carphone Mobile Superhero, and Evernote). These

results indicate that an advertiser has a comprehensive view
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Fig. 3. Privacy leakage counts of apps leaking more than 10 times in a
5-minute continuous testing.

of the users’ private data through their daily phone usage. Thus
it can potentially use the combination of private data (such as

IMEI and NET-based location) to identify the location of the

user from such apps, and further obtain a fine-grained picture
of the user’s social life with the assistance of the leaked contact

information.

Leakage to Common Destinations. We take a closer look

at the leakage frequency from different apps to a “common”
destination. We observe that WeatherBug and Jackass Fans

are the top two apps with the most frequent leakages: they

leak about 80/70 times during the 5 minute period. We further
summarize the leakage frequency in app categories to common

destinations and observe that the Weather category exhibits the

highest privacy leakage frequency, partly due to their needs
to know the user’s location, and the Social category is the

second. This again confirms that various apps leak private

information to multiple common destinations, which allows
the advertiser to piece together the user’s social picture at fine

temporal granularity through multiple apps.

IV. USER PRIVACY LEAKAGE MODELING AND

EXPERIMENTAL STUDY

The run-time privacy leakage study provides a comprehen-

sive analysis on how much private data and advertiser can
collect and aggregate from multiple apps, which serves as the

basis for the formulation of the privacy leakage inference from

multiple apps and across users. In this section, we present a
privacy leakage inference framework that quantifies to what

extent an advertiser can learn and infer users’ relationships.

We then run real experiments with multiple participants to
analyze the consequences of the privacy leakage from the ad-

vertiser’s perspective and abstract privacy leakage user profiles

based on the experiments.

A. Privacy Leakage Modeling

We first define the concept of connection. A connection

between two users exists if the same type of privacy leakage
from the two users share certain spatial, temporal or content

similarities. A few examples are:

Contact list: A connection instance exists between two users

if they are in each other’s contact list, or they share common
contacts. (However, we note that contact lists are not sufficient

for social relationship inference simply because a person does

not necessarily have close relationship with everyone in his or
her contact list.)

Wi-Fi Access Point list: A connection instance exists be-

tween two users when they share common leaked access points
at the same time.

GPS location: A connection instance exists between two

users if two GPS locations leaked around the same time are
close by within a certain threshold.

Network-based location: A connection instance exists be-

tween two users if the leaked network-based locations are close

by within a certain threshold around the same time.

The connection bridges the gap between the privacy leakage

information and the users’ relationship inference. In particular,

to quantify the consequences of the privacy leakage from
the advertiser’s perspective, we design a privacy leakage

inference framework, which consists of three virtual layers:

Privacy Leakage Aggregation, User Connection Derivation,
and Relationship Inference as shown in Figure 4.

Such a framework facilitates us to perform a system-

atic study to understand the advertiser’s perspective of user
privacy: (1) The Privacy Leakage Aggregation layer deals

with the raw privacy leakage information. An advertiser can

combine the privacy leakage data from multiple apps across
different users over time. For example, the users can be

identified by the IMEI or phone number. The aggregated
privacy leakage data of each user can then be categorized into

different types, such as contact list, AP list, GPS location,

and Network location. (2) In the User Connection Derivation
layer, the advertiser correlates the data from different users and

identifies connections 1 between any two users. By correlating

different types of privacy leakages across the users over time,
the connection frequency between any two users can be de-

rived. (3) In the Relationship Inference layer, the user’s social

and community relationships, such as family, colleagues and
friends, are inferred based on the connections between users.

The type of relationship is usually determined by examining

the temporal and spacial patterns of the connections (e.g.,
family members usually have connections at home in the

morning and at night, whereas colleagues have connections in

office during working hours). We next conduct an experiment
to study the effectiveness of our privacy leakage model using

this framework.

B. Experimental Study

1) Design of Experiments: Our experiment involves 10
volunteer students and their family members over one month

period, among which five types of relationships exist: col-
league, collaborator, classmate, friend, and family. To clar-

ify, collaborators are usually colleagues that actively work

together, usually at regular times such as weekly meetings. We
developed a tool to capture the privacy leakage information

in real-time leveraging TaintDroid. During the experiments,

we distribute smartphones to volunteers with the tool and
the top 10 popular apps (across 19 categories in Google

Play) installed. Because the experimental smartphones are not

replacements of the volunteers’ regular phones, they are asked
to use their experimental smartphones at least three times a

1We use “connections” to refer to connection instances later in the paper.
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Fig. 4. Privacy leakage inference framework with three virtual layers to
quantify the advertiser’s perspective of smartphone user privacy.

day. The volunteers are also encouraged to use whichever

apps they are interested in without knowing the purpose of
this experiment. After the experiments we extract the leaked

privacy data logged by our tool to quantify to what extent an

advertiser can infer a user’s relationships.

2) Observations: User Connection Derivation. Figure 5

shows one example on the temporal patterns of the derived

user connections at a residential area based on GPS location
leakage. In particular, subject1 and subject2 have frequent con-

nections in the morning (around 10AM) and at night (through

9PM-2AM) at a residential area. The advertiser can thus
infer the two subjects most likely have a family relationship.

Additionally, the advertiser can also infer subjects’ other social
relationship, such as colleagues, collaborators, and friends,

based on the spatial and temporal patterns of connections

extracted from privacy leakages over time.

Definition of Two Types of Social Relationships. From the
experimental results, we observe that while some relationships

(e.g., family, colleagues, collaborators, and classmates) exhibit

repetitive connection patterns, some others like friends do
not. This is because family and colleague based relationships

naturally carry similar spatial-temporal patterns dictated by the

relationship. For example, families live together at night while
colleagues work together during the day, whereas friendship

does not necessarily carry such inherent patterns. Two friends

that do not hang out for a while are still friends. We distinguish
these two categories of relationships as Fact Based Rela-

tionship and Intelligence Based Relationship, which covers
traditional social relationships. The Fact-based Relationship

includes colleagues, classmates, roommates, families that carry

inherit similar, regular and repetitive spatial-temporal con-
nection patterns as dictated by the relationship, whereas the

Intelligence-based Relationship includes friends, which do not
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Fig. 5. Example of location leakage patterns of family relationship.

necessarily carry such patterns.

C. Making Inference based on Thresholding

We next investigate how accurate an advertiser could infer

about the user’s social relationship such as colleagues, families

and friends by utilizing connections between users derived
from different types of privacy leakages.

We use a threshold-based approach to derive relationships

based on the connections between users extracted from privacy

leakage aggregation at the advertisement provider. If the con-
nection count between two users exceeds a certain threshold

in an observation window, we consider some relationship

exists. Our framework utilizes the temporal and spatial patterns
of the connections to classify the type of relationship: the

connections of colleagues occur in work hours of weekdays,

families in early morning and late night, while friends after
working time and in weekends.

These simple rules may not be entirely reliable. Neverthe-

less, we show that an advertiser can make inference even with

such simple rules. We note that such temporal and spatial pat-
terns of the connections are the basis to statistically generate a

user’s privacy leakage profile, which will be described in the
next subsection.

In total we have 10 pairs of colleague relationship, 5 pairs of
collaborator relationship, 1 pair of family relationship, 2 pairs

of classmates, and 3 pairs of friend relationship among our 10
participants. That is 18 pairs of fact-based relationships and

3 pairs of intelligence-based relationships. During our experi-

ments, we observe that by utilizing connection frequencies and
patterns, an advertiser can infer over 90% social relationship

correctly.

D. Deriving Privacy Leakage User Profiles

Based on the experimental data collected over one month,

we next build the privacy leakage user profile to statistically

capture the temporal and spatial patterns. We develop two
types of privacy leakage user profile, activeness based profile

and probability based profile, which will be applied to our

large-scale trace-driven studies on advertiser’s perspective in
the next section.

1) Activeness Based Profile: The activeness based profiles
are generated based on privacy leakages from each partici-

pant in our experiments and aim to capture the fine-grained

statistical view of the privacy leakages.
Step 1. We first derive the privacy leakage probability model

of a particular user. Assume there are N types of privacy

leakages observed in total. We divide the time in day d into

T time windows as {wt, t = 1, · · · , T }. Then within a time
window wt, a vector Φu,d,t is defined to capture the numbers

of occurrences of different privacy leakage types, and each
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element Φu,d,t(i)(i = 1, · · · , N) corresponds to the number
of times privacy leakage type i occurs. For example, when

Φu,d,t equals to [2, 1, 0], it means 2 occurrences of leakage

type 1, 1 occurrence of leakage type 2 and 0 occurrence of
leakage type 3 in time window Wt at day d for user u.

We then define γ
u,d,t
i to indicate whether the privacy

leakage type i appears in the vector Φu,d,t as:

γ
u,d,t
i =

{

1,Φu,d,t(i) 6= 0
0,Φu,d,t(i) = 0.

(1)

The probability that type i leakage happens for user u in
time window wt across D days (e.g., D = 7 days) is defined

as:

Prob
u,t
i =

∑D

d=1
γ
u,d,t
i

D
. (2)

Step 2. The number of occurrence of the privacy leakages
affects the inference of a user’s social community. Thus we

capture the frequency of type i privacy leakage using the

average number of occurrences over the days it happens in
time window wt across D days. Specifically, the average rate

r
u,t
i is defined as:

r
u,t
i =

∑D

d=1
Φu,d,t(i)

∑D

d=1
γ
u,d,t
i

. (3)

The activeness based profile of user u consists of Prob
u,t
i

and r
u,t
i .

Example. We illustrate the generation of the activeness

based profile of user u in Figure 6. We examine a privacy

leakage dataset across 7 days (i.e., one week) with the time
window wt set to 5 minutes and 288 time windows in total per

day. Assume 3 types of privacy leakage are under study. For
wt at day 2, if there are 2 occurrences of leakage type 2 and

8 occurrences of type 3 observed, we have Φu,2,t = [0, 2, 8]
and γ

u,2,t
2 = 1 shown as the green eclipse in Figure 6. In

addition, if the leakage type 2 is only observed during day

1 and day 2 with Φu,1,t = [0, 5, 7] and Φu,2,t = [0, 2, 8],
the privacy leakage probability of type 2 privacy leakage in

time window wt across 7 days for user u can be calculated

using Equation (2) as: Prob
u,t
2 =

γ
u,1,t

2
+γ

u,2,t

2
+···+γ

u,7,t

2

7
=

1+1+···+0

7
= 0.286. And the corresponding average rate can be

obtained as: r
u,t
2 =

Φ
u,1

2
+Φ

u,2

2
+···+Φ

u,7

2

γ
u,1,t

2
+γ

u,2,t

2
+···+γ

u,7,t

2

= 5+2+···+0

1+1+···+0
= 3.5,

which is shown in blue rectangles in Figure 6.
Categorization. Once the activeness based user profile is

obtained, the advertiser could further categorize the profiles

by the number of hours ku the user u has privacy leakages

in a one-day duration. There are three representative user
categories, namely active user category, regular user category,

and inactive user category. Assume two thresholding hours ρ1
and ρ2 with ρ1 > ρ2. If the user u has greater than ρ1 hours
with privacy leakages, his user profile is put into the active

user category. If the user u has less than ρ1 but larger than

or equal to ρ2 hours with privacy leakages, his user profile
is then added into the regular user category. When the user

u has less than ρ2 hours privacy leakages, his user profile is

then captured in the inactive user category. The categorization
can be summarized as:

α =







1 (active user category), if ku > ρ1;
2 (regular user category), if ρ2 6 ku < ρ1;
3 (inactive user category), if ku < ρ2.

(4)

Day

Time Window

(5 mins)

1

2

7

w1 wt w288

Φ
u,1,1

= [4, 0, 0] Φ
u,1,t
= [0, 5, 7] Φ

u,1,288
= [9, 2, 4]

Φ
u,7,288

= [0, 2, 2]

Φ
u,2,t
= [0, 2, 8]Φ

u,2,1
= [6, 0, 3]

Φ
u,7,t
= [0, 0, 7]Φ

u,7,1
= [6, 0, 0]

Φ
u,2,288

= [0, 3, 4]

r2
u,t
=

γ2
u,2,t
= 1

Prob2
u,t
=

5+ 2 + … + 0

1+ 1 + … + 0

1+ 1 + … + 0

7
= 3.5 = 0.286

Fig. 6. Example of activeness based profile generation for user u with 3 types
of privacy leakages when D = 7.

2) Probability Based Profile: The {Prob
u,t
i , r

u,t
i } in each

activeness based profile captures the leakage of the corre-
sponding user u. To characterize the statistical average of

the leakages of users in the same category, we design the

probability based profile. Activeness based profiles in the same
category are used to derive the leakage probability and rate for

the probability based profile of that category.
Step 1. We first define the δ

u,t
i to indicate whether there is

a probability of type i leakage in the time window wt for the

profile of user u as:

δ
u,t
i =

{

1, P rob
u,t
i 6= 0

0, P rob
u,t
i = 0.

(5)

Then we calculate the average probability that leakage type

i occurs in a time window for user u:

λu
i =

∑T

t=1
δ
u,t
i

T
. (6)

Step 2. We then define the leakage probability of that

category as the previous probability averaged over all users
of the same category.

Probαi =

∑Mα

u=1
λu
i

Mα

, (7)

where Mα is the number of users belonging to the category

α.
Step 3. The corresponding profile privacy leakage rate is

calculated over all the users in one particular category α as:

rαi =

∑Mα

u=1

∑T

t=1
r
u,t
i

∑Mα

u=1

∑T

t=1
δ
u,t
i

. (8)

The probability based profile of a user category α then
consists of Probαi and rαi . Based on the data from our

experiments they can be calculated. We respectively name

them as high probability (Probαi = 0.87), medium probability

(Probαi = 0.68), and low probability (Probαi = 0.44) profiles.
Both types of profiles quantify the users’ privacy leakage

characteristics: the leakage probability Prob
u,t
i , P robαi deter-

mine whether type i privacy leakage happens or not in a time

window, whereas the average leakage rate r
u,t
i , rαi determine

the number of type i leakages in that time window should they

happen at all. The profiles will be used in our large-scale trace-

drive studies in the next section to facilitate the understanding
of the user relationship inference from the advertiser’s point

of view.
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V. SOCIAL RELATIONSHIP INFERENCE LEVERAGING

PRIVACY LEAKAGES

In this section, we systematically study the consequence

of the privacy leakages obtained by advertisers by applying
the privacy leakage model to two human mobility traces.

In particular, we study how much an advertiser can infer

about users’ social and community relationships by combining
privacy leakages from multiple apps and across many users.

We build a simulator utilizing the privacy leakage inference

framework to generate connections between users based on
both the leakage profiles derived from the previous section

and the human mobility traces. The human mobility traces

are used to discover connections between users in both an
academia and a city environment.

A. Methodology

1) Human mobility traces: We use two human mobility

traces: the Foursquare trace [18], and the MIT trace [17],
which come from different backgrounds and have various re-

lationships. Specifically, the MIT trace represents participants

with similar background in an academia environment, where
user relationships mostly represent research colleagues, office

staff and classmates. In the Foursquare trace, participants have

more diverse relationships; they may be colleagues, friends,
and families in a city environment. The details of these two

traces are introduced below:
Foursquare Trace. Foursquare is a company that helps

people share life experiences based on locations such as restau-

rants. This trace is generated based on tipping information
collected from different venues in Los Angeles (LA). A tip in a

venue shows that one participant has carried out some essential

activities (like dinning and shopping) at that venue. There
are 104, 478 tips left by 31, 544 participants in this trace. We

choose 354 participants from the top 10 venues (which are all

restaurants) to generate encounter events between participants
based on the time of the tipping in a 21 day duration.

MIT Trace. This trace is collected on MIT campus for 10
months by 107 participants with smartphones. Each smart-
phone scans (using Bluetooth) and records nearby smartphones

every five minutes. The encounter happens when two partici-
pants are located in close physical proximity (e.g., shown in

the Bluetooth scanned neighboring list in MIT Trace). And

such an event is defined as an encounter event. There are 97
participants with valid data including staffs and students. In

our study, we use 21 days’ data which includes 91 participants

for social relationship inference.
2) Privacy Leakage Profile Population: To understand the

impact of user profiles, we repeat the study using both

activeness and probability based profiles. When activeness
based ones are used, each participant is assigned a randomly

selected profile in the chosen category (i.e., active, regular

and inactive). When probability based ones are used, each
participant is assigned the same probability profile (i.e., one of

high, medium and low). When presenting our results, we will

use terms like “active users” or “users of medium probability”
to (loosely) refer to participants assigned of the activeness or

probability based profiles.
We then infer relationship based on connections derived

from the leakages over observation windows of different sizes

(i.e., 7, 14 and 21 days). From real experiments with 10
participants having known relationships, we find that different

thresholds of connection counts in the observation window

should be applied to derive different relationships. We thus use
3 days for fact-based relationship and 2 days for intelligence-

based relationship in both experiments and simulations. Such
thresholds enable an advertiser to achieve over 90% inference

accuracies for regular users with very small false positive rates,

which is a good balance between the two.

Foursquare Trace. In order to apply privacy leakage profiles

to this dataset, we generate encounter events between partic-

ipants as follows: for a particular venue, we give a visiting
duration with a random length ranging from 30 minutes to 2

hours to each tipping user. In the overlapped period of the

duration of two users, we generate encounter events with a
fixed time interval of 30 minutes (e.g., in an 1 hour overlapped

period, we generate 2 encounter events). For each encounter

event, we first find out corresponding 5-minute time windows.
Then we flip a coin with the privacy leakage probability in

the users’ profile (defined in Equation (2) or (7)) to decide

whether privacy leakages should happen or not in that 5-
minute time window. If they do, we use the privacy leakage

rate defined in Equation (3) or (8) as the number of leakages
revealed to the advertiser in that particular 5-minute time

window. The leakages are used by the advertiser to derive

connections and eventually encounter events to infer users’
relationship.

MIT Trace. The MIT trace records encounter events for

each user every 5 minutes. Therefore, we use the same way
as we introduced for the Foursquare trace to populate privacy

leakages among users in the MIT trace based on users’

encounter events.

B. Metrics

In our evaluations, we study the inference accuracy of

pairwise social relationship and the correlation between social
communities extracted based on the connections of users.

Inference accuracy. This is the ratio between the success-

fully inferred relationship pairs and all relationship pairs.

Community correlation. This is the ratio between the com-

mon subjects within a community identified by our privacy

leakage inference framework and the total number of subjects
within the community.

False positive rate. This is the ratio between the number of

mistakenly identified members of inferred community and the
total number of members within the inferred community.

C. Inference with Privacy Leakages

1) Combination of Privacy Leakages: As we discussed in
the previous section, an advertiser can utilize the temporal

and spatial patterns of connections to infer users’ relation-

ship. There are multiple privacy leakages that can produce
connections between users. In this study we focus on the

{user identity, location} combinations of most popular privacy
leakages including IMEI, phone number, GPS location, Wi-Fi

AP list, and network-based location.

2) Pairwise Social Relationship Inference: Figure 7 com-
pares the accuracy of pairwise social relationship inference

(for both fact and intelligence based relationships) by applying
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Fig. 7. Inference accuracy, MIT mobility trace, (a) and (b) are from the
activeness based profiles, (c) and (d) are from the probability based profiles.

activeness and probability based profiles to the MIT trace
under different sizes of observation windows. We use 3 days

and 2 days as the threshold for fact-based and intelligence-
based relationship inference respectively, which is introduced

in the previous section (same threshold applies hereafter). The

fact-based relationship has greater threshold because people
having fact-based relationships are supposed to encounter

each other more regularly than those having intelligence-

based relationships (e.g., colleagues meet 3 days a week while
friends meet 1 day a week).

From Figure 7 (a) and (b) we observe that for most cases, an
advertiser can achieve over 80% inference accuracy for fact-

based relationships with regular users, whereas it is around
60% for intelligence-based relationships. We also observe

that the inference accuracy decreases for less active users,

which is reasonable since less usage leads to less privacy
leakages. In addition, for active users, Figure 7 shows that

the inference accuracy for both fact-based relationship and

intelligence relationship is high (i.e., above 90%).

Furthermore, we find that longer observation windows help

improve the inference accuracy, especially when the privacy
leakage probability is low. This is observed in the probability-

based approach shown in Figure 7 (c) and (d). It is because a
longer window helps the advertiser to accumulate more data,

resulting in more connections to identify users’ relationships.

Comparing Figure 7 (a) and (b) to Figure 7 (c) and (d)
respectively, we observe that the inference accuracy of active

users is similar to that of users have the profile with a high

leakage probability. Figure 7 (d) suggests that in order to keep
the inference accuracy of intelligence based relationship lower

than 0.6, the user has to keep his leakage probability smaller

than low probability (i.e., 0.44).

Examining the Foursquare trace, we observe much higher
inference accuracy for both fact and intelligence based rela-

tionships. We show the results using privacy leakage profile

with different activeness in Figure 8 (a) and (b). Even for
inactive users, the inference accuracy is about 70% for a 7-

day window, and it goes over 95% for the 14-day window.
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Fig. 8. Inference accuracy, Foursquare mobility trace, (a) and (b) are from the
activeness based profiles, (c) and (d) are from the probability based profiles.

This is because users in the Foursquare trace encounter each

other more frequently than those in the MIT trace. Thus, more
connections can be discovered when the users have the same

intensity of app usage, leading to a higher inference accuracy.

This is also the case when using the probability-based profile
to infer pairwise relationship with the Foursquare trace, as

shown in Figure 8 (c) and (d).

3) Social Community Inference: We next study how the

social community could be inferred by the advertiser using
the privacy leakage profile. In particular, based on the in-

ferred pairwise social relationships, a hierarchical clustering
algorithm [25] is applied to obtain the social communities of

users with similar relationships (e.g., collaborators, labmates,

and classmates).

Community Correlation. We present the community corre-

lations of both fact based relationship and intelligence based

relationship when activeness and probability based profiles are
applied to the Foursquare trace in Figure 9. We observe that

the intelligence based community correlation is high for active

users and regular users (i.e., over 80% on average). Similarly it
is high for users with high probability and medium probability

profiles (i.e., over 90%). However, the community correlation
of users having the fact-based relationship is much lower with

inactive users and users with low probability profiles (i.e.,

ranges from 10% to 60%). This is because participants in
Foursquare data are from much diverse background in the city

environment and the locations are mostly restaurants which

favors more to the intelligence-based relationship inference.
Furthermore, we observe that the community correlation also

increase with longer observation windows, especially for reg-

ular users and inactive users. This is also because longer
observation windows help the advertiser to aggregate more

connections between users, which helps to more accurately

identify their social communities. Since MIT trace has similar
result, we do not provide figures for MIT trace due to the

limited space.

Discussion of False Positive. Table I shows false positive

rate of community correlation for both MIT and Foursquare
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Fig. 9. Community correlation, Foursquare dataset, (a) and (b) are from the
activeness based profiles, (c) and (d) are from the probability based profiles.

traces. Overall, the false positive rate is very small (i.e.,
the average is around 0.04). In addition, larger observation

window results in smaller false positive rates. This is because

longer observation window includes more information and
thus can improve the inference performance. Furthermore, we

observe that the Foursquare trace has much lower false positive

rate than the MIT trace. This is because the Foursquare trace
has more connections, thus leads to lower false positive rate.

To briefly summarize the major findings, 1) the advertiser

can infer users’ social relationships at high accuracy, e.g., over

90% on average for active users and over 80% on average
for regular users; 2) the advertiser can also infer a significant

portion of users’ community relationships, e.g., over 90% on
average for active users and over 60% on average for regular

users, which reveals common interests or activities among

users not necessarily with direct interactions.

VI. DISCUSSION

More Types of Private Data. There are potentially other

types of private data available to advertisers. For example,

Google has the access to its search terms and histories of
many users. Although we do not find the 190 apps studied

Fact-based Intelligence-based

7days 14days 21days 7days 14days 21days

MIT Trace

Active users 0.035 0.022 0.016 0.149 0.129 0.098

Regular users 0 0 0 0.065 0 0

Inactive users 0 0 0 0.056 0 0

High prob. 0.069 0.054 0.052 0.17 0.145 0.129

Medium prob. 0.045 0.041 0.039 0.104 0.093 0.084

Low prob. 0.026 0.016 0.015 0.055 0.037 0.0257

Foursquare Trace

Active users 0 0 0 0.019 0.076 0.076

Regular users 0 0 0 0.081 0.061 0.052

Inactive users 0 0 0 0.04 0.038 0.029

High prob. 0 0 0 0.19 0.078 0.078

Medium prob. 0 0 0 0.183 0.078 0.078

Low prob. 0 0 0 0.099 0.064 0.058

TABLE I
FALSE POSITIVE RATE FOR COMMUNITY CORRELATION: MIT TRACE AND

FOURSQUARE TRACE.

leaking text message logs, audio and video data, illegitimate
access and disclosure of such information are not impossible.

Our current study is based on the combination of most basic

privacy leakages (i.e., identities and locations). Contact list
carries important information. For example, a certain relation-

ship most likely exists when two users share many common
contacts. Unfortunately, because we do not have the contact

lists of the subjects of the two mobility traces, we are not

able to evaluate its impact on relationship inference. Studying
the impact of more types of private data would be interesting

future work.

Large Scale Evaluation. We are aware that our experiments
(due to limited available manpower) may cause bias to our

privacy leakage profiles and the evaluation may not cover

all privacy leakage patterns in the real world. Increasing
the number of participants in real experiments and building

more sophisticated privacy leakage profiles are our future

exploration as well.
Insufficient Metadata. Our evaluation is constrained by the

availability of metadata descriptions of datasets. Neither the

MIT nor Foursquare data has sufficient annotation to differen-
tiate the relationships among users at fine granularity desired

by us: colleague, collaborator, classmate, friend, and family.

In lieu of that, we have to utilize the most commonly used
technique for detecting social communities (i.e., hierarchical

clustering algorithm [25]) and use the results as the base of

comparison, which is a common practice in social relationship
research. In the future we hope such metadata would be made

available when people conduct such experiments.

More Advanced Inference Algorithms. The thresholding
algorithm that we use to infer relationships is based on quite

simple heuristics. With the availability of large amount of data,

advertisers can use more advanced inference algorithms, e.g.,
by utilizing data mining techniques. We are aware of this

limitation and plan to build advanced models more closely

describing general cases.

VII. RELATED WORK

In response to the widespread popularity of smartphones,

much attention has been paid in studying application security
and user privacy related issues. Extensive security analysis on

smartphone apps has been carried out and can be categorized

into permission analysis, static analysis, and dynamic analysis

[3], [5], [6], [10], [13], [15], [26]–[31].

Enck et al. [10] propose Kirin, which is the first to per-

form inspection on Android API permissions during the app
installation time to identify dangerous functionalities. Barrera

et al. [5] report many applications request only a small set of

permissions based on the permission analysis of top 1,100 free
applications. Felt et al. [6] study over 900 applications from

the Android Market and find INTERNET permission is the
most frequently requested. They later propose Stowaway [9]

to detect over-privilege in applications and report 10 most

common unnecessary permissions.
Static analysis analyzes the code of applications to infer

what can happen to users’ security. For example, PiOS [26]

analyzes compiled Objective-C code to identify information
leaks on the iOS platform, whereas ComDroid [27] uses dis-

assembled DEX bytecode to identify vulnerabilities in Intent
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communication between applications. Enck et al. further pro-
pose the ded decompiler [32] to reverse Android applications

to Java code for security analysis.

Some work has been done in dynamic analysis. Taint-
Droid [3] tracks the flow of privacy sensitive data and reports

when sensitive data leaves the system via interfaces such

as network connections. D2Taint [15] tracks detailed private
leakage sources at runtime in multiple classes and detects

leakages from any of these sources rapidly. Agarwal et al. [11]

proposes ProtectMyPrivacy (PMP) which utilizes a crowd-
sourcing based mechanism to help users decide proper privacy

settings for iOS apps. AppIntent [29] tracks the sequence

of events leading to private data transmission, which helps
to determine whether it is user intended or not. Zhang and

Yin [30] develop Capper that can track privacy information
and detect leakage at run time by inserting instrumentation

code into apps. Our work takes a different viewpoint by

systematically analyzing what privacy sensitive information
the advertiser can collect and aggregate at run-time from

multiple apps and infer the social relationship of a user. We

utilizes TaintDroid as a tool to track and log the run-time
privacy leakage from apps.

Finally, some work develops smartphone platform based

privacy protection mechanisms, for example MockDroid [12],
TISSA [14], NativeGuard [31], and AppFence [19]. Our work

focuses on a different aspect of gaining systematic understand-

ing on the social relationship inference consequences from
the privacy leakage by an advertiser. Such understanding may

motivate the user to adjust app usage pattern or adopt defense

mechanisms to control the sensitive data leakage.

VIII. CONCLUSION AND FUTURE WORK

Privacy leakage by smartphone apps has attracted significant

research efforts in recent years. The community has proposed
various defense mechanisms, from permission management,

code analysis, to obfuscated data. Nevertheless, the charac-

teristics of apps’ run-time privacy leakage behavior is still
not well investigated, and the consequences of such privacy

leakages have not attracted much attention. This paper serves

as the first step towards a comprehensive understanding of
the advertiser’s perspective. In particular, we seek to discover

what an advertiser can infer about users’ social and community

relationships by combining private data from many apps. Our
analysis on the run-time privacy leakage behavior of nearly

200 most popular apps from 19 categories of Google Play

shows that dominant advertisers can easily gather data from
many apps. We propose a privacy leakage inference framework

that describes a general method for inferring users’ social

and community relationships. Our experimental study over
one month demonstrates that an advertiser can infer 90%
of users’ social relationship correctly using simple heuristics.
This observation is further confirmed by human mobility trace

driven studies of two large scale data sets. We hope our work

will eventually lead to a complete picture of the advertiser’s
perspective.
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