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Abstract—Wireless charging has provided a convenient alternative
to renew sensors’ energy in wireless sensor networks. Due to physical
limitations, previous works have only considered recharging a single
node at a time, which has limited efficiency and scalability. Recent
advance on multi-hop wireless charging is gaining momentum to
provide fundamental support to address this problem. However,
existing single-node charging designs do not consider and cannot
take advantage of such opportunities. In this paper, we propose a
new framework to enable multi-hop wireless charging using resonant
repeaters. First, we present a realistic model that accounts for
detailed physical factors to calculate charging efficiencies. Second,
to achieve balance between energy efficiency and data latency, we
propose a hybrid data gathering strategy that combines static and
mobile data gathering to overcome their respective drawbacks and
provide theoretical analysis. Then we formulate multi-hop recharge
schedule into a bi-objective NP-hard optimization problem. We
propose a two-step approximation algorithm that first finds the
minimum charging cost and then calculates the charging vehicles’
moving costs with bounded approximation ratios. Finally, upon
discovering more room to reduce the total system cost, we develop
a post-optimization algorithm that iteratively adds more stopping
locations for charging vehicles to further improve the results. Our
extensive simulations show that the proposed algorithms can handle
dynamic energy demands effectively, and can cover at least three
times of nodes and reduce service interruption time by an order of
magnitude compared to the single-node charging scheme.

Index Terms—Wireless sensor networks, multi-hop wireless charg-
ing, resonant repeater, mobile energy replenishment, mobile data
gathering, hybrid data gathering.

I. INTRODUCTION

Wireless power transfer has been recently exploited in battery-

powered wireless sensor networks (WSNs) to extend network life-

time towards perpetual operations. For high charging efficiency,

charging vehicles (denoted as “SenCars” henceforth) are em-

ployed to approach sensor nodes in close proximity [1]–[4], [8],

[14] and we refer these networks as wireless rechargeable sensor

networks (WRSNs). However, because the charging efficiency

decays as an inverse cube of distance, most of the previous works

only considered “short-range” charging where a SenCar needs to

approach nodes in very close proximity and can only recharge the

nodes one by one. This may lead to extremely long recharging

latency: If a rechargeable battery takes 1-4 hours to fully recharge,

a network of hundreds of nodes can take days or weeks. During

such long latencies some nodes may exhaust energy and cause

service interruption. Inspired by the latest advances in mid-range

wireless charging (where mid-range refers to energy transmitting

distances much larger than the diameter of coils) that can relay

energy over several hops to simultaneously replenish multiple

nodes, we explore how to leverage this technology to enhance

network scalability and performance.

(a) Distribute 15mW energy to 6 loads by
4 repeaters over 2m. Repeater coils are
twisted on the black wheels with loads
separated in between (courtesy of [13]).

(b) Power a 14W lamp by
organizing repeaters into
domino form (courtesy of
[15]).

Fig. 1. Experimental prototypes of multi-hop wireless charging using resonant
repeaters [13], [15].

One of the most cost-effective means to relay energy is

resonant repeaters (see Fig. 1). They can be easily manufactured

from copper coils at low costs. In [12], significant improvements

(from 10% to 46%) in efficiency are reported by adding reso-

nant repeaters between the source and receiving coils. In [13],

distributing 15mW energy over a distance of 2m to 6 different

loads through 4 resonant repeaters has been demonstrated. In [15],

experiments have shown that resonant repeaters can be organized

into a domino form to power a 14W lamp. Their theoretical results

indicate up to 50-70% charging efficiency even after 5-6 hops of

relays.

For WRSNs, only very few works have considered recharg-

ing nodes in multi-hops [5], [11]. Although pioneering first

steps, these schemes do not consider the physics laws governing

wireless charging efficiency. It is not only impacted by the

distance, vehicle’s position, but also by a series of phenomenons

such as cross-coupling where complicated interactions between

neighboring resonant repeaters cannot be simply ignored. Further,

unlike data flows whose rates can be continuously adjusted, an

energy flow can be turned on/off but there is no easy means to

alter its rate over links [15]. Thus these solutions would deviate

from real operating conditions in the network.

To tackle these limitations, in this paper we propose a new

multi-hop wireless charging framework to improve charging ca-

pability and scalability. With a low-cost repeating circuit installed,

sensor nodes can relay energy to their neighbors. Since previous

single-node recharge scheduling algorithms do not consider such

energy relaying, we provide a new recharge scheduling algorithm

for this fundamentally different charging model. Furthermore,

energy replenishment has to be considered together with energy

consumption patterns, which depend largely on how data are

collected. Mobile data gathering reduces energy consumption

on intermediate nodes but incurs extra delivery latency [6]–

[10], whereas static data gathering has shorter latency but much

higher energy costs on routing paths [3]. To achieve a reasonable

balance between latency and energy consumption, we introduce

a hybrid data gathering strategy, where time-sensitive data are

directly forwarded to the base station and time-insensitive data

are gathered by mobile collectors.

The new framework raises several interesting questions. First,

how to quantify the improvements from charging capability

compared to the single-node recharge in terms of the number of

nodes a SenCar can cover, and the number of SenCars needed?

Second, given time-varying recharge requests, where SenCars

should stop to recharge surrounding nodes such that multi-hop

wireless charging cost is minimized and how to schedule the

SenCars to minimize the moving cost ? Third, are there any

relationships between the two types of costs and is there a way

to minimize the total system cost? Finally, what is the tradeoff

compared to the single-node recharge scheme in energy efficiency,

network scalability and packet latency?

To answer these questions, we first show how to accurately

calculate wireless charging efficiency based on well-established

methods in physics and electronics [15], so as to estimate energy

charging cost during multi-hop relay. Then we theoretically

analyze the energy consumptions given the hybrid data gathering

model and estimate improvements using multi-hop charging.

Based on the mathematical model, we can derive the number of



SenCars needed. Further, to minimize both charging and moving

costs, we formulate the recharge scheduling problem into the

category of location-routing problems [20] with two objectives,

respectively. Since the problem is NP-hard, we propose a two-

step approximation algorithm that guarantees all energy demands

are satisfied while minimizing the costs. In the first step, we

identify a set of representative sensor locations (called “anchors”)

where SenCars stop and recharge nearby nodes such that overall

charging cost is minimized. Our algorithm achieves a bounded

approximation ratio of logn to the optimal solution (where

n is number of nodes). In the second step, we first utilize

approximation algorithms from the Traveling Salesmen Problem

to compute a complete shortest recharge tour through anchors.

Then we assign recharge routes for different SenCars by dividing

the complete tour according to SenCars’ recharge capacity, energy

demands and multi-hop charging cost. Given the selection of

anchors, our algorithm generates recharge tours with the moving

cost on SenCars bounded by (52 − 1
2k ) ratio to the optimal

result (where k is number of tours). Finally, upon discovering

more room exists to optimize the system cost (charging cost

plus moving cost), we propose a post-optimization algorithm

that iteratively changes nodes with low charging efficiency into

anchors and inserts them back into the established routes to

further reduce the overall system cost.

We summarize the contributions of this paper as follows. First,

we adopt resonant repeaters to improve charging capability based

on realistic modeling of charging efficiency under physics laws.

Second, we introduce a hybrid data gathering strategy to achieve

balance between routing cost and data latency, and theoretically

study scalability improvements. Third, we formulate recharge

scheduling into a bi-objective optimization problem and propose

a two-step approximation algorithm with bounded approximation

ratios for each objective. We discover subtle relations between

cost objectives and propose a post-optimization approach to

further optimize the system cost. Our evaluation shows that the

post-optimization algorithm can reduce the system cost by an

additional 25% and the proposed framework can cover more than

3 times of nodes and has significantly less service interruptions

compared to previous works. We also demonstrate possible trade-

offs between multi-hop and single-node recharge methods. To the

best of our knowledge, this is the first work on multi-hop wireless

charging for WRSNs based on realistic physics models.

The rest of the paper is organized as follows. Section II

outlines the network model, and briefly describes how to compute

charging efficiencies. Section III provides theoretical analysis

of the framework. Section IV formalizes multi-hop recharge

scheduling into a bi-objective optimization problem and proposes

a two-step approximation algorithm with a post-optimization

algorithm shown in Section V. Section VI provides simulation

results. Finally, Section VII discusses limitations and Section VIII

concludes the paper.
II. PRELIMINARIES

In this section, we introduce the network model and briefly

describe the procedures to calculate multi-hop charging efficiency

while bringing comprehensive factors such as mutual inductance

and cross-coupling into consideration.

A. Network Model

Fig. 2 shows the basic components in our framework. We

assume N sensor nodes are uniformly randomly distributed in

a circular field with radius Rc and node density ρ = N
πR2

c
. An

embedded resonant repeater is added into the charging circuitry

Fig. 2. Multi-hop wireless charging based on resonant repeaters.

on both SenCars and sensors. In contrast to the previous works

which have ignored important physics phenomena such as mutual

inductance and cross-coupling between neighboring sensor coils,

our framework accounts for these factors. For simplicity, we

assume all the nodes and SenCars have identical coils with nt

rounds and rs radius. To successfully relay energy, nodes need

to tune their resonant frequencies to the same as SenCars and

these nodes form a charging set around the stopping location

of a SenCar. We can have different resonant frequency bands in

the network to avoid interference between neighboring charging

sets. Each sensor has a Ni-MH AAA battery with Cs capacity

and its recharge time follows the data sheets in [17] (maximum

recharge time Tr = 78 mins). To provide an effective charge

that can stimulate enough currents on sensors’ reception circuits,

the charging efficiency η should be at least τ , e.g., τ = 30%;

otherwise, the node cannot be charged and it stops relaying

wireless energy by switching off its repeating circuitry.

We consider multi-task sensing applications that sensors not

only report time-insensitive data samples (e.g., temperature and

humidity) from the environment periodically, but also detect Ne

random events (e.g., lightening strike and tornado warning) that

are time-sensitive. In a time slot, an event appears independently

randomly from other events at a location. With sensing range Rs,

an event is detected with probability p =
R2

s

R2
c

for the node in a time

slot. We assume sensors generate data packets following a Poisson

distribution with rate λ, a common model for events randomly and

mutually independently distributed [18]. The energy consumed

for transmitting/receiving a packet of length lp, denoted by ec,
is modeled as in [27], i.e., ec = (e1d

α
r + e0)lp, where e1 is

the loss coefficient per bit, α is the path loss exponent (usually

from 2 to 4) and e0 is energy consumed on sensing, coding and

modulations (we use e0 = 50× 10−6 J/bit, e1 = 10× 10−7 J/bit,

α = 4 and lp = 32 bits). A hybrid data gathering strategy is used

in our framework to achieve a balance between packet latency

and energy consumption. The time-sensitive data packets (with

rate λ1) due to event detection are directly forwarded towards

the base station over multiple hops, while time-insensitive data

packets (with rate λ2) are gathered by SenCars during recharge

to reduce routing cost.

If a node’s battery level falls below threshold β, a recharge

request is triggered and sent to SenCars. m SenCars respond to

recharge requests cooperatively. Each SenCar is equipped with

a more powerful high-capacity battery pack of capacity Ch and

consumes es J/m energy while moving. SenCars stop at selected

sensor locations (called anchors) to recharge nodes with multi-

hop energy relay and simultaneously gather data packets within

l communication hops. If a node is within l-hops of SenCars,

it always sends data to the closest SenCar to save energy on



intermediate nodes. Nodes generate packets following a Poisson

process with rate λ. To ensure packets gathered by SenCars have

bounded latency, we impose a recharge time threshold Td which

is the maximum time duration between a SenCar leaving and

returning to the base station. If either a recharge tour is finished

(i.e., all the recharge requests have been fulfilled) or the timing

threshold is reached, the SenCar will return to the base station to

upload data packets. Td indicates the number of charging sets a

SenCar can recharge in a tour. For example, if every charging set

needs Tr recharge time, at most ⌊Td

Tr
⌋ anchors can be covered.

When a SenCar is about to deplete its own battery, it returns to the

base station for a quick battery replacement. To make better use of

SenCar’s battery energy, we assume Td is larger than the recharge

time to replenish SenCar’s Ch energy into the network. Thus,

we can prevent SenCars from traveling back and forth between

recharging locations and the base station too frequently for packet

uploading.

B. Calculate Multi-hop Wireless Charging Efficiency

Accurate multi-hop wireless charging efficiency is the key in

our framework. We describe an approach to calculating efficiency

ηn after n relays. In principle, efficiency is governed by mutual

inductance. Let Lij denote the mutual inductance between re-

peaters on nodes i and j [16],

Lij = κij(ntLs)
2 ≈

r3s
2d3ij

(ntLs)
2

(1)

where nt is the number of rounds of coil wires, κij is the mag-

netic coupling coefficient between nodes i and j (0 ≤ κij ≤ 1),

and Ls is the self-inductance of coils1. The approximation is

taken when wireless charging distance dij between i and j is

much larger than the dimensions of coil radius rs. Based on

Kirchoff’s Voltage Law, a well-established method in [15] can

be used to calculate charging efficiency. The input voltage from

SenCar’s transmitting coil induces currents I2-In on all sensor

coils oscillating at frequency w and these values can be obtained

by solving n linear equations as shown in [15].

The above computation ensures mutual inductance and cross

coupling effects are accounted in our model. Assuming the

resistance of the repeater circuit is R, and output load resistance

is RL, the efficiency ηn at the n-th repeater output is,

ηn =
RLI

2
n

∑n

k=1 RI2k +RLI2n
.

As an example, in Table I, we calculate the charging efficiency

for up to 4 hops with nt = 300 rounds and rs = 10 cm coil

radius while changing the hop-to-hop distance d from 0.25 m to

1.5 m. First, we can see wireless charging efficiency decreases

with more hops. This matches the intuition that energy relay

attenuates rapidly from the source. Second, we observe that the

efficiency decreases sharply when d is larger. This is because that

the mutual inductance declines as an inverse cube of distance. For

instance, when d = 0.25m, charging efficiency after 4 hop relay

(η4) is still 88%. When d = 1.5m, η2 has reduced to 12% and

hardly to provide any effective charge for sensor’s battery. Thus,

the efficiency depends on the number of intermediate nodes that

are relaying energy as well as the distance between them. Based

on this method, we can calculate the energy cost during multi-

hop charging and compare with previous single-node charging

schemes.
1Ls = µ0rs(ln

8rs
rd

− 2), rd is the wire radius and µ0 is the permeability

constant equal to 4π × 10−7H ·m−1 (Henry per meter).

TABLE I
CHARGING EFFICIENCY VS. RELAY HOPS

hops 1 2 3 4
d = 0.25m 0.99 0.91 0.89 0.88

d = 0.5m 0.99 0.68 0.64 0.48
d = 0.75m 0.98 0.48 0.46 0.17
d = 1m 0.89 0.41 0.34 0.03
d = 1.25m 0.68 0.28 0.15 0.01
d = 1.5m 0.42 0.12 0.03 0

III. THEORETICAL ANALYSIS OF SCALABILITY

In this section, we theoretically analyze scalability improve-

ments using resonant repeaters and calculate the number of

SenCars required to achieve energy balance in the network.

A. Energy Consumptions

First, we analyze the energy consumption for hybrid data

gathering which has two types of data destined either for the

base station or SenCars. Denote the energy consumed in the

network by these two types of data as Eb and Es, respectively.

The total energy consumption E in the network for a time slot is

E = Eb+Es. To obtain Eb and Es, we need to first calculate the

proportion of traffic destined for the base station (λ1) and SenCars

(λ2) from the total traffic rate λ. In each time slot, denote the

probability that there is at least one event in a node’s sensing

range as pd,

pd = 1− (1− p)Ne = 1−

(

1−
R2

s

R2
c

)Ne

(2)

Because time-sensitive packets are generated after the observation

of events with probability pd, the two types of packets split the

original Poisson process with probabilities pd and 1 − pd. By

basic probability theory [19], we know that each node generates

time-sensitive and time-insensitive packets at rates λ1 = λpd and

λ2 = λ(1− pd), respectively and we are interested in the means

of Eb and Es.
We assume that the radio coverage has a circular shape with

dr transmission distance so at least h = ⌈Rc

dr
⌉ hops are required

to reach the outmost boundary of the sensing circle. We divide

the network into h concentric rings where the i-th ring carries

all the traffic load from outer rings (i + 1 to h). For uniform

distribution of node density ρ, the number of nodes in the i-th
ring is, Ni = (2i − 1)d2rπρ. Since the sum of Poisson random

variables is still Poisson, we can calculate the average traffic rate

λi of the i-th ring

λi = (Niec + 2

h
∑

j=i+1

Njec)λ = (2h2 − 2i2 + 2i− 1)λpdN1ec (3)

By the same token, we derive the mean of Eb by taking the sum

of λi from the 1st to the h-th rings

Eb =
h
∑

i=1

(2h2−2i2+2i−1)λpdN1ec =

(

4

3
h3 −

1

3
h

)

λpdN1ec (4)

For estimating Es, although the actual moving trajectories of m
SenCars are unknown and quite difficult to analyze, we can view

the data gathering process as m moving circles with radius ldr
(l < h). The total energy consumption for l-hop mobile data

gathering can be obtained by replacing h with l and pd with (1−
pd) in Eq. (4), yielding (43 l

3− 1
3 l)λ(1−pd)N1ec. The best scenario

with mobile data gathering is that all the time-insensitive packets

generated in a time slot are gathered using l-hop communications.

Statistically, each SenCar gathers data from l2N1 nodes, thus we

can estimate es as

Es =

(

4

3
l3 −

1

3
l

)

ecN1λ(1−pd)N/(l2N1) =

(

4l2 − 1

3l

)

λ(1−pd)Nec

(5)



Since the two types of packets are generated independently on

different nodes, the total data traffic is still Poisson. Thus by

combining Eqs. (4) and (5), we obtain the mean of E as

E =
(4h2 − 1

3h
pd +

4l2 − 1

3l
(1− pd)

)

ecλN (6)

B. Energy Replenishment

Our next objective is to calculate the energy replenishment R
in a time slot. Since charging efficiency depends on the actual

number of sensor nodes that can relay energy, the procedure

requires to solve a set of linear equations whose closed form

result is difficult to derive. To circumvent these difficulties, we

estimate the maximum charging capabilities of SenCars instead.

Assume a maximum charging range rm = f(ρ, τ) which is

a function of node density ρ and efficiency threshold τ . Due to

the uniform node distribution, if all the nodes within rm request

recharge, a maximum of πr2mρ nodes will be replenished simul-

taneously by a SenCar. Given recharge threshold β (0 < β < 1)
for the actual number of nodes that are requesting recharge, on

average, βπr2mρ nodes would benefit in each recharge operation.

In the worst case, if no node beyond the immediate hop in range

rm requests recharge, the scheme reduces to the conventional

single node recharge.

For each recharge, a SenCar replenishes at least (1 − β)Cb

energy for each node so the total energy it can put back into

the network is Cb(β − β2)πr2mρ. If SenCars keep replenishing

node’s battery one after another without any idle time, the only

time overhead is the moving time between anchor locations. Since

anchors could be anywhere during operations, we use the diameter

which is the longest distance in the field as an upper bound on

the moving time, Tm = 2Rc/v, where v is the speed of a SenCar.

Hence, we can write the collectively replenished energy amount

from m SenCars,

R =
Cb(β − β2)πr2mρm

(Tm + Tr)
. (7)

We can see that multi-hop charging provides a scalability gain

to cover max(βπr2mρ, 1) more nodes compared to the single

node recharge scheme. For example, if β = 0.5, rm = 3m and

ρ = 0.5 nodes/m2, on average, a SenCar can replenish 7 nodes

simultaneously by spending Tr time, thus speeding up 7 times

compared to the single node recharge. This shows that given the

same number of SenCars, multi-hop charging enjoys much better

scalability to support larger networks.

C. Energy Balance

After the expressions for energy consumption and replenish-

ment have been derived, we can set up an energy balance for the

network by letting E = R. This relation states that in each time

slot, the amount of energy consumed by sensor nodes should be

equivalently replenished back into the network by the SenCars.

Since E is a random variable and R is in the form of m, the

number of SenCars, we can derive m which also follows Poisson

distribution. After plugging in Eq. (6) and Eq. (7), we have the

mean of m,

m =

(

4h2−1
3h

pd + 4l2−1
3l

(1− pd)
)

h2d2recλ(Tm + Tr)

Cb(β − β2)r2m
. (8)

Remarks: It is interesting to see from Eq. (8) that using multi-hop

wireless charging, for a fixed field size, the number of SenCars

no longer depends on the number of sensor nodes in the network.

This property has created opportunities to add more nodes into the

network without increasing the number of SenCars. In practice,

as node redundancies are usually preferred, multi-hop wireless

charging helps network administrators improve scalability without

incurring extra manufacturing and human labor costs by introduc-

ing more charging vehicles.

IV. SCHEDULING SENCARS FOR MULTI-HOP CHARGING

In this section, we study how to schedule m SenCars for multi-

hop wireless charging to respond to sensors’ energy requests.

A variety of practical factors, e.g., location-dependent charging

efficiencies, energy charging cost, SenCar’s recharge capacity, and

energy consumption in movements, are brought into our problem

formulation.
Our objectives are two-folds: on one hand, we aim to minimize

the energy cost via multi-hop charging. It requires SenCars

to select advantageous locations (anchors) for stopping so that

overall charging efficiency is maximized. On the other hand, we

want to minimize moving energy consumption for SenCars within

their recharge capacities. In principle, our problem resembles

the location-routing problem (LRP) [20]. LRP finds the optimal

warehouse locations for minimum accessing and distributing costs

of traversal routes over demand locations that start and end at

warehouses. It encompasses two NP-hard problems, i.e., location

and routing problems, and seeks to provide an integrated solution

to optimize the overall system cost. However, instead of vehicles

directly visiting each warehouse location in the original LRP, our

problem involves an additional level of cover problem. That is,

the anchors have to ensure that all sensors are “covered,” i.e.,

be charged either directly or via multi-hops. Based on the energy

requests at different times, SenCars need to calculate anchors and

fulfill all requests from sensors adaptively.

Thus we formulate our problem into the context of LRP

with two objectives that minimize both energy cost in SenCars’

charging and moving cost. Due to the NP-hardness nature of our

problem, we propose a two-step approximation algorithm. In the

first step, a ratio of logn to the optimal charging cost is achieved

(where n is the total number of recharge requests). In the second

step, given the selection of anchors, the maximum touring cost

is bounded by a ratio of (52 −
1
2k ) to the optimal solution, where

k is the number of scheduled tours (normally, k = m). Finally,

based on the results from the algorithm, we study the relationships

between the objectives and combine them into a single-objective

problem using the weighted method [26]. A post-optimization

algorithm is proposed to further reduce the total system cost by

inserting anchors into the established routes.

A. Problem Formulation

We now present the formulation of our problem. During

operations, energy information from sensor nodes can be gathered

by SenCars using the methods in [4]. At time t, given the set of

SenCars, M, the set of sensor nodes requesting recharge, N , the

set of potential anchors where SenCars can stop, A(A ⊆ N ),
and the set of starting locations of SenCars, I, we formulate the

problem as follows.
Consider a graph G = (V,E), where Vi (i ∈ N

⋃

I) is the

location of sensor node i, and E are edges connecting sensor

nodes. The weight of an edge Eij is the energy cost cij traveling

on the edge, which is proportional to the distance between nodes

i and j. Each SenCar has recharge capacity Ch corresponding

to the maximum number of nodes and distance it can travel in

each tour. A node i has energy demand di (which equals full

capacity minus its residual energy). Each anchor a covers a set

of nodes Sa and the entire covered set of all the anchors achieves

N (
⋃

Sa∈A = N ). Recharging Sa requires ta time which is



usually determined by the node with the longest recharge time.

For a node i, ηia denotes the recharge efficiency when a SenCar

resides at anchor a. Several decision variables are introduced in

the formulation. xijk is 1 if anchor i ∈ A immediately precedes

j ∈ A for SenCar k, otherwise it is 0. For i ∈ N , k ∈ M, a ∈ A,

yia is 1 if node i can be recharged when a SenCar resides at

a ∈ A. zik is 1 if node i is recharged by SenCar k. ua is 1 if

an anchor a is chosen; otherwise, it is 0. vik is the position of

anchor i in the path of SenCar k. Our objective is to minimize

the charging cost in multi-hop energy relays, Fc, and SenCars’

moving cost, Fm.

P1 : min F = (Fc, Fm) (9)

where,

Fc =
∑

i∈N

∑

a∈A

1− ηia
ηia

diyia, (10)

Fm =
∑

i∈A

∑

j∈A

∑

k∈M

cijxijk +
∑

i∈I

∑

j∈A

∑

k∈M

cijxijk. (11)

Subject to
∑

i∈A

xijk = zjk, j ∈ A, k ∈ M, (12)

∑

j∈A

xijk = zik, i ∈ A, k ∈ M, (13)

∑

a∈A

yia = 1, i ∈ N , (14)

ηiayia > τ, i ∈ N , a ∈ A, (15)

yia ≤ ua, i ∈ N , a ∈ A, (16)
∑

i∈N

zik(
∑

a∈A

diyia/ηia) +
∑

i∈A

∑

j∈A

cijxijk +

∑

i∈I

∑

j∈A

cijxijk ≤ Ch, k ∈ M, (17)

∑

k∈M

zak = ua, a ∈ A, (18)

∑

i∈A

∑

j∈A

tixijk +
(

∑

i∈A

∑

j∈A

cijxijk

+
∑

i∈I

∑

j∈A

cijxijk

)

/v < Td, k ∈ M, (19)

2 ≤ vik ≤ |N |, i ∈ A, k ∈ M, (20)

vik − vjk + (|A| − |M|)xijk ≤ |A| − |M| − 1,

i, j ∈ A, k ∈ M, (21)

xijk , yia, zik ∈ {0, 1}, i, j ∈ N , a ∈ A, k ∈ M. (22)

In the above formulation, constraint (12) and constraint (13)

stipulate the connectivity of the path that a SenCar stopping at an

anchor also leaves it. Constraint (14) imposes that all the nodes

request recharge are covered by anchors. Constraint (15) ensures

that the recharge efficiency for a node from its anchor should be

larger than the efficiency threshold. Constraint (16) guarantees

that a node is assigned to one of the anchors. Constraint (17)

mandates that the sum of total demands serviced by a SenCar plus

its moving energy consumptions should not exceed its recharge

capacity. Constraint (18) enforces each anchor visited by only

one SenCar. Constraint (19) states that the total time duration of

a recharge tour should be within a time threshold Td. Constraints

(20) and (21) are formed according to [21] to prevent subtours

of SenCars. Constraint (22) forces xijk , yia and zik to be 0-1

valued.

Remarks: This formulation reflects recharge schedules at time

t based on N energy requests (N is an input). For executions

at different times, the optimization problem takes corresponding

inputs and generates different results (anchors, SenCar schedules,

etc).
The above problem is NP-hard because the two subproblems

led by the objectives are both NP-hard (Set Cover and Vehicle

Routing Problems). Although standard optimization procedures

can yield optimal solutions [20], it is prohibitive to run them

on SenCars due to enormous computation overhead. The base

station has computational resources. However, the communication

overhead to maintain updated energy requests and disseminate

recharge decisions for the SenCars could be high in a long run.

Moreover, the existing optimization methods are usually designed

to handle static inputs and lack the flexibility to deal with

constant variations in sensor networks such as battery energy and

SenCar movements. Therefore, a polynomial-time approximation

algorithm with an acceptable bounded ratio is more desirable

in practice. To design the approximation algorithm, we follow

a natural approach to tackling the objectives sequentially and

finally examine the relationships between them. Next, we propose

a two-step approximation algorithm which first selects the anchors

that minimize energy charging cost, and then finds the minimum

recharge routes for SenCars.

B. Approximation Algorithms

In this subsection, we explain the designs of the algorithm. We

first define a charging set Si of a node i as those nearby nodes

with charging efficiencies larger than τ when a SenCar stops at

node i. At the network initialization phase, each node performs

the procedures in Section II-B to compute its effective charging

set in a distributed manner. For node i, its neighbor j is included

in Si only if j’s charging efficiency is larger than threshold τ
and the corresponding efficiency is denoted as ηij (j ∈ Si). The

algorithm starts with finding the set of anchors.
1) Adaptive Anchor Selection: We define the weight of each

set Si as the total energy needed to satisfy the recharge demands

of these nodes, wi =
∑

j∈Si

(1−ηi
j)dj

ηi
j

. It is not difficult to observe

that our objectives in Eq. (10) is equivalent to minimizing the sum

of weights of the selected sets. In general, this problem belongs

to the category of original Set Cover Problem (SCP) with one

difference: While the original SCP allows the results to share the

same nodes and thus resultant sets are not necessarily disjoint, our

formulation restricts a node to be recharged by only one SenCar

(Eq. (18)). Hence in our problem, the resultant sets should be

disjoint. We can modify the well-known greedy approach to adapt

to the context of our problem.
Our revised greedy algorithm utilizes resonant frequencies to

distinguish among charging sets and allows nodes to “join” or

“leave” a set very easily by tuning to the proper frequency.

Nodes in neighboring charging sets are tuned to different resonant

frequencies. The band between different frequencies is wide

enough to avoid any interference. The assignment of resonant

frequency for each charging set can use existing algorithms

(e.g., graph coloring, or minimum frequency span). Due to space

limit, we omit the details and a survey of frequency assignment

problems can be found in [22].
Initially, we define sets A and B to record anchors and their

covered node sets respectively and both sets are initialized to

empty. First, for each node i ∈ N , we compute its average weight,

wi =
∑

j∈Si

(1−ηi
j)dj

ηi
j

/|Si| and search for the set with the minimum



TABLE II
ADAPTIVE ANCHOR SELECTION ALGORITHM

Input: Recharged node set N , effective charging subset Si,
i ∈ N , energy demand di of node i, charging efficiency of

node j ηi
j when a SenCar stops at i, empty sets A, B.

Output: Set of anchors A and resultant subsets B
While B 6= N

Calculate wi =
∑

j∈Si

(1−ηi
j )dj

ηi
j

/|Si|.

Find minimum weight k = argmini wi, i ∈ N .
A ←− A

⋃

k, B ←− B
⋃

Sk.
∀j ∈ Sk, set resonant frequency equal to k.
Si ←− Si −B,∀i\k ∈ N .

End While

wi. Assume node k’s subset has the least average weight so k
becomes an anchor. Then, it is added into A and Sk is put into

B to be marked as “covered.” In practice, this is done by tuning

all the nodes in Sk to have the same resonant frequency. Anchor

node k can send out packets carrying the frequency information

within the boundary of Sk to achieve this easily. Since other sets

have different frequencies, we remove nodes that have already

been covered from the remaining sets. Their elements are updated

accordingly Si = Si−B, ∀i\k ∈ N . At this time, if B contains all

the nodes in N , the algorithm terminates. Otherwise, it continues

to find the next set among the remaining nodes with minimum

average weight until all the nodes are covered (B = N ). Table II

shows the pseudo-code for the anchor selection algorithm.

2) Assign Recharge Routes: After the set of anchors A has

been found, we assign the recharge routes for m SenCars while

considering SenCars’ capacities along with its moving cost and

multi-hop charging cost. Based on [23], we propose an approx-

imation algorithm to bound SenCars’ moving energy cost given

the anchors. Our approach first utilizes a Traveling Salesman

Problem (TSP) algorithm to compute a complete route on A,

e.g., 1.5-approximation Christofides algorithm [24]. In this way,

we can ensure that anchors close to each other are placed on

the same SenCar’s recharge route. To facilitate our analysis, we

assume the complete tour starts at the base station and ends at the

last node for recharge. In fact, the starting positions of SenCars

are the ending positions from the last tour and SenCars traverse

through the base station to upload data packets. The recharge

sequence can be expressed as r = (b, 1, 2, i, . . . , n), where anchor

i ∈ A, n = |A| and b is the base station. To reflect SenCar’s

starting position, an extra edge with cost ci,b, i ∈ I can be added

to represent the energy cost from SenCar’s starting location i ∈ I
to the base station b. Let cmax denote the maximum energy cost

from any node on the path to the base station, cmax = max
i∈A

⋃
I
cb,i.

The TSP algorithm yields a complete route r that incurs cr energy

cost using one SenCar.

Next, r is split into k tours and k depends on the Sen-

Cars’ recharge capacity (constraint in Eq. (17)). We check

whether an equal division of m SenCars from the total en-

ergy cost (
∑

i∈A

∑

j∈Si

(1−ηi
j)dj

ηi
j

+ cr − cmax)/m + 2cmax is less

than SenCar’s capacity Ch
2. If yes, k = m. Otherwise, k =

⌈(
∑

i∈A

∑

j∈Si

(1−ηi
j)dj

ηi
j

+ cr − cmax)/(Ch − 2cmax)⌉. We start with

an arbitrary direction along r for the partitioning. For each route

j, 1 ≤ j ≤ k, we search for the last anchor along the complete

2The term 2cmax is the maximum energy cost from SenCar’s starting position
to the base station plus the cost from the base station to the first anchor on the
recharge path.

tour r to ensure the traveling energy cost is no greater than
j

k
(cr − cmax) + 2cmax. Let aji and ajl represent the i-th and

last nodes in the j-th tour, respectively. The j-th tour is obtained

as (Ij , b, a
j
1, a

j
2, . . . , a

j
l ). The pseudo-code of the algorithm is

presented in Table III. Next, we prove the approximation bounds

for the proposed algorithm.

C. Approximation Bounds and Complexity

For n = |N | recharge requests, our algorithm gives a logn
approximation of the energy cost during multi-hop wireless

charging and a (52 − 1
2k ) ratio for the traveling cost given the

selected anchors, where k is the number of tours depending on

energy demands and recharge capacity Ch. In the extended greedy

algorithm for Set Cover Problem, we assume the optimal energy

cost is w∗. During computation, when there are i nodes left to be

covered, it incurs at most w∗

i
energy cost per node. The bound of

the extended greedy algorithm is
n
∑

i=1

w∗

i
= w∗ log n. The equality

holds because the summation
n
∑

i=1

1
i
= logn is the n-th harmonic

number.

Next, we prove the traveling energy cost has an approximation

ratio of (52−
1
2k ) respect to k tours. Here, when k > m, the k−m

tours are traversed by SenCars after they have replaced batteries

in the base station. Nevertheless, the total cost would still be the

same. For the complete tour, the energy cost is cr with the optimal

value c∗r . Use Christofide’s minimum spanning tree approximation

to the TSP, cr
c∗r

≤ 1.5 [24]. Assume that tour j has the maximum

energy cost cj among k tours and its optimal value is c∗j . The

energy cost for tour j is at most 1
k
(cr − cmax) (excluding the

edge leaving the base station in the complete tour r) plus 2cmax

for the two edges connecting the base station to SenCar’s starting

position and the first anchor in each tour. Therefore, cj ≤
1
k
(cr−

cmax) + 2cmax = 1
k
cr + (2 − 1

k
)cmax. We divide both sides by

c∗j ,

cj
c∗j

=
1

k

cr
c∗j

+

(

2−
1

k

)

cmax

c∗j
≤

1

k
k
cr
c∗r

+

(

2−
1

k

)

1

2
≤

5

2
−

1

2k
(23)

The inequality holds because for each tour, an edge is added to

connect the first sensor node to the base station, c∗r ≤
k
∑

i=1

c∗i . If

we divide both sides by k and use the fact that max
1≤i≤k

(c∗i ) = c∗j ,

we have
c∗r
k

≤ c∗j . We take the approximation cmax ≤ 1
2c

∗
j . The

equality holds when the tour has only one node.

The time complexity for the anchor selection algorithm is

O(|N | log |N |) because finding the anchor with the minimum

weight in each step among |N | nodes requires log |N | and there

is a total of |N | iterations. For the recharge route assigning

algorithm, in the worst case, there is only one SenCar that needs

to recharge |N | nodes one by one, so the time complexity is |N |3

dominated by the Christofides algorithm [24].

Remarks: Although the logn bound for energy charging cost

seems quite large, it is essentially one of the best polynomial-

time approximation algorithms: it has been proved [25] that the

Set Cover Problem cannot be approximated in polynomial time

within a ratio of c logn, for c < 1
4 under general complexity

assumptions. A tighter bound might not be necessary given the

increased complexity and transient nature of energy requests.

V. POST-OPTIMIZATION BY INSERTING ANCHORS

When the recharge time threshold Td is not met, there could

be further room to optimize results of the two-step algorithm. In



TABLE III
RECHARGE ROUTE ASSIGNING ALGORITHM

Input: Set of anchors A, SenCars M, energy demand

di of node i, charging efficiency of node j, ηi
j when charger is

at i. Set of SenCars’ initial locations I, capacity Ch,
base station b, max energy cost traveling on an edge cmax.
Output: Recharge sequence rj for SenCar j’s tour.
Compute complete TSP recharge path on A starting from b.
Record the TSP sequence r = (b, 1, 2, i, . . . , n) with cost cr .

If (
∑

i∈A

∑

j∈Si

(1−ηi
j)dj

ηi
j

+ cr − cmax)/m+ 2cmax < Ch, k = m,

Else k = ⌈(
∑

i∈A

∑

j∈Si

(1−ηi
j )dj

ηi
j

+ cr − cmax)/(Ch − 2cmax)⌉.

Start with an arbitrary direction on r. For tour j, search for

the last node aj

l along r, satisfying cj ≤
j

k
(cr − cmax) + 2cmax.

Obtain j-th tour, (Ij , b, a
j
1, a

j
2, . . . , a

j

lj
), 1 ≤ j ≤ k.

this subsection, we propose a post-optimization algorithm. Since

both objectives in Eq. (10) and Eq. (11) are energy outputs from

the SenCar’s own battery, we can combine them into a single

objective using the weighted method in [26], F = w1Fc+w2Fm.

The weights w1 and w2 are assigned by network administrators

to measure the importance of energy charging cost compared to

moving cost. If w2 > w1, it means that the administrator cares

more about SenCar’s moving cost over energy charging cost. For

example, if w2/w1 = 2, for total cost F , reducing the moving

cost by 1 J is equivalent to saving energy charging cost of 2 J on

SenCars. In practice, we would expect w2 > w1 in most cases as

the administrators want to minimize the recharge time by covering

more nodes with anchors so a slight increase of energy cost due

to multi-hop charging is acceptable.

A. Inserting Anchors

It is critical to observe that the optimal system cost F achieves

a good compromise between Fc and Fm. That is, on one hand,

introducing more anchors would potentially increase SenCars’

moving cost Fm; on the other hand, more anchors means fewer

energy relays thus less energy charging cost Fc. Based on this

observation, we propose a post-optimization algorithm that eval-

uates whether inserting an anchor into the established charging

sets would lead to lower system cost. To keep it simple and

effective in a dynamic network environment, we need to avoid

computationally intensive algorithms.

The basic procedures is illustrated below. After obtaining a

recharge sequence of anchors (a1, a2, . . . , als) for SenCar s, it

randomly picks one anchor ai and finds a node j with the

maximum charging cost max(
1−ηj,ai

ηj,ai

dj) in ai’s charging set Sai
.

Then we simply designate node j as a new anchor because by

charging j directly, a great amount of energy cost can be reduced.

We denote node j as a new anchor a′j . Next, an important step

is to see whether we can further reduce energy charging cost by

moving some of the elements from Sai
to Sa′

j
. This is because

a node k in Sai
may be more efficiently recharged via the new

anchor. Therefore, for each node k in Sai
, we compare if

(1− ηk,ai
)

ηk,ai

dk >
(1− ηk,a′

j
)

ηk,a′

j

dk

If yes, we move node k to be covered in Sa′

j
and denote the old

ai by a′i after this operation. This is done by tuning the resonant

frequency of k to the same as a′j . After we have examined all the

elements, a new anchor a′j is introduced to potentially split the

original charging set while their joint coverage of nodes remains

the same.

TABLE IV
POST-OPTIMIZATION ALGORITHM ON SENCAR s

Input: Recharge sequence a1, a2, . . . , als for SenCar s,
Set of anchors As, energy demand di of node i, charging
efficiency of j, ηj,i if mobile charger is at i,
moving cost ci,j on edge (i, j),
objective weights w1, w2, charging set Sa for all anchors.
Output: A new recharge tour consists of anchors.
While As 6= ∅
Randomly select an anchor ai ∈ As.

Find node j with max(
1−ηj,ai

ηj,ai

dj), j ∈ Sai
.

Assign j as a new anchor a′
j and ∀k ∈ Sai

.

If
(1−ηk,ai

)

ηk,ai

dk >
(1−η

k,a′

j
)

η
k,a′

j

dk,

Sa′

i
←− Sai

− k, Sa′

j
←− Sa′

j
+ k.

∂fm ←− (cai−1,a
′

i
+ ca′

i
,a′

j
+ ca′

j
,ai+1

)− (cai−1,ai
+ cai,ai+1

).

∂fc ←−
∑

a∈{a′

i
,a′

j
}

∑

k∈Sa

(1−ηk,a)dk
ηk,a

−
∑

k∈ Sai

(1−ηk,ai
)dk

ηk,ai

.

△F ←− w1∂fc + w2∂fm.
If △F < 0 and Eq. (19) holds, insert a′

j into route,
As ←− As − ai.
Else If △F ≥ 0 and Eq. (19) holds. As ←− As − ai.
Else Eq. (19) is violated, Break.
End While

B. Optimize Total Cost

The next step is to calculate whether there would be a reduction

on the total cost F . Denote the changes of moving cost after

introducing a′j by ∂fm and changes of charging cost by ∂fc.
We assume the new sequence (a1, a2, . . . , a

′
i, a

′
j , . . . , als) has the

lowest moving cost so

∂fm = (cai−1,a
′

i
+ ca′

i
,a′

j
+ ca′

j
,ai+1

)− (cai−1,ai
+ cai,ai+1

)

and

∂fc =
∑

a∈{a′

i
,a′

j
}

∑

k∈Sa

(1− ηk,a)dk
ηk,a

−
∑

k∈Sai

(1− ηk,ai
)dk

ηk,ai

Then we see whether △F = w1∂fc + w2∂fm is less than
zero. If yes, it means a reduction of F is accomplished. We can

successfully add new anchor a′j with its charging set Sa′

j
if the

additional recharge and traveling time do not violate the latency

constraint in Eq. (19). Otherwise, we move on to the next anchor.

The algorithm for each SenCar terminates when all the anchors

have been checked or a violation of Eq. (19) occurs. The pseudo-

code for the post-optimization algorithm is shown in Table IV.

We now analyze its time complexity. Since |A| anchors are

generated from the two-step approximation algorithm, we need

to check at most |A| charging sets. Let us define the size of

maximum charging set as |Sm|. Each such iteration requires

searching over charging sets of maximum size |Sm| nodes for

the highest charging cost and possibly re-assigns nodes to the

new anchor. Hence, the time complexity of the post-optimization

algorithm is O(|A||Sm|).

C. An Example of the Algorithm

To see the entire operation of the algorithm more clearly, we

show an example in Fig. 3. Fig. 3(a) demonstrates a snapshot

during the operation of 3 SenCars ready to resolve 80 recharge

requests from nodes with energy demands from 200-1500 J. The

first step is to find anchors which offer the entire coverage from all

energy requests with the minimal charging cost. Fig. 3(b) shows

the results of anchor selection algorithm. 23 anchors are selected

and the largest charging set includes 9 nodes. For clarity, we

only plot the charging set in Fig. 3(b). In Fig. 3(c), a complete
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Fig. 3. Example of the algorithm. (a) SenCars receive a number of energy requests. (b) Find anchors among nodes. (c) Form a complete recharge path through
anchors. (d) Assign recharge route to each SenCar. (e) Inserting an anchor in SenCar 1’s route. (f) Inserting an anchor in SenCar 2’s route.

recharge route is found through all the anchors starting from the

base station using the Christofides algorithm [24]. In Fig. 3(d),

the complete recharge path is split into 3 different routes and each

SenCar is assigned a route. Up to this point, SenCars can fulfill

all the energy request by stopping at anchor locations and charge

nodes in multi-hops.

To further reduce the system cost, we conduct post-

optimization procedures for each SenCar. For demonstration

purposes, we use weights w1 = 1, w2 = 3 to evaluate any

improvement by inserting an anchor and perform an iteration for

all 3 SenCars. A random anchor with its charging set is selected

for evaluation in each recharge route. We calculate the value of

△F to see whether there is further saving in the system cost. Our

algorithm yields △F1 = −496 J for SenCar 1, △F2 = −490 J

for SenCar 2 and △F3 = 130 J for SenCar 3. Since △F1,△F2

for SenCar 1 and 2 are less than zero, inserting anchors at the

locations shown in Fig. 3(e) has further reductions in system cost.

On the other hand, since △F3 for SenCar 3 is larger than zero,

there would be a slight increase of the total cost so we should

not insert the anchor at the picked set. For clarity, we have shown

two successful cases of anchor insertion in Fig. 3(f) for SenCars

1 and 2. The post-optimization process ends after each SenCar

has examined all its charging sets for further improvement.

VI. PERFORMANCE EVALUATIONS

We have developed a discrete-event simulator to evaluate the

performance of multi-hop wireless charging (denoted as “MH”)

and compared it with the conventional scheme where SenCars

recharge a single node each time [1]–[4] (denoted as “SN”). We

distribute 500 sensor nodes uniformly randomly in a circular field

with radius Rc = 25m. The transmission distance and sensing

range are dr = Rs = 5m. Ne = 5 events appear in the field

independently randomly. Each time slot is 1 min. Nodes generate

packets at an average rate of λ = 3 pkt/min following Poisson

distribution. We use Dijkstra’s shortest path routing algorithm to

direct packets to their destinations and set the data collection hop

l to 2, recharge time threshold Td to 900 mins.

Once a node’s energy falls below the threshold ratio β = 0.5 to

the total capacity, it sends a recharge request to SenCars. We use

an AAA NiMH battery of 780 mAh capacity working at 1.5 V.

Recharge time is modeled from [17] with a maximum at 78 mins.

The MH charging efficiency threshold is τ = 0.3; any node with

smaller charging efficiency will not receive any energy. All the

SenCars and sensors have identical coils with nt = 300 rounds

and rs = 10 cm. Wireless charging efficiencies are calculated

using the procedures in Section II-B. Each SenCar is equipped

with one 4 Ah battery pack of 12V and moves at 1 m/s (es = 48
J/m). The simulation is set to run for 6 months’ time.

A. Number of Nonfunctional Nodes

We now demonstrate the advantage of MH by comparing the

number of nonfunctional nodes with SN. Once a node depletes

its battery and no SenCar has arrived yet, it is nonfunctional until

being recharged. Fig. 4(a) compares the number of nonfunctional

nodes when N = 500. To keep nonfunctional nodes within 5%,

at least 5 SenCars are needed for SN. In contrast, for MH, only

1 SenCar is needed and 2 SenCars can almost eliminate the

chances of battery depletion over the entire operations. The surge

of nonfunctional nodes around 10-15 days for SN is because the

recharge requests have temporarily exceeded SenCars’ capability.

As the network reaches equilibrium, the curves decline gradually.

However, this phenomenon does not appear with MH which

shows better robustness even with fewer SenCars. Recall from

Eq. (8), our calculation yields m = 1.06 which matches our

observation here that one SenCar can almost satisfy all the energy

requests and two SenCars can maintain nonfunctional nodes close

to zero.

To see the scalability improvement more clearly, we have

conducted another evaluation where we set the number of SenCars

m = 2 and the number of nodes N = 300 for SN to provide
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Fig. 4. Comparison on the number of nonfunctional nodes. (a) Performance
comparison when N = 500. (b) Scalability improvement when m = 2.

a baseline and increase N for MH until the nonfunctional

percentage rises above 5% (Fig. 4(b)). As we can see, with the

same number of SenCars, MH can serve up to 900 nodes (with

nonfunctional nodes < 4%), an increase of 3 folds to that of SN.

B. Energy Consumption vs. Replenishment

We evaluate the amounts of energy consumption and replen-

ishment and validate the accuracies of our theoretical model. To

better exhibit the gaps between curves, we plot the results for

60 days. Fig. 5(a) depicts energy consumption and replenishment

curves for the theoretical, simulation results of MH, m = 1.

For the theoretical consumption curve, we delineate the mean

values with ranges representing standard deviations from the

means. For theoretical replenishment curve, we use the slowest

charging rate for the battery [17] as a base and a faster rate

corresponds to a jump-up indicated by the range of the curve.

First, we observe that the replenishment curve is above the energy

consumption curve for both theoretical and simulation results.

This indicates SenCars can put more energy back into the network

than consumed, which is consistent with our results in Fig. 4(a)

(almost all the nodes are functional). Our theoretical analysis

on the energy consumptions can achieve very high estimation

accuracy, as indicated by the small gap between the two curves.

The gap between replenishment curves is wider, which is due

to the idle time between two successive recharge operations.

When the number of SenCars is enough, the recharge requests are

sparse over time and SenCars do not need to perform recharge

continuously, thus the gap in between.

We also evaluate the cumulative energy evolution in Fig.

5(b). To see the gaps and crossing between curves clearly, we

plot the first 30 days of simulation time. For SN, at first, the

energy consumption curve is above the replenishment curve until

around 10 days when it crosses under the replenishment curve.

The crossing marks an important moment as some nodes have

depleted their energy and stopped to consume any more energy

when the number of SenCars is not enough (corresponding to

the surge of 20% nonfunctional nodes in Fig. 5(a)). On the

other hand, for MH, the recharge curve is always above the

consumption curve and leaves a much wider gap compared to

SN, implying a much higher recharge capability from MH.

C. Energy Cost and Trade-offs

An interesting issue is to compare the energy cost of MH to

SN and possible trade-off between the two schemes. In Fig. 6,

we evaluate the energy cost needed to maintain the same quality

of service (nonfunctional < 5%). In Fig. 6(a), for MH, we show

energy costs from both node recharging and SenCar traveling, as

well as the sum of them and compare with the total cost of SN,

while varying N from 250-1000. When N = 250, the total cost is

almost equivalent while increasing N results in better efficiency

for MH. This is because when node density is higher, more nodes
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Fig. 6. Comparison of energy cost on SenCars to maintain nonfunctional nodes
under 5%. (a) es = 48 J/m. (b) es = 24 to 96 J/m.

can be recharged simultaneously without the hassle to travel to

them one by one. If multi-hop charging cost is much less than

moving cost es, it is more cost-effective to use MH.

To visualize the trade-offs between MH and SN, we adjust the

moving cost es from 24-96 J/m in Fig. 6(b) which represents

different energy efficiencies of the SenCar’s battery and motors.

For N = 250, a trade-off point around 46 J/m is observed. When

es < 46 J/m, SN is more cost-effective. Similar result is observed

for N = 500 where the trade-off point is around 30 J/m. These

results indicate that if energy charging cost can be compensated

by moving shorter distances, MH would have less total cost.

Based on these results, network administrator can decide which

scheme to use given the system parameters.

D. Packet Latency and Lengths of Service Interruptions

For successful and timely packet delivery, all the nodes on

the routing paths should be functional. If a node becomes non-

functional on a routing path, its upstream node buffers packets

until the routing path is recovered by SenCars. Table V reports

average latencies for both time-sensitive (TS) and time-insensitive

(TI) packets. We can see MH has much shorter latency than SN

for both TS and TI packets because of much lower fractions

of nonfunctional nodes during the operations. Once packets are

generated, they can be immediately routed to the destination with

less chance of experiencing buffering delays.

The time duration while a node is in nonfunctional status

greatly impacts the network operation. Such nodes are not able

to sense the environment and may miss important events, con-

stituting service interruptions. Fig. 7 shows the percentage of

TABLE V
AVERAGE PACKET LATENCIES (MINS)

TS(SN) TI(SN) TS(MH) TI(MH)
m = 1 692 669 6.24 440
m = 2 545 369 6.17 228
m = 3 395 249 6.26 162
m = 4 246 267 6.21 128
m = 5 159 265 5.81 111
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Fig. 7. Comparison of nonfunctional nodes’ durations N = 500, m = 2. (a)
SN. (b) MH.

nonfunctional durations to the entire simulation time. For fair

comparison, we set N = 500 and m = 2 for both cases. SN

results a maximum of 74% time in nonfunctional status with the

average over 40% widely spreading on the entire field. In sharp

contrast, MH has the maximum of only 8% with an average

below 3%. This shows that MH has significantly less service

interruptions than SN.

VII. DISCUSSIONS

In practice, the effectiveness of multi-hop wireless charging

could be affected by node density and topology. For a sparse

network, it is possible a node has no immediate neighbors to

relay energy. In this case, our scheme still works, but reduces

to a single node recharge method. In reality, nodes are usually

deployed at densities much higher than needed for monitoring,

which extends lifetime and improves robustness. Topology control

mechanisms keep only a small set of nodes working while the rest

sleeping to extend network lifetime; a sleeping node can wake

up to replace a nonfunctional neighbor to avoid losing sensing

coverage. Such high density deployment presents opportunities

to apply our multi-hop recharging method: all nodes in certain

recharging radius can be waken up to receive energy, and most

of them would return to sleep after recharge. How to coordinate

duty cycles and recharge schedules is an important issue we plan

to investigate next. For sparse networks with low node density,

we aim to study how to place more nodes at strategic positions

for relaying energy in future.

Another practical challenge is that the node topology may cause

misalignment of sensor coils and degrade charging efficiency.

Fortunately, recent research using coil arrays provides position-

free solutions to the misalignment problem and it is found that

charging efficiency increases from 4.8% to 64% [28]. Another

option is to use mechanisms similar to “sliding antennas” [29] to

fine tune and align the orientations of coils on demand.

VIII. CONCLUSIONS

In this paper, we employ resonant repeaters to improve the

efficiency and scalability of recharge in WRSNs. We present

detailed procedures to calculate multi-hop wireless charging

efficiency based on laws in physics and electronics that have

been overlooked by previous studies. We introduce a hybrid

data collection strategy to achieve a balance between routing

cost and data latency, and establish a mathematical model to

estimate scalability improvement and the number of SenCars.

We formulate the recharge scheduling problem into a multi-

objective optimization problem, which is NP-hard. To achieve

low-complexity, we propose a two-step approximation algorithm

with bounded ratio for each objective followed by a post-

optimization algorithm to further reduce the system cost. Finally,

we evaluate the proposed framework by extensive simulations

and compare with previous works. The results reveal much better

network scalability and performance of our algorithm, and also

validate our theoretical analysis.
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