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Abstract—User authentication on smartphones is the key to
many applications, which must satisfy both security and conve-
nience. We propose a multi-modal face authentication system,
which pushes the limit of state-of-the-art image based face
recognition solutions by incorporating a new dimension of sensing
modality – acoustics. It actively emits almost inaudible acoustic
signals from the earpiece speaker to “illuminate” the user’s
face and extracts features from the echoes using a customized
convolutional neural network, which are fused with sophisticated
visual features extracted from state-of-the-art face recognition
models, for secure face authentication. Because the echo features
depend on 3D facial geometries and material, our multi-modal
design is not easily spoofed by images or videos like image
based face recognition systems. It does not require any special
sensors thus eliminating the extra costs in solutions like FaceID.
Experiments show that our design achieves comparable face
recognition performance to the state-of-the-art image based face
authentication, while able to block image/video spoofing.

I. INTRODUCTION

With ubiquitous access to the Internet via mobile devices,

user authentication on smartphones has drawn much attention

due to the plethora of daily Apps, such as social networks,

shopping and banking [1, 2]. Traditional PIN number re-

quires the user to remember/manage the corresponding PIN

number/password for each account, which is inconvenient.

Biometric based solutions are preferred due to their uniqueness

and persistence for human subjects, while they suffer from

security issues. For instance, face recognition based authen-

tication can be easily spoofed by images or videos of the

user [3]. Authentication of iris [4] and fingerprint [5], and the

latest effort, Apple’s FaceID [6] using an infrared depth sensor

to sense the 3D shape of the face, achieve high security. But

they all require extra special sensors and have constraints on

deployment due to the limited screen space on smartphones.

We seek to develop an alternative solution using existing

sensors for user authentication with secure and convenient user

experience.

In this paper, we propose a multi-modal user authentication

system, which leverages both acoustic and visual features for

secure and convenient face authentication, without the need

of any special sensors. As shown in Figure 1, it combines

user’s facial features of both acoustic and vision extracted

from pre-trained Convolutional Neural Networks (CNNs), and

jointly trains a classification model that describes the user’s

face. Similar to FaceID, our facial features depend on 3D

facial geometries, thus it is resilient to images/videos spoofing.
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Fig. 1. The smartphone actively emits sound signal towards the user’s face,
and collects image and echo data for authentication. Sophisticated visual
features from face recognition models and acoustic features extracted from a
customized CNN are jointly used for the final classification.

It saves efforts of direct touch or managing passwords, thus

avoiding the usability issues such as wet fingers that pose

difficulties to fingerprint sensors and management overhead

to PIN numbers.

To achieve resilient, secure and easy-to-use authentication

using acoustic and vision, we must address the following two

major challenges: i) echo signals are highly sensitive to the

relative position between the user’s face and the device (i.e.,

pose), which makes it extremely hard to extract reliable pose-

invariant features for robust authentication; ii) sophisticated

visual features are extracted using state-of-the-art face recog-

nition model, which is not suitable for mobile devices.

We make the following contributions in this work:

• We propose a novel face authentication approach, which

pushes the limit of existing image based face authentica-

tion solutions by incorporating both sophisticated visual

features with acoustic sensing on smartphones.

• We design an end-to-end, distributed machine learning

pipeline, which extracts reliable acoustic features on the

mobile device using neural networks and offloads vision

feature extraction to a server machine, thus making real-

time recognition possible given the limited computational

resources on mobile devices.

• We build a prototype, conduct extensive experiments and

find that our solution inherits the advantages of face

recognition capability as the state-of-the-art image based

solutions, while it is resilient to images/video spoofing

attacks. It achieves 99.96% precision and 88.84% recall

in the tests of 10 participants.

To the best of our knowledge, this work is the first attempt

leveraging two sophisticated features both extracted from deep
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Fig. 2. The system takes both image and acoustic echoes as input, and
extracts features using two pre-trained neural networks, which are fused for
classification using SVM.

neural networks for smartphone user authentication, demon-

strating robust performance without requiring any additional

special sensor.

II. OVERVIEW

Considering the limitations of existing solutions, we aim to

build a secure, convenient, and resilient multi-modal authen-

tication system that is available to most existing smartphones

without requiring any special sensors. By integrating the

acoustic features extracted from our customized CNN with the

sophisticated visual features, we believe such “free” acoustic-

aided authentication will play an important role in mobile au-

thentication developments. Figure 2 shows the overall design

of our approach, which takes a joint biometric representation

for user authentication, combining acoustic sensing and facial

feature extraction. For authentication, the user just needs to

hold the smartphone in front of the face for facial feature

detection and acoustic sensing, and thereby the extracted

representations are fed into the trained SVM classifier for final

authentication.

III. SYSTEM DESIGN

Our system design has three major components: acoustic

feature extraction, visual feature extraction, and multi-modal

authentication.

A. Acoustic Feature Extraction

1) Sensing Hardware Selection: The earpiece speaker and

the top microphone are selected as the acoustic sensing

hardware combination, since it is a highly standard design

across most smartphones. Besides, they are co-located with

the frontal camera, thus causing less alignment problem with

visual sensing.

2) Acoustic Signal Design: We choose a linear increasing

frequency chirp (FMCW) as our base signal design due to

its capability of distance measurement sensing. The linear

increasing frequencies from 16 - 22KHz is selected based on

our survey and experiments. To achieve higher SNR of echoes,

a short signal length is set to avoid self-interference from the

speaker, and a Hanning window [7] is applied to reshape the

pulse envelop. The designed signal is almost inaudible to most

users.

Fig. 3. Sample recording segment of a received signal after noise removal.

3) Acoustic Signal Processing: Before we can feed acoustic

signal into the CNN for feature extraction, we need to remove

background noise and segment out the echoes from the face

area.

Background Noise Removal. The received raw signal goes

through a 16 - 22KHz Butterworth band-pass filter to remove

background noises, such that weak echoes from human faces

will not be overwhelmed by the noise. A sample recording

segment of a received signal after noise removal is shown

in Figure 3. The direct path segment is the emitting signal

traveling from speaker to the microphone directly, which

ideally should be a copy of the emitting signal and has the

highest amplitude. The major echo corresponds to the mix of

echoes from the major surfaces (e.g., cheek, forehead) of the

face. The face region echoes include all these echoes, capturing

the full 3D geometry of the face.

Signal Segmentation. We take two steps to extract the face

region segment. Firstly, the direct path segment in raw record-

ings is located based on the peak detection method. Then we

leverage cross-correlation to locate the major echo thus face

region segment after the direct path segment. We follow the

similar approach used in our previous work EchoPrint [8], and

segment the echoes from face regions. From our experiments,

occasional offsets of direct path signal still happen after cross-

correlation, due to ambiguities from comparable peak values

in the cross-correlation result. Due to the hardware (speaker/

microphone) imperfection, the received sound signal is usually

slightly different from the designed emitting signal. To get an

accurate “template” signal for cross-correlation, we perform

emitting and recording in a quiet environment only once when

the user registers, so that the direct path signal can be reliably

detected and saved as a calibrated template for future cross-

correlation in the authentication process.

Next, we use the similar approach for locating the major

echo. However, human face echoes can be so weak that clutters

nearby can have even stronger amplitudes. This makes the es-

timation unstable and leads to occasional location “jumping”.

We leverage the distance measured from vision and narrow

down the search region of the major face echo, as the actual

distance between phone and face can be estimated roughly but

robustly from vision. For example, if the phone is closer to

the face, then landmarks such as two outer corners of eyes are

getting more apart on the image. By leveraging this vision-

aided acoustic echo finding, we are able to reliably segment

the major echo from the face. Since the depth of human face



Fig. 4. Illustration of FMCW.

is limited, we extend 10 sample points before and after the

major echo segment to cover the whole face region (allowing

a depth range of ∼ 7cm), which are later used as inputs for

authentication.

FMCW Transformation. Since the face region echoes are

a spatial and temporal combination of individual echoes, it is

challenging to isolate individual echoes in time domain due

to self-interference and noise. To measure the propagating

distance of each echo, we adopt the Frequency-Modulated

Continuous Wave (FMCW) technique [9] used in radars.

Traditionally, the transmitter emits continuous chirp signals

with linearly increasing frequency, from fmin to fmax. As

Figure 4 shows, the frequency shift Δf between the received

signal and the emitted signal is proportional to the elapsed

time Δt, thus the relative distance given the sound wave

propagation speed. The frequency shift Δf can be estimated

by comparing the frequency of the echo signal to that of

a reference signal using a technique called signal mixing.

Therefore, finding Δf gives the distance (i.e., Δf multiplying

a constant coefficient).

4) CNN Feature Extraction: The spectrogram of the seg-

mented face region echoes after FMCW signal mixing is

used as input for CNN training. We leverage the same CNN

architecture as used in our previous work [8]. To use the pre-

trained CNN as feature extractor, the last layer is removed so

that we get a 128-dimensional vector as acoustic features.

B. Visual Feature Extraction

Getting a low-dimensional representation is crucial for

efficient classification on mobile devices where the resource is

limited. As the intrapersonal image variations such as angles,

distances and even facial expressions can cause difficulty in

classification, we adjust and normalize the face before the

actual feature extraction.

Figure 5, shows the four stages to pre-process the image

input for training the face representation neural network.

On the mobile device, we get the aligned face image input

once the App detects there appears the face in the red box

while the red box stays in between the two green boxes as

shown in Figure 6. We can drastically reduce the computation

effort for further image processing with the alignment by

the first stage. In the second stage, we aim to locate where

the eyes, nose and lips are. To mitigate the constraints from

illumination conditions, we leverage a pre-trained detector

based on Histogram of Oriented Gradients [10] to layout the

face landmarks. Next, we must consider the case that the

DetectInput Transform Crop

Image Pre-process

Feature Learning128D Representation

Vision Feature Extraction

Fig. 5. Image pre-processing and visual feature extraction.

relative angle of the user’s face may differ for each sample.

To make it easier for facial recognition, thus authentication,

we project all the face landmarks to our predefined positions

using affine transformations, which have the expression shown

the Equation 1:

T = A2×2 ·
[
x
y

]
+B2×1 = M2×3 ·

[
x, y, 1

]T
(1)

M2×3 =
[
A2×2 B2×1

]
where M is obtained based on the predefined landmark

positions and the positions of detected landmarks in raw image

inputs. The affine transformation provides a derived affine map

for every pixel, such that no matter in what angle the raw

image is taken, we can achieve a well adjusted and normalized

image input for training. Obtaining the image with landmarks

of known positions, we can crop the picture to have compact

image thus further reducing the complexity in training.

Now that the reduced size of the normalized input space is

obtained, we can have the deep convolutional network with

less parameters to be trained to achieve a desirable low-

dimensional representation, which can generalize well to faces

that are new to the neural network. We achieve this goal by

taking advantage of OpenFace’s neural network[11], which is

a reduced version of nn4 proposed by Google’s FaceNet[12].

The network is trained by using a combination of classification

and triplet loss, which minimizes the distance between faces

of the same identity and enforces a margin between different

identities. After training, we leverage the pre-trained model

as a feature extractor to map the face image input to a 128-

dimensional vector, in which faces from the same identity

should be close and form well separated clusters, such that they

can be easily recognized/classified. And the extracted vision

feature later will be combined with acoustic features together

to form a joint embedding, which is a generic representation

for anybody’s face, for classification (i.e., final authentication).

Instead of continuously training the deep neural network

during the whole life of the face authentication application,

we only need to update the classifiers (e.g., One-class SVM

in our design) for the final authentication, and this is more

cost efficient and practical for computing on mobile devices.

C. Authentication Model

We realize multi-modal authentication, fuse the acoustic

and visual features as a joint description of a particular
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Fig. 6. Prototype user interface.

user, and train a one-class SVM, which is an unsupervised

algorithm that learns a decision function for novelty detection:

classifying new data as similar or different to the training set,

based on the training data.

IV. IMPLEMENTATION

In the current stage, we offload the image feature extraction

to a server to lower the computation complexity on the mobile.

Apart from this, the face tracking, facial landmark detection,

acoustic sensing and model inferences are running on the

mobile. Figure 6 shows the user interface of our prototype

on Android, where the acoustic data would be collected only

when the user face is aligned within the valid area, which

implicitly mitigates the impact of the smartphone’s location

variations on the acoustic signal. It is the same as the prototype

we developed in [8], however the underlying implementation is

different: this work offloads image data to a server for more

sophisticated visual feature recognition, and combines with

acoustic features locally extracted for final authentication. In

an alternative implementation of our design, the sophisticated

visual feature extraction is still portable to mobile devices as

the computation power of mobile devices nowadays grows

drastically and some light facial feature encoders are also

available. Therefore, issues of network connection or privacy

would be minimized.

V. EVALUATION

A. Data Collection

For acoustic signal feature extraction, we leverage the

pre-trained CNN model in our previous work EchoPrint [8]

removing the last layer. We use OpenFace’s model as the

vision feature extractor, and it was trained based on triplet
loss [11], which directly serves the goal of clustering, thus

recognition and verification. Hereby, both acoustic and vision

representations are 128-dimensional vectors. We invited 10

volunteers whose data are not used for the acoustic training.

For each one of them, a ∼ 2mins acoustic data and 20 image

samples are recorded for evaluation. These data are collected

in uncontrolled environments where noise and lighting condi-

tions may vary. The total acoustic samples count is 13806.

Since the image data capturing is slower, we populate the

Fig. 7. Elapsed time and size of extracted features for training one-class SVM
classifiers using acoustic, vision and joint features.

image samples by interpolating images using the neighbor

image to match the number of the acoustic samples as the

visual features are relatively stable over a short time period.

We also have 5 non-human classes: printed/displayed human

faces on different materials such as paper, desktop monitor,

photo on paper box, wall and a marble sculpture.

B. User Authentication Accuracy

To better evaluate the performance, we introduce precision,

recall, F-score and balanced accuracy (BAC) as metrics. Pre-

cision is denoted as P = TP
TP+FP , and a high precision means

the unauthorized user is seldom passed. Recall is denoted as

R = TP
TP+FN , and a high recall means the authorized user

is seldom denied. However, precision and recall alone can be

misleading when the class distribution is imbalanced, whereby

F-score and balanced accuracy (BAC) are introduced as both

are insensitive to the class distribution. F -score = 2 P ·R
P+R , is

the harmonic mean of precision and recall with a best value

of 1 and worst value of 0. BAC = 1
2 · (TPR + TNR),

is the average of true positive rate (TPR = TP
TP+FN ) and

true negative rate (TNR = TN
TN+FP ). A BAC of 1 means no

false positive (i.e., successful attack) or false negative (i.e.,

denied access of legitimate users). For better convenience, we

want to achieve lower false negative rate (FNR = FN
FN+TP ),

thus authenticated users can easily pass the verification; mean-

while, we want to achieve lower false positive rate (FPR =
FP

TN+FP ), thus unauthenticated users have little chance to pass

the verification. Higher BAC hereby is desired.

To train the authentication model and evaluate the perfor-

mance, we shuffle and split the collected data into two parts,

80% for training and 20% for testing. From Figure 7, we note

that the elapsed time for training SVM with vision features

is lower than that with acoustic features, even with the same

amount of features. This is because the larger margin between

different classes, the shorter time for training SVM with

the same regularization parameter C, and the visual feature

extractor is trained based on triplet loss [12], which encourages

clustering representations of different identities.

To analyze the impact of acoustic, visual and the com-

bination of both on the overall authentication performance,

we compare the above performance metrics using individual

features and the joint features. For each user, we use the



Fig. 8. The precision, recall, f-score and BAC of one-class SVM model using
acoustic, vision and joint features.

TABLE I
MEAN/MEDIAN AUTHENTICATION ACCURACY OF NEW USERS WITH

VISION, ACOUSTIC AND JOINT FEATURES.

Acoustic Vision Joint
Precision (%) 98.62 / 100.0 100.0 / 100.0 99.96 / 100.0

Recall (%) 89.83 / 89.56 87.98 / 90.46 88.84 / 88.63
F-score (%) 93.15 / 93.21 93.46 / 94.99 94.07 / 93.97

BAC (%) 94.15 / 94.10 93.99 / 95.23 94.42 / 94.32

positive samples in its test set as positive testing samples

and use all the data from other users as negative samples,

trying to attack the model. Figure 8 shows the results. As

we can see, leveraging acoustic features only, the precision

is above 90% with large variances, which is inferior to using

visual feature or the joint feature. However, the recall and F-

score are significantly better compared to visual features, and

slightly better than the joint features. This is because 1) when

registering new users, the number of vision samples is limited;

2) when verifying the authentication, joint features examine

both modalities in order to produce a positive prediction,

which brings down the recall slightly. Table I shows the

authentication results of new users. Thanks to the sophisticated

visual features, the precision of joint features is better than

pure acoustic features, demonstrating higher security. Note

that, the results are based on the data collected from real

human subjects, however the performance of the vision based

method would deteriorate in the presence of image spoofing

attacks, where the joint feature method can outperform the

others. In our extensive experiments, we even pass a twin

test, i.e., able to distinguish twin sisters from each other using

the joint features. Since we only test one pair of twins as a

preliminary evaluation, more experiments and analysis will be

conducted in our future work. Next, we evaluate the capability

of leveraging different features for image/video anti-spoofing.

C. Image/Video Spoofing Attacks.

Anti-spoofing capability, especially image/video spoofing, is

of great importance for face authentication systems. We take

photos of the participants, and leverages photos (printed on

paper, or displayed on electronic devices such as smartphones

or tablets) to attack the authentication model. As expected,

these attacks pass pure image based face recognition solu-

tions [11] easily. More advanced vision solutions incorporate

liveness detection, for example, requiring eye blinks when

TABLE II
MEAN/MAX RESOURCE CONSUMPTION.

Device Memory (MB) CPU (ms)
S8 27.0 / 51.5 6.54 / 31.25
P9 32.5 / 61.3 8.37 / 27.63

the user is doing authentication. These methods require active

interaction from the users and can also be spoofed by recorded

videos. Leveraging both acoustic and visual features, our

design shows the capability of anti-spoofing as no successful

attacks are observed. This is not surprising: such objects create

significantly different acoustic features compared to that of

human faces. However, we admit that large scale experiments

are needed to verify the robustness of our system against

spoofing attacks in future work.

D. Impact of Background Noise.

It is necessary to investigate the impact of background

noise on the performance when acoustic sensing is used.

We collect data samples under background noise in multiple

environments (noisy laboratory and crowded classroom with

people talking and walking by). No obvious performance

degradation is observed, which demonstrates the robustness

against background noise in our daily scenarios.

E. Resource Consumption.

We evaluate memory, CPU usage using the Android Studio

IDE Profiler tool, and power consumption using Qualcomm’s

Trepn Profiler tool [13] on our test device. Table II shows the

resource consumption on two testing devices, Samsung Galaxy

S9 and Huawei P9 smartphones. The memory consumption

has an average ∼ 30MB and maximum ∼ 50 − 60MB,

which appears when CNN feature extraction using tensorflow

inference is running. The average amount of time for the

CPU to complete all the machine learning inferences is low

on all phones (6.5 ∼ 8.5ms). The maximum CPU time

is around ∼ 30ms, still very low. Compared with resource

consumption evaluated in EchoPrint [8], our latest design

leveraging sophisticated visual features only requires slightly

more computation resource. This is because of the heaviest

computation task – sophisticated visual feature extraction – is

offloaded to the server. The image data is ∼ 1.4MB for each

test. Depending on the network quality, the delay time varies.

However, unless the wireless networking is highly congested,

the delay should be acceptable for most use cases.

VI. RELATED WORK

User Authentication. Personal Identification Number (PIN)

is widely used due to simplicity, however it is easily exposed to

someone close by or forgotten by the user. Speech recognition

and vision based face recognition both suffer the replay attack

where the voice/image/video is recorded. Fingerprint sensors

have achieved great security and convenience. However the

sensor takes a lot of precious space, and it is proven susceptible

to attacks [5]. Apple’s FaceID [6] uses special TrueDepth

sensors, bringing extra hardware costs and requiring significant



design changes. A similar approach, EchoPrint [8] combines

acoustic features and coordinates of a small set of facial

landmarks for authentication using existing sensors. It does not

utilize sophisticated 2D visual features, which should be incor-

porated for better performance. Unlike all the above solutions,

our multi-modal solution is the first to leverage sophisticated

acoustic-visual joint embeddings for user authentication.

Acoustic-based Face Recognition. Acoustics has been

used for face recognition in some prior work [14–16]. I.

E. Dror et al. [15] recognize five human faces with an

accuracy over 96% using special ultrasonic sensors. K. Kal-

gaonkar et al. [16] propose a sensing mechanism based on

the Doppler effect to recognize talking faces using ultrasound.

K.K. Yoong et al. [14] classify up to 10 still faces with an

accuracy of 99.73% using hand-crafted features from ultra-

sound echo signals. Compared to all the above work using

special ultrasonic sensors which are not available in consumer

electronics, our solution uses commodity smartphone speakers

and microphones, and combine them with sophisticated visual

features from camera for authentication.

Acoustic Sensing on Smartphones. Acoustic sensing is

widely used on mobile platforms for localization, tracking,

vita signal monitoring, etc. EchoTag [17] recognizes different

locations leveraging unique echo frequency responses, a series

of work [18–20] builds indoor floor plans using echo signals,

and BatTracker [21] enables high-precision infrastructure-free

mobile device tracking. ApenaApp [22] monitors the minute

chest and abdomen breathing movements using FMCW [23],

and SonarBeat [24] monitors breathing beat using signal phase

shifts. Compared to them, our solution leverages acoustic

features from deep neural networks and combined them with

sophisticated visual features for user authentication.

VII. CONCLUSION

In this paper, we propose a multi-modal user authentication

solution leveraging both sophisticated acoustic and visual

features from deep neural networks for smartphones, without

requiring any special sensors. Experiment results show that

our multi-modal design has comparable face recognition per-

formance as state-of-the-art 2D image based solutions, while

it is resilient to image/video attacks which is a well known

drawback for 2D image based solutions.
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