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Abstract—The lack of digital floor plans in most buildings
has become a huge obstacle to pervasive indoor location based
services (LBS). Recently there has been quite some research that
leverages various sensing data such as inertial, WiFi and images
from ubiquitous mobile devices (e.g., smartphones) to construct
floor plans at large scale and low costs. Although great efforts
are made to improve the accuracy and robustness against sensing
data errors and noises, the quality of reconstructed maps is still
limited. In this paper, we explore the hidden geometric structure
information of indoor environments, such as collinearity of doors
along hallways, right-angle corners, and polygon/circular shapes
of rooms to optimize floor plans. Such prior knowledge about
building structures provide new spatial relationships among floor
plan elements. Thus we can further improve the quality of
reconstructed maps. Real experiments in two large buildings
show that 90-percentile landmark location errors are reduced
by more than 50% to within 1m, and most orientation errors
are corrected. The overall shape of the map has become much
closer to the ground truth as well.

I. INTRODUCTION

Online digital maps (e.g., Google Maps) has provided great

convenience for location based services (LBS) outdoors such

as finding nearby point-of-interests (POIs) and navigation.

However, for indoor environments where people spend over

80% of time [1], such maps are extremely scarce and most

buildings simply do not have indoor digital maps. This has

become a huge obstacle to pervasive LBS indoors.

Accurate, scalable construction of indoor floor plans at

low costs has become an urgent need. Autonomous robots

equipped with various high precision special sensors (e.g.,

laser rangers [2], depth cameras [3], sonars [4]) can create high

quality maps. However, due to the high manufacturing costs,

operational and logistic obstacles deploying robots in large

quantities, they do not satisfy scalability and costs require-

ments. Recently there has been quite some work [5]–[7] that

crowdsources various sensing data from commodity mobile

devices to achieve scalable and low cost map construction. A

representative one, Jigsaw [6], combines inertial and image

data to produce user trajectories and geometry attributes of

indoor landmarks (e.g., doors, posters on walls). It then fuses

all such information as spatial constraints among elements

(hallways, rooms) to produce complete floor plans.

In this work, we explore a previously ignored dimension

called structure cues, the common structural relationships

among indoor elements, to further improve the quality of

constructed maps. Unlike existing work that derives spatial

constraints from sensor measurements only, we leverage prior

structural knowledge about general rules in floor plan lay-

out. In particular, we examine three basic types of structure

cues: collinear wall segments, right-angle corners, and poly-

gon/circular room shapes. They appear regularly in many kinds

of buildings such as offices and provide additional constraints

delineating the locations, orientations, shapes and sizes of

indoor elements. Thus we can further improve the quality of

constructed maps.

We make the following contributions in this work:

• We explore three common structure cues including

collinear wall segments, right-angle corners and poly-

gon/circular rooms. We design three corresponding algo-

rithms for detecting these structures: one density based

clustering algorithm for collinear wall segments, one

threshold based method for right-angle corner detection,

and one to detect polygon/circular rooms using minimum

out-bounding shapes.

• We design an algorithm using majority voting on land-

marks within the same clusters to find the optimal fitting

model for hallways. Compared to traditional regression

methods, it can merge large numbers of landmark samples

in a probabilistic estimation. We also design algorithms

for geometric parameter estimation: One estimates the

starting and ending points of hallway segments based on

user traces and landmark locations, another to find out-

bounding polygon/circular shapes for room representa-

tion.

• We conduct experiments in two large real buildings of

size 80×50m2 and 90×50m2. We find that the 90-

percentile landmark location estimation errors are cut by

more than 50% to within 1m, and orientation errors are

almost all corrected. The overall shapes of maps are also

become much closer to respective ground truth.

The rest of this paper is organized as follows: Section II

presents background of particle filter based landmark mapping,

which is prior work that produces maps. In Section III, we

introduce an overview of the system design for map optimiza-

tion. Section IV presents algorithms for structure detection
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Fig. 1. Common errors in input inaccurate maps for hallways and rooms.

and map optimization. We evaluate the mapping improvement

performance in Section V. The rest sections are related work

and our conclusion.

II. BACKGROUND

We introduce some necessary background of a probabilistic

landmark mapping algorithm using particle filters [8], which

can generate maps that potentially can be improved. Our paper

leverages structure cues to improve such maps, which are

constructed from the probability distribution of attributes (e.g.,

locations, orientations) of landmarks in the form of “particles”

and user traces. Each particle is a sample with a probability

for the complete internal states of a map, including values for

attributes of all landmarks.

The algorithm progressively updates landmark attributes

such as locations/orientations as new measurement data come

in. A poster or door on a wall is a landmark described by

its location, orientation, and lengths of two adjacent wall

segments. Let L = {l1, l2, ..., lN} be the complete set of

landmarks for one particle. Each landmark li is described as

a five dimensional vector:

li = (x, y, φ, wL, wR) ∈ R×R× [0, π)×R×R (1)

where (x, y) are coordinates of its location, φ is its orientation,

wL and wR are lengths of two adjacent wall segments next to

the landmark.

Suppose we have M particles and P = {p1, p2, ...pM} is the

particle set. Each particle pj is represented as {lj1, lj2, ...ljN},

each lji is a landmark estimator that is maintained and updated

during the mapping. In Figure 3(a), each physical landmark

has M samples, each visually represented as a line segment

and a circle to denote its orientation and location.

Combining user traces from inertial data and landmark

samples, the sizes and shapes of hallways and rooms can be

inferred using occupancy grid mapping [6] to form complete

floor plan. However, as landmarks are maintained and updated

individually and probabilistically, samples vary greatly in

accuracy. Thus errors in hallway and room sizes, shapes can

all happen, e.g., non-straight hallways, turns with large angle

errors, and rooms in irregular shapes, as shown in Figure 1.

This paper leverages structure cues to correct such errors for

accurate, complete maps.

Inaccurate Map from 
Prior Work

Structure Detection and 
Optimization

Structure 1:

Collinear Wall 

Segments Structure

Structure 2:

Right-angle Corner 

Structure

Structure 3:

Room Shape Structure

Final 

Floor Plan

User Trac�s

Particles (Landmark 

Distribution)

Fig. 2. Prior work builds map from user traces and particles, which is
inaccurate. Our system takes inaccurate map as input and leverages three
structure cues to optimize final map.

III. SYSTEM OVERVIEW

A floor plan consists of two types of basic elements:

hallways and rooms. Hallways form the overall structure of

map layout. They are inferred from user traces and landmark

samples, and rooms are placed with corresponding landmarks

(e.g., doors) for the final map. This paper focuses on how to

leverage structure cues to improve and optimize hallway/room

layout and shapes, given user traces and landmark estimations

from the particle filter. Figure 2 shows that three structure

detection and optimization techniques take inaccurate input

maps to produce accurate final maps.

We leverage three structure cues for map optimization:

1) Collinear Wall Segments Structure. It includes three steps:

cluster landmark samples into collinear groups belonging to

the same walls based on their orientations and locations;

merge collinear landmark samples to form hallways based on a

majority voting mechanism; combine user traces and landmark

samples to estimate the lengths of hallways.

2) Right-angle Corner Structure. It detects and estimates

angles between intersecting hallways (in our case, the right-

angle corners), and makes global adjustments for hallway

orientation under Manhattan world model [9].

3)Room Shape Structure. It detects common shape patterns

in most indoor environments, e.g., rectangle, polygon or circu-

lar shapes. The fitted shapes are computed to represent rooms

after the detection.

IV. STRUCTURE DETECTION AND OPTIMIZATION

A. STRUCTURE 1: Collinear Wall Segments Structure

Particle filter produces landmark samples as short line

segments (wall segments), and each landmark li has hundreds

of samples as shown in Figure 3(a). We need to cluster these

wall segments into groups belonging to the same walls, then

merge those in each group into single walls and estimate the

location/orientation/lengths of these walls to form hallways.

1) Landmark Clustering
We cluster landmarks into collinear groups using each

landmark’s sample with the highest probability. Based on

measurement evidences, they are supposed to be the ones

closest to the ground truth. Clustering using all samples of

the landmarks is difficult, because each landmark’s samples
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(a) User trace and landmarks
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(b) Line segments merging

Fig. 3. a) long trajectory is user trace, stars are user locations for measure-
ment, short line segments are landmark estimations. b) long line segments are
merged wall segments.

may vary greatly in orientation, thus a dominant orientation

may not exist.

The clustering process has two steps: cluster landmarks

based on similar orientations, then further on different wall-

s, using the highest probability sample for each landmark.

These landmarks belong to parallel walls of parallel hallways.

The second step distinguishes landmark samples on different

parallel walls. DBSCAN [10] is applied for both orientation

and distance clustering. Unlike k-means [11] which needs

to specify the exact number of clusters, it needs only a

threshold and does not require the number of clusters as prior

knowledge. Line segments of the highest probability for each

landmark are clustered into different groups, each represented

by a common orientation estimation θi, which is the mean

of the cluster; within each group, we further cluster the line

segments based on the origin point’s perpendicular distance to

the line, defined as:

d = x cos θi + y sin θi (2)

where (x, y) is the location of landmarks, and we assign the

same orientation value θi for all line segments in the same

collinear group, hence eliminating orientation variations in

samples. Clustering on θ determines which landmarks are

parallel but they can belong to different parallel hallways.

Clustering on d further distinguishes parallel wall segments,

and finally divide landmarks into groups belonging to the same

walls.

Existing work [12] finds a base line at first step and then

group line segments along each base line, Rolf et al. [13] de-

tects locally common directions and then cluster line segments

by collinearity. However they can not be applied directly here.

Because each single landmark has many samples with large

variations in orientations. These methods perform clustering

over all line segments, hence samples of different landmarks

may be mixed together. Thus a dominate orientation does

not necessarily exist, finding a base line or locally common

direction becomes difficult.

2) Landmark Merging
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(a) Each star corresponds to each
line segment

(b) Voting for line segment

Fig. 4. a) shows the polar representations of landmark with in the same
cluster, b) shows the majority voting in 3-D perspective.

We leverage majority voting among each group of collinear

landmarks on the same wall to find the single fitting line as es-

timation of location/orientation of the wall. Within each group,

we compute the orientation θ and distance ρ for all samples of

each landmark, and distribute them on a 2-D grid plane shown

as Figure 4(a). The area with densest points in Figure 4(a)

corresponds to the peak in Figure 4(b) when majority voting

is applied. Each point represents a support sample for a pair

(θ, ρ). We use the orientation and distance represented by the

peak in Figure 4(b) as the polar parameters for the collinear

line with the most supporting samples. This enables us to find

the common structures within all the particles states instead

of using particles with highest probability only.

We do not use common regression methods such as least

square to fit highest probability landmark samples only or the

whole set of landmark samples. Such methods do not minimize

errors unless errors cancel out each other among all landmark

samples. As hundreds of particles are used in the landmark

mapping algorithm, we can assume there must be landmark

samples very close to ground truth. Structure cues give us a

way to find out those “correct” landmark samples, and finally

get the fitting line. Finding the fitting line supported by most

particles is more reasonable because they have the most co-

linear line segments, thus more likely to correspond to ground

truth straight lines.

3) Hallway Length Estimation
In the previous section, landmarks are clustered into walls.

In Figure 3(b), the long line segments represent side walls of

hallways. However they only give orientations but not exact

length estimations. We estimate hallway lengths according to

the following steps, by leveraging the following additional

prior knowledge in a sequential order:

1) Landmarks. Merged hallway should cover the whole

set of landmarks within it, hence a minimum hallway length

can be estimated based on landmark locations and lengths.

However it is far from enough because the wall segments

rarely extend to both ends of a hallway, and in some cases

we may not have any landmarks along a hallway at all (as

shown in Figure 3(b)).

2) Traces. We leverage user walking traces to further adjust

hallway length estimation. User traces indicate the accessible

areas in hallways, hence hallway lengths are extended to

cover the accessible areas that are inferred from traces. One

typical example is the long hallway in Figure 3(b), user trace
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Fig. 5. Different kinds of room reshaping: minimum out-bounding rectan-
gle/circle fitting (a,b), and turning points connection fitting (c,d).

covers longer area than landmarks, hence the hallway length

is extended to cover the user trace.

3) Crossing and Parallelism. Adjacent hallways should be

connected to each other. We use the wall connection algorithm

in Jigsaw [6] to find intersecting points between hallways.

Then we adjust the orientations of walls on both sides of the

same hallway to their mean value to make them parallel.

B. STRUCTURE 2: Right-angle Corner Structure

The limited accuracy and long term drift of gyroscope make

it hard to track the orientation accurately, especially during

turns [14]. A few degrees’ error in angle estimation can cause

large location errors of a long hallway after the turn, thus

the serious error in hallway layout and final map. The way

a user holding the phone is also a main contributor to large

errors. From our experiment experiences, users tend to swing

their hands/arms during walking, causing significant errors in

orientation estimation.

1) Right-angle Corner Detection
Manhattan [9] structured buildings are quite common in

real world. In such buildings, corners are mostly right angled,

such right-angle turns provide opportunities that can be used

for calibration. We compute the angle between each two

intersecting wall segments. A threshold method is used to

detect right-angle corners: if the computed angle is within a

small offset (5◦ in our case) to 90◦, the intersecting corner is

detected and adjusted as right-angle corner.

2) Hallway Orientation Calibration
Based on detected right-angle corners, the algorithm per-

forms adjustments on orientations of the associated hallways

gradually. The orientation of the longest hallway is assumed

to be that of the global coordinate system.The algorithm

rotates hallways around corner intersecting points to make

them parallel to global horizontal or vertical orientations. For

those none right-angle corners, the orientation remains the

same.

C. STRUCTURE 3: Room Shape Structure

We use two techniques for room reshaping: out-bounding

rectangle fitting and turning points connection. After that, each

room is placed to respective hallway using the associated

landmark (i.e., door) location to formulate the final map. We

have three steps for room optimization: room shape detection,

room reshaping, and room arrangement.

1) Room Shape Detection
The prior knowledge of rooms (e.g., rectangle, polygon,

circular) can be leveraged to optimize reconstructed room

shapes. Users walk around the perimeter of each room’s

interior, then trajectories are constructed from inertial data

to infer rough room shapes. However, this simple method

has limitations: user trajectories may be blocked by obstacles

inside rooms, and users cannot walk close to inner walls

exactly. Usually traces tend to be smaller than the actual

size, hence causing false negative estimations. We detect room

shapes as rectangles and circles, which are most common

in indoor environments. The following steps describes the

detailed steps:

1. Generate user trajectories from inertial data to represent

raw room shapes {R1, R2, ...RN}.

2. Minimum bounding box algorithm [15] is used to com-

pute the minimum out-bounding rectangle for each room Ri.

The ratio between raw room size and minimum rectangle size

is denoted as r rec. If r rec > 0.9, which means the shapes

are similar, then the room is classified as rectangle.

3. We use an existing algorithm [16] to compute the smallest

out-bounding circle for the remaining rooms and compute the

size ratio r cir between raw room and out-bounding circle.

Then we use the same threshold to detect circular rooms.

4. For those unclassified rooms, we represent such rooms

with polygons. r rec is used to determine how many edges

are needed to fit the room shape in the next step.

2) Room Reshaping
For rectangle/circular rooms, we use the same minimum

out-bounding rectangle/circle computed in the detection step to

fit the room shape. In this way, room corners and inaccessible

areas can be fully reconstructed, such as Figure 5(a) and 5(b).

For those unclassified rooms, we fit the room shapes by

connecting turning points on the trajectory. We take the

derivative of user walking orientation, and find the peaks of

the absolute values of derivatives and sort them in descending

order. These peaks are defined as turning points. We use

the round down number �4/r rec� to determine how many

turning points are used for fitting. In this case, if r rec > 0.8,

the room will be regarded as rectangle/quadrangle and four

turning points will be used, such as Figure 5(a) and 5(c). If

r rec <= 0.8, it means the shape could be irregular, which

is far from a rectangle. In this case, more turning points are

used to make better fitting, as shown in Figure 5(d).

3) Room Arrangement
We place each reshaped room to the corresponding position

along the hallway, according to the corresponding landmark

location and orientation. Since users start walking a closed

trajectory from the door location, hence room location can

be determined by align door locations to the corresponding

landmark and rotating room to achieve minimum overlap

between room shape and hallway.

V. EXPERIMENTS AND RESULTS

To evaluate the performance of the design, We conduct

experiments on the data set from two indoor environments: a

90×50m2 office and an 80×50m2 lab building, and compare

the inaccurate input maps from prior work. There are 16

and 24 landmarks in office and lab, respectively. The num-

ber of landmarks depends on the complexity of the actual
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Fig. 6. Landmark location and orientation error before and after optimization.

environment. In the particle filter algorithm, 500 particles

are used. Thus we have a total of 16 × 500 = 8000 and

24×500 = 12000 line segments (landmark samples) to cluster

and merge on two buildings. We evaluate the performance

using the following metrics: landmark location and orientation

error, hallway overall shape, and final map overall shape.

A. Landmark Location and Orientation

Landmark location and orientation are the fundamental mea-

surement results for floor plan reconstruction. Wall connection

and room placement rely on the location and orientation of

landmarks, any deviation of landmarks will cause inaccurate

hallway construction and room placement. Although particle

filters can suppress certain noises and errors, its probabilistic

nature means uncertainty will always exist. Besides, as land-

marks are maintained and updated separately, the final land-

marks will not follow internal structure relationships exactly,

such as collinearity.

Figure 6 shows CDFs of landmark location and orientation

errors for two buildings before and after optimization. In Fig-

ure 6(a), orientation errors in office are completely corrected.

This is not surprising because office is Manhattan structured.

The hallways are always perpendicular to each other which

gives us perfect opportunities to correct angle errors. In the

lab, most orientation errors are corrected except one outlier,

which is a false correction of a single landmark in a group

without other landmarks to compensate. Figure 6(b) shows the

landmark location errors are reduced from around 2 meters at

90-percentile to less than 1 meter. The maximum location error

in the lab is reduced from more than 2 meters to around 0.5

meters.

B. Hallway Shape Evaluation

Robust and accurate hallway construction is crucial to final

map quality. We evaluate the hallway shape separately for the

two buildings and compare with the inaccurate input maps.

Figure 7 shows the ground truth, inaccurate input hallways,

and optimized hallways for both buildings. To quantify the

overall shape accuracy, precision, recall and F-score are de-

fined below to measure the similarity to ground truth:

P =
Sre ∩ Sgt

Sre
, R =

Sre ∩ Sgt

Sgt
, F =

2P ·R
P +R

, (3)

where Sre denotes the size of reconstructed map, Sgt that

of its ground truth, and Sre∩Sgt that of the overlapping area.

(a) Lab hallway ground
truth

(b) Lab hallway of inac-
curate input map

(c) Lab hallway with
structure cue optimiza-
tion

(d) Office hallway
ground truth

(e) Office hallway of i-
naccurate input map

(f) Office hallway with
structure cue optimiza-
tion

Fig. 7. Hallway ground truth, inaccurate input hallways and structure cue
optimization results.

A perfectly reconstructed map should have 100% precision,

recall and F-score.

Table I shows the comparison results of input inaccurate

maps and optimized maps for lab and office hallways. For the

lab building, both precision and recall are increased by ∼ 20%,

hence we get a higher F-Score. The main reason is that the

long skewed hallway is calibrated after wall segments merging

and right-angle turn calibration. For the office building, we get

higher precision and F-score while there is a small decrease (∼
2%) in recall. This decrease is caused by false line segments

clustering, hence the hallway in the bottom which has two

segments are merged into one.

TABLE I
SHAPE EVALUATION OF HALLWAY

Precision Recall F-Score
Lab Input 67.44% 54.80% 60.46%

Lab Optimized 84.86% 75.86% 79.93%
Office Input 78.28% 81.75% 79.97%

Office Optimized 85.53% 79.50% 82.40%

C. Overall Map Shape

We evaluate the final map shape after reshaped room

are added to hallways. To make it easier to compare, we

overlay the constructed map onto the ground truth to achieve

the maximum overlap by rotation and translation, which is

shown in Figure 8. We can see obvious improvement in maps

after structure cue optimization: they match the ground truth

much better. Precision, recall and F-score are again used for

evaluating overall shapes and the results are shown in Table II.

We get improvements in precision, recall and F-Score in both

two buildings except a sightly recall decrease (∼ 2.5%) in the

office, which is caused by missed detection of small turn angle

on the right bottom in Figure 8(c). However the final maps are

improved overall, we have up to 4% increase in F-score on

both buildings.

TABLE II
SHAPE EVALUATION OF FLOOR PLANS

Precision Recall F-Score
Lab Input 87.73% 85.51% 86.61%

Lab Optimized 89.27% 92.23% 90.72%
Office Input 75.16% 95.96% 84.30%

Office Optimized 83.72% 93.42% 88.30%



(a) Input inaccurate map for lab (b) Map after structure cue opti-
mization for lab

90×50m

(c) Input inaccurate map for office

90×50m

(d) Map after structure cue opti-
mization for office

Fig. 8. Final maps of two buildings with ground truth overlaid both for
inaccurate input maps and maps after structure cue optimization.

In Figure 8(a), we can see the obvious skew for the long

hallway and the associated rooms. The largest room on the

top right and the one on the bottom right corner have obvious

orientation errors caused by landmark orientation errors. Both

kinds of errors are eliminated with structure cue optimization,

as shown in Figure 8(b). In Figure 8(b), most rooms are

detected as rectangles, which matches the ground truth very

well; a few polygons and irregular shape room are also fitted

closer to ground truth. In Figure 8(d), room shape optimization

results are much better as all the rooms in office building are

rectangles. The final map looks much closer to ground truth.

VI. RELATED WORK

Indoor Floor Plans. Indoor floor plan construction is

becoming an urgent and active research problem. The existing

work has used mobile sensing techniques and crowd-sourcing.

CrowdInside [5] uses inertial data to approximate shapes

of accessible areas. Jigsaw [6] combines vision and mobile

techniques to generate floor plans. Jiang et al. [7] leverage

Wi-Fi signatures to detect room and hallway adjacency, and

combine user trajectories to construct hallways. All the above

work can approximate the rough shapes of actual floor plan.

However, none of them has explored the structure cues for

map optimization.

SLAM. (Simultaneous Localization And Mapping) is a

famous problem in robotics, which refers to constructing a map

of an unknown environment while tracking the robot’s location

on the map. A lot of work has used special hardware such as

laser rangers [2], depth cameras [3], sonars [4], which limit the

applicability and scale. Some recent work [17], [18] has used

sensors in mobile devices but mostly focuses on localization,

not map construction.

VII. CONCLUSION AND FUTURE WORK

In this paper, we explore the structure cues in indoor

environments and leverage such prior information to optimize

floor plans. Results show that structure cues are effective in

improving the shapes/sizes of hallways and rooms for much

improved final maps.

The main limitation of this work is the generality of

structure cues in complex indoor environments, such as big

shopping malls, train stations. They may not have such rich

and obvious structure cues to follow. We believe there exists

more general prior information on their structures, and will

explore different kinds of buildings to further identify new

types of structures cues.
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