
Automatic Construction of Garage Maps for Future
Vehicle Navigation Service

Qian Zhou∗, Fan Ye∗, Xiaoge Wang†, Yuanyuan Yang∗
∗Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA

{qian.zhou, fan.ye, yuanyuan.yang}@stonybrook.edu
†Institute for Cyber-Enabled Research, Michigan State University, East Lansing, MI 48824, USA

wangx147@msu.edu

Abstract—Digital garage maps are the basis for future ve-
hicle navigation services such as smart parking management
that displays the availability of parking spaces. It can direct
drivers to empty ones, avoiding any searching, circulating in
large, complex parking structures. However, such maps are not
currently available, making it impossible to deploy smart parking
management. Conducting manual survey incurs tremendous
amount of human efforts, and cannot scale to large numbers of
garages. In this paper, we propose three algorithms, Sequential
Merging, Points Clustering and Segments Matching that can
automatically construct complete and accurate garage maps using
data crowdsensed from drivers. Upon entering and leaving the
garage, the driver’s smartphone collects inertial data, which are
used to generate the vehicle’s trajectory. Our algorithms fuse
together these trajectories to recreate the size, layout of the
garage. We compare the performance of the three algorithms
using different garages. We find that Points Clustering is robust
to trajectory errors, with F-score above 0.95 for trajectory length
error up to 2 meters, Segments Matching can handle partial
trajectories with arbitrary start/end locations, and it constructs
the same map using trajectories much shorter than those needed
by the other two algorithms.

I. INTRODUCTION

Due to the prevalence of digital maps, detailed navigation
instructions have become standard for vehicles. However,
when one drives into indoor environments, such as large
underground parking lots, the world suddenly turns dark
because no maps exist. Without such maps a lot of future
vehicle services, such as smart parking [1], [2] that can
display available parking spots, and direct drivers to empty
ones, will be impossible. Currently there has been little effort
addressing the problem. Google Indoor Maps [3] have started
to cover indoor buildings, but not specifically for large parking
structures. Some recent researches [4], [5] create algorithms
to construct indoor floor maps using sensing data from mobile
users. However, they are intended for buildings occupied by
humans where richer categories of data (WiFi, images, etc.)
can be leveraged and more flexible human operations are
allowed (e.g., users can move freely and take photos.). Thus,
those techniques are not suitable for the particular garage
environment.

In this paper, we propose a crowdsensing [6] based approach
to reconstruct parking structure maps using mobile data from
drivers’ smartphones. A driver’s phone can record the inertial
data as he drives through the entrance, follows certain paths
and eventually parks the car at a spot. Each driver’s data can
be used to generate a corresponding trajectory. Given enough

numbers of such trajectories, we can assemble these fragments
to construct the complete map of the parking structure.

Such a crowdsensing based approach has several advan-
tages: 1) It gathers data from many drivers who come in
and out of garages every day, thus there is no need to hire
dedicated personnel. 2) It does not require special hardware
infrastructure; the driver’s smartphone can collect the data
needed for trajectories; 3) There is no need for special user
operation. A driver only needs to allow a data recording app
run in the background.

However, creating complete, accurate garage maps from
crowdsensed data is not trivial. First, exactly how to assemble
the fragmented, individual trajectory samples into a complete
parking structure map? Second, the trajectory samples from the
real world always contain inevitable errors and noises. How
can we ensure the robustness such that final maps are accurate?

We propose three algorithms that can automatically con-
struct garage maps from such trajectory samples. The Se-
quential Merging and Points Clustering methods take full,
complete trajectories that start from a common entrance point.
Sequential Merging is the simplest; Points Clustering identi-
fies common turning points in different trajectories by more
advanced clustering. Thus it achieves better accuracy and
robustness. To accommodate incomplete trajectories that may
start from any location in the garage, which can be common
among casual drivers, we design a Segments Matching method
that takes trajectories starting/ending at arbitrary locations.
It leverages the lengths and orientations in segments to fuse
trajectories.

We make the following contributions in this paper: First,
we propose two algorithms that can create garage maps using
trajectories starting from the same entrance point. They handle
cases where enough data are collected to generate complete
trajectories, from entrance to the parking spot. Second, we
propose a third algorithm that can use partial trajectories with
arbitrary starting and ending points. This accommodates more
challenging real world cases where drivers may only collect
incomplete data, thus partial trajectories. Third, we evaluate
the three algorithms systematically under different parking
structures. We find that Points Clustering is more robust to
errors in trajectory with F-score above 0.95 when trajectory
length error is within 2 meters, and Segments Matching can
handle trajectories with arbitrary start/end locations, and it
constructs the same map using trajectories much shorter than
those needed by the other two algorithms. To the best of our

IEEE ICC 2016 - Next-Generation Networking and Internet Symposium

978-1-4799-6664-6/16/$31.00 ©2016 IEEE

knowledge, we are the first to develop algorithms that can
construct garage maps automatically from crowdsensed driver
data.

II. MODELS AND ASSUMPTIONS

We assume that the vehicle’s movement trajectories are
made available to our algorithms. Such trajectories can be con-
structed from inertial and OBD vehicle speed data [7], [8] that
a smartphone can easily collect. Each trajectory is a polygonal
line, made up of multiple segments. From the OBD speed
data, the length of each segment can be computed [9]; the
gyroscope of the phone can tell the turning angle between two
consecutive segments. Thus a trajectory (Figure 1. (a)) can be
presented in the following format: A1, L1, A2, L2, ..., An, Ln,
where n is the number of line segments, Ai the ith angle and
Li the ith length (1 ≤ i ≤ n).

A parking lot can be abstracted as a graph consisting of
vertices and edges, with a vertex corresponding to a turn, or
entrance/exit. Thus the map can be drawn given all vertices’
coordinates and the paths connecting them (Figure 1. (b) and
(c)), which are produced by our algorithms.

The OBD speed measurements are relatively reliable [10],
but some errors in segment length estimations are possible.
The gyroscope can measure the vehicle turning angle quite
accurately [7]. Due to construction code [11], the turning angle
between driving paths in a garage is usually a few limited
candidates (e.g., 90◦, 45◦). Thus the measured angles can be
rectified to the closest candidate values.

(a) a trajectory (b) input set (c) output

Fig. 1. (a) a trajectory represented as: 0◦, 38,−90◦, 20, 90◦, 45, 90◦, 45.
(b) and (c): the input set is 10 trajectory samples from a parking lot, and the
output is the reconstructed map.

The key insight for fusing trajectories into maps is to
identify the overlapping relationship among trajectories. It
imposes a constraint on how one trajectory can be placed
relative to another in a global coordinate system. To support
underground parking lots where GPS signals cannot penetrate,
we assume GPS is available only for the entrance/exit of
the garage, but not inside. Thus a trajectory has at most
one point with known location. For partial trajectories that
start/end inside the garage, no point has known GPS location.
The challenge is how to find enough, reliable overlapping
relationships among trajectories, so that all of them can be
placed correctly relative to each other. We will present three
algorithms that can use full or partial trajectories to form
garage maps.

III. ALGORITHM 1: SEQUENTIAL MERGING

Sequential Merging assumes that all trajectories have the
same starting point - the entrance of the parking lot. It chooses

one trajectory randomly from the input set as the initial map,
merge the remaining trajectories into the map one at a time,
until all of them are processed. Each merging evolves the map
to better completeness.

To merge a trajectory into the current map, we place its
starting point at the common, known entrance, and rotate the
trajectory so the first segment is oriented the same as the
entrance path on the map. For each vertex on the trajectory, if
it is close enough to an existing vertex on the map (e.g., ≤ Tm,
a threshold), it is considered the same point and merged.
Otherwise it is considered a new one and will be added to
the map. Tm can be chosen empirically to be smaller than the
minimum segment length in the parking garage. We finally
set Tm to 15m based on our field trips which find that the
segment length in a real garage is usually above 20m.

A. Steps

1) Build the initial map: Choose one trajectory from the set,
assign coordinates (0, 0) to the starting point, and calculate
the coordinates for every vertex along the trajectory following
their lengths and turning angles.

2) Merge another trajectory: Pick another trajectory, place
its starting point at (0, 0), rotate it around (0, 0) such that the
first segment orients the same as the entrance path into the
garage. Calculate the coordinates for every vertex along the
trajectory.

3) For each vertex Vt at (xt, yt) in this trajectory, find which
vertex Vm at (xm, ym) in current map is closest. If the distance
is below Tm, merge Vt and Vm into one new vertex whose
coordinates are:

x′
m =

xt + xm ∗ w
1 + w

y′m =
yt + ym ∗ w

1 + w

where w is the number of the vertices which have been merged
to get the coordinates of Vm. If the distance is above Tm, Vt

is considered a new vertex, and added to the map.

4) Repeat 2), 3) until all trajectories are merged.

IV. ALGORITHM 2: POINTS CLUSTERING

Sequential Merging incorporates trajectories one at a time
and reconstructs the map progressively. One critical limitation
is that its performance depends on the merging order. If a
low-quality trajectory is picked first, it can influence subse-
quent merging adversely. We propose a second algorithm that
eliminates this drawback.

Points Clustering also assumes all trajectories share the
same starting point. However, it merges all trajectories si-
multaneously. All trajectories are placed to start at the same
origin and their entrance path segments oriented at the same
angle. Vertices corresponding to the same turning point appear
as clusters. We use k-means algorithm [12] to compute the
centers of those clusters and use them as vertices in the map.

The original k-means algorithm requires the right k value
(the number of clusters) as an input for good performance.
However, k is initially unknown. Two mistakes can happen
when k is incorrect: “over” estimation when one cluster is

incorrectly recognized as two or more, “under” estimation
vice versa. Furthermore, k-means’ clustering effect is also
affected by the distribution of cluster centers, which are
usually randomly picked and always have some randomness.
Thus “under” and “over” estimations can still happen even
with the right k (Fig. 2. (a)).

(a) (b)

Fig. 2. (a) “under” or “over” estimations can still happen when k is correct. (b)
“under” estimation leads to an abnormally large p2c while “over” estimation
leads to an abnormally small c2c.

We use a search strategy to find the right k: first increase k
to get rid of all “under” estimations, then decrease to eliminate
“over” estimations. We detect “under” and “over” estimations
using two values (Fig. 2. (b)): 1) p2c, the average distance
between a cluster center and all points within that cluster.
We compute p2c of all clusters, and see if the maximum
one is abnormally large. Two or more clusters incorrectly
recognized as one will cause a “cluster” spanning wide area,
thus large p2c. 2) c2c, the distance between a cluster center
and the nearest other center. We compute all pairwise c2c
values and see if the minimum one is abnormally small. One
cluster incorrectly recognized as two or more will cause “tiny”
clusters extremely close to each other, thus small c2c.

A. Steps

1) Place all trajectories from the same starting point (0, 0)
and rotate them so the first segments are oriented the same.
Pick an initial value of k of the average number of vertices
in trajectories. Since the algorithm adjusts k, the initial value
does not impact the final result.

2) Eliminate all “under” estimations. Uses k-means [12] to
identify k clusters and compute coordinates of their centers. To
generate better initial cluster centers, k-means++ [13] is used
for the very first time because it tends to choose k points far
away from each other, while k-means picks them randomly and
may result in clusters too close to each other. Then calculate
p2c for all clusters. If the maximum p2c is above a threshold
d1, an “under” estimation is thought to have happened, and
one random position in that cluster is added as a new center.
Increase k by 1, call k-means using the new k value and cluster
center set as input. Repeat this step until the maximum p2c is
less than d1.

3) Eliminate all “over” estimations. Call k-means and com-
pute c2c for all pairwise cluster centers. If the minimum c2c
is below a threshold d2, an “over” estimation is thought to
have happened. One of the two corresponding cluster centers
is removed from the center set. Decrease k by 1, call k-means

using the new k value and cluster center set as input. Repeat
this step until the minimum c2c is above d2.

The two thresholds d1, d2 can be chosen based on building
code and empirical knowledge of garages [11]. For example,
if straight path segments are at least 20 meters, two centers
much closer than 20m (say half at 10m) is very unlikely. To
tolerate errors in path length measurements, we use 15m as
threshold d2. For a straight path segment, points corresponding
to one end should be closer to this end than the other. Thus
the p2c should not exceed half the segment length. To tolerate
errors, we use a value slightly larger (e.g., 15m).

We also tried other criteria to stop the elimination iterations.
One common method is to observe the rate of changes of
these parameters over iterations. E.g., when there are “over”
estimations, the minimum c2c will be always small, thus
the rate of change is small. As the last “over” estimation is
eliminated, the minimum c2c will suddenly jump to a much
larger value, causing a big change rate. Thus we can detect
when “over” estimations are gone. We find this method has
similar performance, but the two thresholds method is simpler
and so we decide to use it.

V. ALGORITHM 3: SEGMENTS MATCHING

The previous two methods require complete trajectories that
start from the entrance point to parking spots. In reality this
may not always be possible. Users may collect only partial
trajectories starting inside the garage, and ending at any other
location in the garage. We propose an algorithm that can deal
with partial trajectories.

Segments Matching chooses the longest trajectory in the
set as the initial map, then merges remaining trajectories one
at a time. Because trajectories no longer start at the same
point, a new trajectory cannot be placed directly on the map.
Thus comparing distances to find which vertices correspond to
the same turning point becomes infeasible. We detect segment
overlap between trajectories as constraints, and give each one
a certain position and orientation on the common plane, so the
total overlap is maximized.

(a) break up a trajectory (b) existing map

Fig. 3. (a) break up a trajectory sample into multiple L-components (Lt).
(b) existing map can also break into multiple L-components (Lm) and then
match with Lt. A square represents a speed bump detected.

Specifically, we first break up a trajectory into multiple
“L-components”, each with two consecutive segments in
shape like “L” (Fig. 3. (a)). If one L-component Lt from
a trajectory has similar angle to another Lm from the map
(Fig. 3. (b))(e.g., the turning angles differ less than 5◦),
then a match is declared, and a matching score is computed:
|Lhead

t −Lhead
m |

Lhead
m

+
|Ltail

t −Ltail
m |

Ltail
m

, where Lhead
t , Ltail

t , Lhead
m , Ltail

m

are the lengths of the head, tail segment of Lt, Lm respectively.
Usually, an Lt can match multiple Lms in the map, and we
use IMi,j to denote the jth match of the ith Lt (Fig. 4. (a)).

(a) all possible matches between a Lt and the map

(b) find out simultaneous matches

Fig. 4. (a) Lt1 can independently match to the map in 4 ways, so is Lt2.
(b) IM1,1 and IM2,2, for instance, cannot happen simultaneously, otherwise
the geometrical shape of the trajectory will be unable to maintain. Finally,
only two combinations are left: (IM1,1, IM2,4) and (IM1,2, IM2,3).

Since each trajectory is a rigid object, the relative positions
and orientations among its L-components are fixed. When the
trajectory is placed onto the map to create a match IMi,j ,
the positions and orientations of other L-components are
determined (Fig. 4. (b)). Some of them may also match the
map in different ways. Intuitively, we want to maximize such
simultaneous matches, so the trajectory overlaps the “most”
with the map.

To this end, we detect which simultaneous matches can
occur. Then we sum up the scores of these matches as the score
of the placement, and select the placement with the maximum
score to merge the trajectory. We detect simultaneous match as
follows: connect the middle vertices of two L-components on
the trajectory, and compute d, the length of connecting line;
α, β, the angle between the connecting line and the arrow head
of two L-components. We also measure the same d′, α′, β′ for
the matching L-components on the map. If respective values
differ less than a threshold (e.g., 5% for d, d′, 5◦ for angles),
we consider them a simultaneous match.

A. Steps

1) Choose the trajectory with the most segments as the
initial map.

2) Pick one trajectory from the remaining set, break it up
into L-components. For each L-component Li

t, find all its
matches IMi,j , and compute their scores.

3) Find out all simultaneous matches: for each IMi,j ,
use the method described earlier to find other simultaneous
L-component matches. Sum up the scores of simultaneous
matches for a placement score. The placement with the max-
imum score is adopted to merge the trajectory into the map.
Repeat the same to merge each remaining trajectory.

The above uses only the segment lengths and angles as con-
straints. Sometimes other constraints are possible, e.g., when
landmarks such as speed bumps exist. Such bumps can be
detected reliably through accelerometer data [7]. The number
and locations of bumps on L-components have to be the same
to declare a match (e.g., same number, location difference less
than a threshold). In Fig. 4. (b), if speed bump information is
leveraged, (IM1,1, IM2,4) can be easily determined as the

unique simultaneous match. We will evaluate how this can
help improve matching performance.

VI. EVALUATION

A. Methodology

To evaluate the algorithms’ performance, we develop a map
generator that generates “ground truth” maps. The sets of
trajectories are generated from such maps. The trajectories are
then fed to the algorithms to produce its reconstructed map.
We compare the reconstructed ones with the “ground truth”
for performance.

We do not use real garage maps because obtaining them
is too time-consuming and effort-intensive for test to be
taken at scale. Instead, we generalize garages’ common actual
parameters through field trips and consulting construction
code [11]. A map generator based on those parameters is
developed which can produce a lot of realistic ground truth
garage maps. For each map, multiple trajectories are generated
following a random walk. The starting point is either the
entrance, or an arbitrary vertex of the map, then each time a
random neighboring vertex is picked to form the next segment
on the trajectory. We add length errors to segments to simulate
measurement inaccuracy. The turning angles can have errors.
We assume a small number of candidate angles are possible
in a garage, and a pre-processing stage will rectify them to the
nearest candidate angle. We test 10 regular garage maps and
10 irregular ones. For each garage, we generate two sets each
containing 10 trajectories, either starting from the entrance, or
randomly inside the garage.

(a) an exemplar regular map (b) an exemplar irregular map

Fig. 5. The parameters of map can be configured: (a) a regular map consists
of similar small grids arranged neatly (red circle represents the entrance and
blue square for a speed bump). (b) an irregular map has more missing parts
and its grids have various sizes.

We evaluate the impact of two map factors on the perfor-
mance of the algorithms: 1) Map regularity. A regular map
(Fig. 5. (a)) is close to a grid with evenly distributed rows
and columns. It has at most 5 segments in width and 3 in
height. The length of each segment is about 50 meters. In an
irregular one (Fig. 5. (b)) some grid segments are missing,
thus the distribution of rows and columns are more random.
We use two maps of high and low regularity. 2) Bump ratio:
the fraction of segments with speed bumps. We start from no
bumps, and gradually increase the fraction of segments with
bumps. There are techniques [7] that detect bumps reliably
along trajectories.

There are two trajectory factors impacting the performance:
1) Relative length: the ratio of the number of segments in
the trajectory to the total number of segments in the map.
2) Length error. We add a zero-mean Gaussian error to each

segment and use the standard deviation as the parameter. We
do not add angle errors for two reasons: 1) The gyroscope
can measure turning angles very accurately (e.g., 1◦ ∼ 2◦); 2)
Possible path orientations are usually limited. So angle errors
can be removed by rectifying the path to the nearest candidate
orientation.

We use three metrics to evaluate the performance of algo-
rithms: 1) F -score = 2∗Precision∗Recall

Precision+Recall , where precision is
the ratio of the number of the correctly reconstructed vertices
to the number of all constructed vertices, and recall the ratio
of the number of the correctly constructed vertices to the
number of all vertices in the part of ground truth map that
has been travelled by the trajectories. F-score quantifies the
balance between reconstruction accuracy and completeness.
An “aggressive” algorithm may include all true segments, but
also non-exist ones; a “conservative” one does the contrary,
including some true ones, but missing other true ones. An
ideal algorithm should achieve a balance. 2) Coverage: the
ratio of the number of the correctly constructed vertices to
the number of all vertices in the whole ground truth map. 3)
Offset: Directed Hausdorff Distance [14], the greatest of all
pairwise distances from a vertex in the travelled ground truth
map to the closest constructed vertex.

B. Impact of trajectory length (entrance starting point)

Trajectory relative length
0.2 0.3 0.4 0.5 0.6

F
-s

co
re

0

0.2

0.4

0.6

0.8

1

Sequential Merging
Points Clustering
Segments Matching

(a) using map of high irregular rate

Trajectory relative length
0.2 0.3 0.4 0.5 0.6

O
ff

se
t

(m
)

0

10

20

30

40

50
Sequential Merging
Points Clustering
Segments Matching

(b) using map of high irregular rate

Trajectory relative length
0.2 0.3 0.4 0.5 0.6

C
o

ve
ra

g
e

0

0.2

0.4

0.6

0.8

1

Sequential Merging
Points Clustering
Segments Matching

(c) using map of high irregular rate

Trajectory relative length
0.2 0.3 0.4 0.5 0.6

F
-s

co
re

0

0.2

0.4

0.6

0.8

1

Sequential Merging
Points Clustering
Segments Matching

(d) using map of low irregular rate

Fig. 6. The performances of three algorithms all change as the trajectory
relative length increases, but change differently.

We evaluate how the trajectory length impacts the per-
formance. As is shown in Fig. 6. (a) and (b), for a highly
irregular map, the F-scores of Sequential Merging and Points
Clustering fall slightly when trajectories grow longer, and their
offsets increase. This is because longer trajectories accumulate
more errors for vertices, especially those later in the sequence.
Points Clustering shows better performance than Sequential
Merging because it processes all trajectories simultaneously
instead sequentially.

Segments Matching has low F-score (0.8) for short trajec-
tories, and gradually reaches almost 1 for longer ones. This is

because short trajectories do not contain sufficient constraints
to determine the correct match. For long trajectories, its offset
is comparable with the other two algorithms. All three algo-
rithms have similar coverage increase as longer trajectories are
used (Fig. 6. (c)). When the relative length is 0.6, a constructed
map covers more than 90% of the whole parking structure.
This is simply because longer ones cover more segments in
the garage.

We repeat the experiments with regular map (Fig. 6. (d)).
Sequential Merging and Points Clustering are not affected
remarkably, but Segments Matching deteriorates: its F-score
is lower than 0.8 before the relative length reaches 0.4. This
is because a regular map has segments and L-components of
similar angles and lengths. A trajectory (especially a short
one) can match in too many ways. There are not enough
constraints to find the correct placement. But as trajectories
grow longer, more constraints are brought in and finally the F-
score becomes acceptable (0.9). For coverage and offset, there
is not much change for the three algorithms compared to those
in irregular map. The only exception is Segments Matching’s
offset, which roughly doubles. It is because segment lengths
are similar in regular map, thus many possible matching can
happen. There are not enough constraints to produce the
correct result. We omit the figures due to space limit.

C. Impact of length error

Trajectory length error
0.3 0.6 0.9 1.2 1.5 1.8 2.1

F
-s

co
re

0

0.2

0.4

0.6

0.8

1

Sequential Merging
Points Clustering
Segments Matching

(a)

Trajectory length error
0.3 0.6 0.9 1.2 1.5 1.8 2.1

O
ff

se
t

(m
)

0

10

20

30

40

50
Sequential Merging
Points Clustering
Segments Matching

(b)

Fig. 7. The performances of three algorithms under different length errors.

We evaluate how length error impacts the performance
(Fig. 7). To avoid the influence of segments of similar lengths
in regular map (especially Segments Matching), we use ir-
regular map. As the length error increases, the F-score of
each algorithm falls gradually and offset increases. Among
the three, Points Clustering is the most robust because it
processes all trajectories simultaneously. When the length error
reaches 2 meters, the F-score of Points Clustering is still above
0.95, with offset less than 5 meters. Sequential Merging and
Segments Matching have F-scores above 0.8 and offsets below
10 meters when length error is within 2 meters. We find that
coverage is nearly 80% and does not change much for all
algorithms, so we omit the figure.

D. Impact of trajectory length (arbitrary starting point)

We evaluate the impact of trajectory length when trajectories
have arbitrary start/end locations. For similar reasons, we
use irregular map. Fig. 8. (a), (b) and (c) show that as
longer trajectories are used as input, Segments Matching’s
performance improves. Its F-score reaches 0.9, offset is within

Trajectory relative length
0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
-s

co
re

0

0.2

0.4

0.6

0.8

1

Sequential Merging
Points Clustering
Segments Matching

(a)

Trajectory relative length
0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
ff

se
t

(m
)

0

50

100

150

200

250

Sequential Merging
Points Clustering
Segments Matching

(b)

Trajectory relative length
0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
o

ve
ra

g
e

0

0.2

0.4

0.6

0.8

1

Sequential Merging
Points Clustering
Segments Matching

(c)

Trajectory relative length
0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
o

ve
ra

g
e

0

0.2

0.4

0.6

0.8

1

Sequential Merging
Points Clustering
Segments Matching

(d)

Fig. 8. Segments Matching is the only method that can take trajectories with
arbitrary starting points as input.

10 meters and coverage exceeds 90% when the relative length
is 0.5. In contrast, Sequential Merging and Points Clustering
have much worse or even unacceptable performances (F-score
0.4, offset 200m, coverage 0.6), because they require common
starting points to identify which vertices are actually the same
turning point.

We also compare the coverage of Segments Matching
using trajectories with arbitrary starting points with that of
Sequential Merging and Points Clustering using trajectories
starting from the entrance (Fig. 8. (d)). We find that Sequential
Merging and Points Clustering need trajectories of relative
length 0.6 to reach more than 90% coverage, while Segments
Matching needs only 0.5. The reason is, to reach any destina-
tion in the garage, a random location inside can be much closer
to the destination than the entrance point. However, Segments
Matching does need relatively longer trajectories (e.g. more
than 0.3) to obtain enough constraints for correct match.

E. Impact of the number of bumps

Bump relative number
0 0.15 0.3 0.45 0.6 0.75 0.9

F
-s

co
re

0.75

0.8

0.85

0.9

0.95

1

(a)

Bump relative number
0 0.15 0.3 0.45 0.6 0.75 0.9

O
ff

se
t

(m
)

0

10

20

30

40

50

60

(b)

Fig. 9. The number of bumps affects the performance of Segments Matching

Segments Matching is the only one among the three that
leverages speed bumps to further improve the performance. As
is shown in Fig. 9, as the number of speed bumps increases,
the performance is first improved but begins to deteriorate

after it exceeds 0.6. This is because speed bumps serve as
additional constraints to help distinguish the right match from
other possible ones. However, when all segments have bumps,
they become similar and lose the distinction. Thus excessive
bumps lower the matching accuracy.

F. Time complexity analysis

The complexity of Sequential Merging is O(m2n2), where
m is the number of trajectories, and n is the average number
of segments in a trajectory. Points Clustering calls Lloyd’s k-
means algorithm which is often considered linear complexity
and the worst case can be O(m3n3). Segments Matching’s
running time is O(m3n4). All three algorithms are feasible in
reality for the following reasons: 1) Generating garage map
is not a real-time task, so there is sufficient time to run the
algorithms and produce the map. 2) The algorithms run on
the backend, which has abundant computing resources. 3)
For a actual garage, m and n are usually within 20 and 10
respectively.

VII. DISCUSSION

In our current design we assume that the turning angles
between driving paths take a limited number of candidate
values (e.g., 90◦, 45◦). The measured angles can be rectified
to the closest candidate value, thus eliminating the angle error.
Although this assumption is true for most garages, we plan to
enhance our algorithms so they can tolerate angle errors.

Currently we depend on OBD data to obtain the vehicle
speed, thus computing the length of traveled segment. OBD
adaptors are cheap (e.g., about $20) and do not require
wired connection (e.g., Bluetooth or WiFi). There exist many
smartphone apps [15] that can stream OBD data to a phone.
Thus the data collection does not incur much cost or efforts.
To make it more convenient, we plan to develop methods that
use only smartphone data to estimate travelled distance.

Our garage map generator is built based on survey of real
garages and construction code [11]. It helps us evaluate the
performance over many maps without intensive survey. In
the future we plan to test our algorithms on real garages
of different internal structures to ensure they are widely
applicable.

GPS signal state can be used to tell whether a vehicle is
inside a garage. The loss of the signal indicates that the vehicle
is entering the garage. Generally a vehicle will slow down
when it enters a garage. Thus the system can check GPS signal
state when such inertial events happen to efficiently detect the
entrance to a garage.

The map we produce consists of driving paths, but not
parking spaces. Although many paths have parking spaces on
both sides, some path may have spaces on one side, or no space
at all. So we cannot simply add standard size parking spaces
along each reconstructed path. We plan to solve the problem
by detecting vehicle parking from trajectories: a vehicle makes
a turn (e.g., usually 90◦) into a parking space, and stops after
moving a vehicle’s distance. These special patterns can be
recognized to find parking spaces, thus adding them to make
complete maps.

The maps we generate are one-level only. For garages of
multiple levels, the critical issue is how to detect the movement
across levels. Since the vehicle has to drive up slope to climb to
the next level, the pitch onto such slopes can be detected from
the phone’s gyroscope [7]. Thus the pattern of level ground to
slope then level again, and some distance on the slope, can be
used to detect new levels. We will gather data in real garages
and develop robust algorithms to recognize such patterns.

VIII. RELATED WORK

There exist many GPS-based techniques for outdoor road
map construction. Mahmud Ahmed et al. [16] present a simple
and practical incremental algorithm based on partial matching
of trajectories to the map. James Biagioni et al. [17] use KDE
algorithm to automatically infer maps from large collections of
opportunistically collected GPS traces. However, all of them
depend on GPS signals, which are suitable outdoors but not
indoor environments (e.g., underground parking structures)
where GPS may not penetrate.

Peng Zhuang [18], Yiming Ji [19] and Huimin Wang et
al. [20] leverage radio signals to construct indoor maps.
However, they require pervasively deployed WiFi APs, which
are usually not present in garages. Our work uses inertial data
from devices carried by the driver, and does not require any
pre-existing infrastructure.

Some researchers including R.C. Luo [21] and A Ohya [22]
use intelligent robots to map the indoor environments. Al-
though they can produce highly accurate maps with details,
they incur special hardware and high expenses. It is difficult
to scale to large numbers of garages in short time at low
costs. Our work leverages commodity mobile devices such as
smartphones that drivers already carry everywhere, thus our
solution can scale at small costs.

Indoor floor plan construction has attracted the attention of
mobile community and some pioneering work (e.g., CrowdIn-
side [4], Jigsaw [5]) constructs such plans using inertial,
image, radio data crowdsensed from smartphones users. We
follow the same crowdsensing paradigm [6] to leverage per-
vasively available smartphones to eliminate dedicated infras-
tructure, and we target a quite different environment of garages
for which such work are not designed.

IX. CONCLUSION

The lack of garage maps is a fundamental obstacle to future
vehicle navigation services such as smart parking manage-
ment. In this paper we propose and compare three algorithms
that can take the vehicle movement trajectories crowdsensed
from drivers to construct garage maps automatically. Sequen-
tial Merging and Points Clustering require trajectories all
start from the same entrance point. They can create maps
of high precision, recall and low offset. Points Clustering is
more robust to errors in trajectories because it incorporates
all trajectories simultaneously and does not depend on the
merging order. Segments Matching is the only one that can
handle partial trajectories that may start or end at arbitrary
locations inside the garage. It can produce high quality maps
given trajectories of sufficient lengths, and leverage additional
information such as speed bumps for better results.

X. ACKNOWLEDGEMENT

This research work was supported in part by the grant from
the US National Science Foundation under grant number CSR
1513719.

REFERENCES

[1] R. Lu, X. Lin, H. Zhu, and X. S. Shen, “Spark: a new vanet-based
smart parking scheme for large parking lots,” in INFOCOM 2009, IEEE.
IEEE, 2009, pp. 1413–1421.

[2] S. Liniger and B. Stiller, “Parking prediction techniques in an iot
environment,” Ph.D. dissertation, Master Thesis University of Zurich,
Zurich, Switzerland, 2015.

[3] “Google maps,” https://www.google.com/maps/about/partners/indoormaps/.
[4] M. Alzantot and M. Youssef, “Crowdinside: automatic construction of

indoor floorplans,” in Proceedings of the 20th International Conference
on Advances in Geographic Information Systems. ACM, 2012, pp.
99–108.

[5] R. Gao, M. Zhao, T. Ye, F. Ye, Y. Wang, K. Bian, T. Wang, and X. Li,
“Jigsaw: Indoor floor plan reconstruction via mobile crowdsensing,”
in Proceedings of the 20th annual international conference on Mobile
computing and networking. ACM, 2014, pp. 249–260.

[6] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and
future challenges,” Communications Magazine, IEEE, vol. 49, no. 11,
pp. 32–39, 2011.

[7] M. Zhao, T. Ye, R. Gao, F. Ye, Y. Wang, and G. Luo, “Vetrack: Real time
vehicle tracking in uninstrumented indoor environments,” in Proceedings
of the 4th ACM Conference on Embedded Networked Sensor Systems
(ACM SenSys), November 2015.

[8] R. K. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. F. Abdelzaher,
“Greengps: a participatory sensing fuel-efficient maps application,” in
Proceedings of the 8th international conference on Mobile systems,
applications, and services. ACM, 2010, pp. 151–164.

[9] A. Chowdhury, T. Chakravarty, and P. Balamuralidhar, “A novel ap-
proach to improve vehicle speed estimation using smartphone?s ins/gps
sensors.”

[10] A. Goodwin, “A brief intro to obd-ii technology,”
http://www.cnet.com/news/a-brief-intro-to-obd-ii-technology/.

[11] “Parking requirements,” http://chicago47.org/wp-
content/uploads/Building-Codes-for-Garage-Construction.pdf.

[12] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Applied statistics, pp. 100–108, 1979.

[13] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM sym-
posium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2007, pp. 1027–1035.

[14] G. Rote, “Computing the minimum hausdorff distance between two point
sets on a line under translation,” Information Processing Letters, vol. 38,
no. 3, pp. 123–127, 1991.

[15] “Obd2 diagnostics for windows and android and ios,”
https://www.obdsoftware.net.

[16] M. Ahmed and C. Wenk, “Constructing street networks from gps
trajectories,” in Algorithms–ESA 2012. Springer, 2012, pp. 60–71.

[17] J. Biagioni and J. Eriksson, “Map inference in the face of noise and
disparity,” in Proceedings of the 20th International Conference on
Advances in Geographic Information Systems. ACM, 2012, pp. 79–88.

[18] P. Zhuang, D. Wang, and Y. Shang, “Smart: Simultaneous indoor local-
ization and map construction using smartphones,” in Neural Networks
(IJCNN), The 2010 International Joint Conference on. IEEE, 2010,
pp. 1–8.

[19] Y. Ji, S. Biaz, S. Pandey, and P. Agrawal, “Ariadne: a dynamic indoor
signal map construction and localization system,” in Proceedings of
the 4th international conference on Mobile systems, applications and
services. ACM, 2006, pp. 151–164.

[20] H. Wang, L. Ma, Y. Xu, and Z. Deng, “Dynamic radio map construction
for wlan indoor location,” in Intelligent Human-Machine Systems and
Cybernetics (IHMSC), 2011 International Conference on, vol. 2. IEEE,
2011, pp. 162–165.

[21] R. C. Luo and C. C. Lai, “Enriched indoor map construction based
on multisensor fusion approach for intelligent service robot,” Industrial
Electronics, IEEE Transactions on, vol. 59, no. 8, pp. 3135–3145, 2012.

[22] A. Ohya, Y. Nagashima, and S. Yuta, “Exploring unknown environment
and map construction using ultrasonic sensing of normal direction of
walls,” in Robotics and Automation, 1994. Proceedings., 1994 IEEE
International Conference on. IEEE, 1994, pp. 485–492.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

