
Smartphone Indoor Localization by Photo-taking of
the Environment

Ruipeng Gao, Fan Ye, Tao Wang
School of Electronics Engineering and Computer Sciences

Peking University, Beijing, China
Email: {gaoruipeng,yefan,wangtao}@pku.edu.cn

Abstract—Existing mainstream indoor localization technolo-
gies mainly rely on RF signatures and thus incur significant
and recurring labor cost to measure the time-varying signature
map. We have proposed a smartphone localization system using
the embedded gyroscope for triangulation from nearby physical
features (e.g., store logos) recognized from photo-taking. It
requires a much reduced and one-time measurement, while incurs
uncertain localization errors. In this paper, we propose two
methods to systematically address image matching errors that
cause unrecognized physical features and large errors in our
system. We formulate the optimal benchmark image selection
problem and propose a heuristic algorithm that finds the best
benchmark images for high matching accuracy. We propose a
couple of geographical constraints to further infer unknown
physical features based on the observation that the features
chosen by the user are close together. Experiments in a 150×75m
shopping mall, 300× 200m train station show that dramatically
we cut down both maximum and general localization errors, and
achieve 2 − 8m accuracy at 80-percentile even with only one
benchmark image on the phone.

Keywords—smartphone indoor localization; environmen-
tal photos; benchmark selection; geographical constraints

I. INTRODUCTION

Indoor localization is the basis for many novel location
based services in buildings. Despite more than a decade
of research and development, it is still not yet pervasive
enough. The latest industry state-of-the-art, Google Indoor
Maps [1], covers about 10,000 locations in 18 countries, which
are only a fraction of the millions of indoor environments
on the planet, e.g. shopping centers, airports, train stations,
museums and hospitals. One major obstacle is that mainstream
indoor localization technologies rely on RF (Radio Frequen-
cy) signature maps that require significant human efforts to
build and periodic efforts to calibrate. Although a number of
proposals [2], [3] have started to leverage crowdsourcing to
reduce the efforts, incentives and deployment are lacking.

In a recent work [4], we propose an alternative approach
that leverages static environmental physical features such as
store logos. It requires only a one-time human effort that is a
fraction of that of building a WiFi signature map. Specifically,
users use a smartphone to capture a picture of each of three
nearby physical features (called reference points) one by one.
The photos are matched against the benchmark images of
known reference points (e.g., store logos) to identify which
physical features they are. Their coordinates, together with
angle measurements from the gyroscope, are used to trian-
gulate the user’s location. Our prototype “Sextant” achieves
comparable accuracy to Google Indoor Maps (∼ 7m). The
main advantages are: 1) Physical features usually remain static

over long periods of time. Once measured, there is little
need for periodic re-calibration. 2) They are abundant in the
environment and do not require dedicated deployment and
maintenance like IT infrastructure.

The main source of inaccuracy in Sextant was the im-
perfection of image matching algorithms. Their accuracy is
affected significantly by which images are used as benchmark
for reference points. An image taken from extreme angles or
distances may lead to significant matching errors. Then the
system does not have correct reference points’ coordinates for
localization. Had the matching be perfect, Sextant could have
achieved much higher accuracy.

In this paper, we propose two methods to systematically ad-
dress the image matching errors. First, we study how to select
the best images as the benchmark when multiple are available
for each reference point. The purpose is to minimize “cross
matching” where one reference point’s photo is incorrectly
matched to the benchmark of another. Second, we impose
additional constraints to correct wrong matching results. This
is based on the observation that the three reference points
chosen by the user are usually close to each other. Given
even one correct match, the unknown reference points can be
inferred with much higher probability from a nearby range.

We make the following contributions in this work:
• We formulate optimal benchmark selection as a combi-

natorial optimization problem and prove it NP-complete.
We then propose and evaluate a heuristic algorithm based
on iterative perturbation for realistic solutions.

• We propose several geographical constraints that help
make much informed decision about the identities of in-
correctly matched reference points. Together they greatly
improve the inference accuracy of the system for both
offline and online users.

• We have conducted extensive evaluation in two real
environments (a 150 × 75m mall and 300 × 200m train
station). We find that the two methods improve image
matching accuracy to 91.7% in the mall and 87.6% in the
station for offline mode, and 99.4% in the mall and 97.9%
in the station for online mode. Hence the localization
errors are reduced to around 3m in mall and 8m in station
at 80% percentile for offline mode, and around 2m in
mall and 5m in station at 80% percentile for online mode,
which are comparable to the industry state-of-the-art.

II. BACKGROUND ON SEXTANT

We describe how Sextant works and explain problems due
to image matching imperfections in detail.



A. Sextant Localization Principle

In Sextant, the user stands at one location P, spins his arm
and body to capture one photo (called test image) for each of
three nearby reference points R1, R2, R3 one by one (shown
in Figure 1). The gyroscope can measure the two angles β, α
rotated between two consecutive reference points. Given the
coordinates ((x1, y1) to (x3, y3)) of the three reference points,
the user location (x, y) is triangulated as the intersection P of
the two circles. We also have a lightweight method to measure
the coordinates of reference points [4].

The image matching algorithm, e.g. SURF (Speeded Up
Robust Features) [5], is used to identify which are the three
chosen reference points, so their coordinates are used for
location computation. Feature vectors are extracted from a test
image and compared with those from the benchmark images.
The benchmarks are sorted in descending order of the number
of matching feature vectors. The top one is regarded as the
best match.

Before the system conducts localization computation, users
can provide feedbacks to help correct mismatches. As shown
in Figure 2, the top 3 matched reference points are shown in a
column below each photo taken by the user. By default the top
one is considered the correct match. If the correct match is the
second or third best match, the user can click on it to indicate
it is the correct match. Thus the system can still obtain the
correct reference point if it is among the top 3. Otherwise, the
user clicks on the photo he took, indicating the correct match
is not in top 3.

B. Image Matching Problems in Sextant

The Sextant system achieves 4 − 5m accuracy at 80-
percentile when each reference point has 3 benchmark images.
This is comparable with the industry state-of-the-art Google
Indoor Maps [6] (∼ 7m). However, there are still extreme
localization errors for some test locations, which could reach
as large as 20m. Those errors are essentially caused by image
matching mistakes and thus incorrect reference points.

In the next two sections, we propose two complimentary
means to deal with matching mistakes. First, we describe how
to select the best benchmark when multiple candidate images
are available for each reference point. The goal is to minimize
the number of incorrect matches. Second, if the correct match
is not in top three, the system has to make educated guesses.
Thus we present a couple of geographical constraints that
can be used to narrow the scope of potential candidates for
unknown reference points.

III. OPTIMAL BENCHMARK SELECTION

Image matching algorithms inevitably make mistakes. Mul-
tiple benchmark images taken from different angles of a
reference point improves accuracy significantly. However,
more benchmarks lead to higher computing overhead. Thus
in Sextant the number of benchmarks for each reference point
is limited to a small number. When many candidate images
are available, which images to select as benchmarks to match
incoming test images greatly impact the matching accuracy.
Thus we should select the subset of images leading to the
best matching accuracy.
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Fig. 1. Localization principle of Sex-
tant. By measuring the two rotated
angles α, β, the system computes
user location (x, y) from the coor-
dinates (x1, y1) to (x3, y3) of the
reference points.
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Fig. 2. The UI presented to the
user for correction of image matching
results. The top row are the 3 test im-
ages taken by the user, below each are
the top 3 matched reference points.

A. Online and Offline Modes
In Sextant depending on whether there is network connec-

tivity, the phone can work in online or offline modes. Due
to the complexity in image matching algorithms, the preferred
location for matching computation is on a backend server. This
is when the phone has network connectivity and can upload
test images to the server to identify chosen reference points.
This is the online mode.

It is not uncommon that many locations do not have network
connectivity due to the lack of WiFi APs or strong enough
cellular signals. Sextant can still work if the computation is
done locally. A couple of challenges have to be addressed: 1)
The phone must have enough storage to store the benchmark
images of reference points. In reality we found this is not a
problem. An 800×600 benchmark image is only about 30KB,
while 50-60 reference points are sufficient for a large mall
or train station. Thus the total storage is less than 2MB.
They can be downloaded on demand before the user enters
the environment while there is still network connectivity. 2)
To reduce the latency, each reference point has to use less,
ideally only one benchmark image. Nevertheless we have to
provide enough matching accuracy. Thus the benchmark must
be selected carefully to maximize correctness. This is what we
address the offline mode in this section.

TABLE I
NOTATIONS

M = {1, ...,m} Reference points
Ni = {1, ..., ni} Candidate images of reference point i

B = {bi} Label of the chosen benchmark for reference point i
P = {pi,x,j,y} Number of images for reference point i incorrectly

matched to reference point j, when x and y are the
chosen benchmarks for i and j respectively.

K = {ki,x,j,y} Number of matched feature vectors between image x
for reference point i and image y for reference point j

u(.) Unit step function, equals 0 when input is less
than 0, and equals 1 otherwise
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Fig. 3. An example of where x and y denote the chosen benchmark (marked
yellow) of reference point i and j respectively, and l denotes an image of i
being matched to both x and y.

B. Benchmark Selection Problem
We formally define the problem of optimal benchmark

selection (notations in Table I): Given m reference points
{1, ...,m}, and a set of ni candidate images for reference point
i, find one image for each reference point such that the total
number of matching errors is minimized.

We denote the decision variables, the labels of the chosen
benchmark for each reference point as

B = {bi|1 ≤ i ≤ m, 1 ≤ bi ≤ ni} (1)

Given the candidate images, we could profile the number
of incorrectly matched images for each reference point, as
Figure 3 shows. When reference point i and j choose x and y
as its benchmark respectively, an incorrect match from i to j
means an image l for reference point i is incorrectly matched
to reference point j. We use pi,x,j,y to denote the number of
images for reference point i incorrectly matched to reference
point j, and P = (pi,x,j,y) as the model given input.

Objective: find the label selection B that minimizes the
number of total incorrectly matched images.

We denote Cobj as the objective value. Given P = (pi,x,j,y),
the Cobj could be computed by each B = (bi), as:

Cobj =

m∑
i=1

m∑
j=1

pi,bi,j,bj (2)

Thus our objective is formulated as:

min
B

Cobj (3)

The benchmark selection problem belongs to NP, since
its results can be verified in polynomial time if P ,B and
an objective target are given. Furthermore, the Hamiltonian-
cycle problem, which is known to be NP-complete [7], is
reducible in polynomial time to our benchmark selection
problem (detailed proof is omitted due to space limitation).
Thus the benchmark selection problem is NP-complete, and
a heuristic is needed for problem-solving strategy, which is
described as below.

C. A Heuristic Algorithm
We propose a heuristic algorithm consisting of three stages,

namely, profiling, benchmark initialization, and random per-
turbation.

Profiling. This part is the preparation for our algorithm,
aims to measure the distinction between two candidate images.

According to [5], we first extract feature vectors on each
candidate image, and calculate distance between two feature
vectors to measure their similarity. The number of matched

feature vectors between image x for reference point i and
image y for reference point j can be computed beforehand
and denoted as:

K = {ki,x,j,y|1 ≤ i, j ≤ m, 1 ≤ x ≤ ni, 1 ≤ y ≤ nj} (4)

As Figure 3 shows, an image l for reference point i is incor-
rectly matched to reference point j when it has more matched
feature vector with j’s benchmark y than with i’s benchmark
x. Thus pi,x,j,y , how many i’s images are incorrectly matched
to j, can be computed as:

pi,x,j,y =

{∑ni

l=1 u(ki,l,j,y − ki,l,i,x), if i 6= j

0, if i = j
(5)

With the computed beforehand P , we then present how to
choose the best benchmark set B to obtain minimum objective
value Cobj , which is calculated according to Equation 2.

Benchmark initialization. Initially, each reference point is
assigned the ”best matching” image as its benchmark, meaning
its other images are very similar to the benchmark, and the
benchmark is very distinct to images of other reference points.
Thus its own images match well while other reference points’
images do not match this chosen benchmark. We use two
metrics below to measure its similarity to its own reference
point’s images and its interference to images of other reference
points.

For a chosen benchmark x of reference point i, we use the
number of images for i correctly matched to x, rather than
chosen benchmark t of reference point j, as the similarity
metric. The metric is summed over all possible combinations
of {j, t} pairs, shown in Equation 6.

S+
i,x =

1

ni

ni∑
s=1

m&j 6=i∑
j=1

nj∑
t=1

u(ki,s,i,x − ki,s,j,t) (6)

Similarly, we use the number of images for another refer-
ence point j incorrectly matched to x, rather than the chosen
benchmark t of j, to measure the interference of x to j. This
is also summed over all possible combinations of {j, t} pairs,
shown in Equation 7.

S−i,x =
1∑m&j 6=i

j=1 nj

m&j 6=i∑
j=1

nj∑
t=1

nj∑
s=1

u(kj,s,i,x − kj,s,j,t) (7)

Then, we could score the efficiency of each benchmark x
for reference point i, calculated as:

Scorei,x = S+
i,x/S

−
i,x (8)

For benchmark initialization, we select the image with
highest score as the chosen benchmark for reference point i.

Random perturbation. Since the initialization does not
necessarily give the overall optimal solution, we use random
perturbation to continue improve the solution. Each time we
randomly replace a chosen benchmark with an unchosen image
of the same reference point, and check if the objective value
decreases. If so, we update both the chosen benchmark set
and objective value. This is repeated until the objective value
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Fig. 4. Image matching accuracy where the correct match is contained in top 1-3 results, between random benchmark selection vs. our heuristic, for the mall
and train station, both online and offline modes.

decreases less than a threshold Cth after X times of continuous
replacements. Then we stop the random perturbation and
output the chosen benchmark set. In our implementation we
use Cth = 0 and X = 100.

Algorithm 1 Benchmark selection heuristic algorithm
1: compute ki,x,j,y for each two candidate images;
2: for each reference point i do
3: for each benchmark x do
4: compute S+

i,x according to Equation (6);
5: compute S−i,x according to Equation (7);
6: compute Scorei,x according to Equation (8);
7: end for
8: bi = argmaxScorei,x;
9: end for

10: time = 0;
11: while time ≤ X do
12: randomly select several chosen benchmarks in B, re-

place each with a random image of its same reference
point;

13: compute objective value Cobj according to Equation (2);
14: if Cobj is decreased then
15: update B based on the random benchmarks;
16: update Cobj ;
17: time = 0;
18: else
19: time++;
20: end if
21: end while
22: if more benchmark is used then
23: for each reference point i, j and benchmark x, y do
24: ki,x,j,y = max{ki,x,j,y, ki,x,j,bj};
25: end for
26: remove B from candidate image set;
27: go to Step 2 to find the second best benchmark;
28: end if

D. Image matching accuracy
We compare the image matching accuracy of our heuristic

and random selection of benchmark images.
Benchmark and test image dataset. In the mall we cap-

tured 362 photos of 63 references at different places, while in
the station we captured 441 photos of 53 references, and each
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Fig. 5. Fraction of test locations with top 3 correctly matched test images

reference has 4 ∼ 9 photos taken at different places. We use
these photos as candidate images. In online and offline modes
each reference should select 3 and 1 benchmark, respectively.
We also have 324 test images taken at 108 locations in the
mall, and 138 test images taken at 46 locations in the station.
We match the test images against benchmarks and measure
the fraction of test images whose correct match shows in top
1-3 matching results.

Image matching accuracy. Compared with random bench-
mark selection, our heuristic improves image matching accu-
racy by more than 20% in offline and 10% in online, both
in the mall and station (shown in Figure 4). The chance that
the correct match is in top 3 results in offline mode can reach
82.1% in the mall and 81.2% in the station, and that in top 3
in online mode can reach 98.2% and 97.3%, respectively.

Next we examine the fraction of test locations having 3,2,1
or 0 “correctable” test images. A test image is “correctable”
if its correct match is within the top 3 results, where a user
can click and indicate to the system. After the user feedback
the system knows the true match.

According to Figure 5, we find that in offline mode, 52.8%
and 46.8% of test locations in mall and station have 3
correctable test images, while in online mode the number is
94.4% in mall and 91.9% in station. The system then knows all
the 3 reference points after user feedback. For those with 2 or 1
correctable test images, the system uses additional constraints
(Section IV) to guess a better match for the unknown reference
point(s). Only less than 2% of offline test locations in mall
suffer from 0 correctable test images, where users may need



Fig. 6. System localization error after the benchmark selection heuristic.

to take photos of another set of reference points.

IV. IMPROVE LOCALIZATION WITH GEOGRAPHICAL
CONSTRAINTS

Even with optimized benchmark, there are still test images
whose correct match does not show up in the top 3 results.
For such images, we make informed guesses based on an
observation: the three chosen reference points by a user are
usually close to each other. We propose two heuristics to
estimate unknown reference points when there are 1 and 2
“uncorrectable” test images.

A. Experiment Results And Problems in Early Prototype
We conduct experiments in two large indoor environments,

a 150 × 75m shopping mall and a 300 × 200m train station.
We test our system in both online and offline modes.

Figure 6 shows the CDF of localization errors in offline
and online modes for both the mall and station. We make a
couple observations. First, the online mode has much smaller
errors, with 80-percentile localization error within 2m in mall
and 5m in station. This is because 3 benchmarks are used
for each reference point, leading to very high image matching
accuracy (e.g., more than 97%). However, the offline mode has
80-percentile error of 14m in both the mall and station, with
large errors reaching tens of meters. This is simply because
a single benchmark has much lower matching accuracy even
after user feedback (e.g., ∼81% according to Figure 4). Had
all test images been perfectly matched, there would be less
than 2m localization error at 80-percentile in mall and 4m
in station; while the maximum error would be around 5m
both in mall and station. Thus there is quite some space for
improvements.

B. Geographical Constraints
To better infer the identify of unknown reference points

whose correct match does not appear in top 3 results, we
propose a couple geographical constraints, including cluster
partition, distance metric measurement and scoring.

1) Cluster partition: Due to the obstructions of walls, some
reference points are unlikely visible to and chosen by the user
at the same time. For example, a user in a store can only see
reference points inside but not those outside. If the system
knows any correctly matched image inside, the unknown ones
must be inside as well.

Accordingly we cluster reference points based on geograph-
ical layout, e.g. wall obstruction. Thus all points inside the

same store are in one cluster, those outside are in another
cluster. Given any correctly matched image, we search the
unknown ones within the same cluster using the following
two measurements.

2) Distance metric measurement: When 2 test images are
matched to their correct reference points (denoted as A and B),
we find the unknown reference point by computing a metric
for each possible reference point X in the same cluster with
A and B.

DX = (|AX|+ |BX|)/2 (9)

When only one image is matched correctly to its reference
point A, we compute the following metric for each possible
reference point pair X and Y in the same cluster as A.

DX,Y = (|AX|+ |AY |+ |XY |)/3 (10)

3) Scoring: Then we score the possible candidate(s) ac-
cording to both their image matching degree and distance
metric. The score is defined as follows:

scoreX =
KX,1

D2
X

, for 1 unknown reference point (11)

scoreX,Y =
KX,1 +KY,2

D2
X,Y

, for 2 unknown reference points

(12)

where Ki,j is the number of matched feature vectors between
the benchmark image(s) of reference point i and the test image
of unknown reference j. The candidate(s) with the highest
score is chosen as the unknown reference point(s). The detailed
description of the algorithm is shown in Algorithm 2. Note that
when there are two unknown reference points, scoreX,Y and
scoreY,X are different due to different pairings between X,Y
and test image 1, 2.

Algorithm 2 Heuristic algorithm for geographical constraints
1: cluster reference points based on geographical layout;
2: find the cluster T of correctly matched reference point(s)

after user feedback;
3: if number of unknown reference points=1 then
4: for each reference point X in T do
5: compute DX according to Equation (9);
6: compute scoreX according to Equation (11);
7: end for
8: XEst = argmax scoreX ;
9: else if number of unknown reference points=2 then

10: for each two benchmarks X ,Y in T do
11: compute DX,Y according to Equation (10);
12: compute scoreX,Y according to Equation (12);
13: end for
14: {XEst, YEst} = argmax scoreX,Y ;
15: end if

C. System Localization Performance
We find that the geographical constraints improve our image

matching accuracy to 91.7% (from 82.1%) in the mall and
87.6% (from 81.2%) in the station in offline mode, while
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99.4% (from 98.2%) in the mall and 97.9% (from 97.3%)
in the station for online use.

Figure 7 shows the CDF of localization errors after the
constraints. Compared with earlier system without geograph-
ical constraints (Figure 6), localization error is reduced to
around 3m in mall and 8m in station (both from 14m) at 80%
percentile in offline mode; the maximum error is cut to 20m
(from 118m) in the mall and 36m (from 76m) in the station
for offline use. For online use, the 80% error does not reduce
much (around 2m in the mall and 5m in the station), but the
maximum error is lowered to about 7m (from 41m) in the
mall and 19m (from 30m) in the station. These show that the
geographical constraints are effective in greatly cutting down
maximum error, and improves the general case for offline
mode significantly.

V. RELATED WORK

A vast majority of existing research efforts depend on RF
signatures from certain IT infrastructure. Mostly they leverage
WiFi access points [8], [9] and cellular towers [10], and
measure signature map of certain RF signals from different
infrastructures for localization. Following earlier studies some
work takes advantage of other smartphone sensing modalities
for different signatures. Liu et al. [11] uses accurate acous-
tic ranging estimates among peer phones to aid the WiFi
localization for meter level accuracy. UnLoc [12] proposes
an unsupervised indoor localization scheme that leverages
WiFi, acceleromter, compass, gyroscope and GPS to identify
signature landmarks.

However, since most of those signals are susceptible to
intrinsic fluctuations and external disturbances, they must re-
calibrate the signature map periodically to ensure accuracy.
This incurs periodic labor efforts to measure the signal param-
eters at fine grained grid points. Some recent researches [2],
[3] aim to leverage crowd-sourcing to reduce dedicated site
survey costs. But the deployment to large user base is still
slow due to the lack of strong incentives.

Compared to these signatures, the physical features (e.g.,
store logos) we use are static. Thus a one time measurement is
sufficient for long term service. We also have an algorithm [4]
to reduce the measurement effort to a fraction of that of a
single WiFi site survey.

SLAM (simultaneous localization and mapping) [13] is
a technique for robots to build the model of a new map
and localize themselves within that map simultaneously. For
localization the robots’ kinematics information is needed.

Although smartphones carried by people can provide sensory
data, accurate kinematics information remains a challenge.
In computer vision, extracting 3D models could estimate
locations based on captured images. OPS [14] allows users
to locate remote objects such as buildings by taking a few
photos from different known locations. Compared to them, our
localization is based on triangulation from angle measurements
by the gyroscope. We use image matching algorithms only for
identifying which reference points are chosen by the user.

VI. CONCLUSION

In this paper, we study two issues in our smartphone
indoor localization system: image matching accuracy and
inferring unknown reference points. We formulate the optimal
benchmark selection problem, prove it is NP-complete and
design a heuristic algorithm that selects optimal benchmark
images for high image matching accuracy. We propose a
couple of geographical constraints to infer the identities of
unknown reference points that cannot be corrected by user
feedback. The experiments conducted in two large indoor en-
vironments, a 150×75m shopping mall and a 300×200m train
station, show that the benchmark selection algorithm improves
image matching accuracy significantly, and the geographical
constraints dramatically cut down the maximum and general
errors, especially for offline mode where only one benchmark
image is available on the phone. As future work, we plan
to investigate methods to build and maintain the system’s
reference point set incrementally from user inputs, which is
necessary if users choose objects unknown to the system as
reference points.
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