
Autonomic Operations in Cooperative Stream Processing Systems

Michael Branson1 Fred Douglis2 Brad Fawcett1 Zhen Liu2 Anton Riabov2
Fan Ye2

1 IBM Systems and Technology Group, Rochester, MN USA
2 IBM T.J. Watson Research Center, Hawthorne, NY USA

Abstract

System S is a large-scale distributed streaming data
analysis environment, designed to handle extreme data
rates. Multiple System S sites can cooperate to further im-
prove the scale, breadth and depth of data analysis. We de-
scribe three autonomic features in the operation of such a
cooperative stream processing environment: interoperation
models, planning, and failover, They enable the distributed
environment to deal with dynamic and rapid changes in im-
posed workload, available resources, and the priorities of
administrators and users. Thus, the system can minimize
the human effort needed to operate such large, complex sys-
tems.

1. Introduction

System S is a data stream processing system that enables
the execution of interconnected processing tasks on contin-
uous data feeds. It has been designed from the outset un-
der the assumption that the system will be continually over-
loaded and must adapt to rapid changes in load and resource
availability while addressing varying priorities of adminis-
trators and end-users [6].

A single System S site is a collection of processing re-
sources under one administrative domain. It could vary in
scale from a single computer (whose job is to input primal
data streams from outside the system and pass them to other
sites) to a processing complex with thousands of comput-
ing nodes, terabytes of storage, and terabits/s of network
connectivity. These larger sites produce derived streams
through data analysis, eventually returning results to users.

We have been working on the design and implementation
of the architecture for these independent sites to cooperate;
they can gain analysis breadth and depth not achieveable
by any indidvidual site. For example, Federal Emergency
Management Agency and local Department of Transporta-
tion sites can share information about emergency supply

and traffic conditions for evacuation plans during a hurri-
cane. The focus of this paper is the following three themes
in autonomic operations for cooperative processing.

Interoperation models for self-configuration We gen-
eralize Virtual Organizations (VOs) from the Grid comput-
ing community [7] to allow sites as well as VOs to dynami-
cally form, join and leave collaboration constructs, referred
as Virtual Virtual Organizations (V2

Os), which allow Sys-
tem S sites to configure themselves as needs arise and poli-
cies adapt.

Planning for self-optimization Within one site or a
V2O, a Planner component takes a specification of de-
sired end results posed by a user and creates an optimized
plan that produces the desired results [13] using currently
available resources within the site or V2O. To adapt to
dynamic resource availability over a long time and within
large V2Os, the planner would ultimately be able to gener-
ate event-based plan branches that define how to modify the
plan automatically upon certain pre-defined events.

Failover for self-healing Sites can monitor each other,
arranging to recover critical processing in the event of fail-
ures. We also envision other failover support such as peri-
odic checkpoints and adaptive monitoring based on priori-
ties and resource availability.

We note that the features described in this paper range
widely in their maturity. Some are prototyped, some are
designed, and some are only in the early stages of design.
We use appropriate tenses to disambiguate.

The rest of this paper is organized as follows. Section 2
describes V2O concepts and how they can adapt autonomi-
cally. Section 3 explains how the planner works and how the
event-based plan branch model can extend it. Section 4 dis-
cusses various mechanisms for handling failures. Section 5
discusses related work and Section 6 concludes.

2. Virtual Virtual Organizations

The grid computing community has long defined Virtual
Organizations (VOs) as a way of allowing resource sharing

1



among multiple administrative domains [7]. It enables com-
putation that exceeds the capability of individual organiza-
tions. A VO specifies resource sharing policies that control
the resources each domain (which we call a site) will poten-
tially contribute to the VO.

Historically, VOs support a fairly simple and homoge-
neous model for sites to interact. Sites offer resources, such
as computation, data, and storage capacity, with an optional
cost to access the resources. Any other sites within the same
VO can request access to the resources, possibly through an
agreement that binds the two sites to a particular sharing ar-
rangement for a specific time interval [2]. Such a VO con-
figuration usually requires significant human efforts, which
can be overwhelming when one needs VOs to further scale
up for much broader and deeper analysis.

We propose an architecture that allows sites and VOs to
self-configure automatically in a variety of interoperation
modes. We treat sites and VOs interchangeably from the
standpoint of making agreements to provide or obtain re-
sources. Just as a site can agree to provide N processors
of a certain type for a certain interval, a VO can agree to
provide the resources of its constituent members.

The architecture abstracts VOs in the same way VOs ab-
stract physical organizations, thus we call such constructs
Virtual Virtual Organizations, or V2Os. V2Os allow al-
ready formed collaborations to cooperate with each other in
their common interest. Thus the association is not limited
to individual sites, but any level of existing V2Os (which
include sites and VOs, recursively). Our V2Os will support
a number of key features for the self-configuration of V2Os,
including:

• Dynamic creation of V2Os for ad-hoc collaborations,
wherein a variety of interaction models, including both
federation (in which sites and V2Os relinquish some
control to a common authority) and cooperative (equal
peers with no common authority) are supported. Both
tightly-coupled collaborations with significant inter-
site data transfer and loosely related collaborations
with little communication are possible.

• Scalability for V2Os to include thousands of sites and
hundreds of VOs, as well as the ability for one site to
participate in hundreds of simultaneous collaborations
in the context of different V2Os.

• Flexible management of heterogeneous resources, for
which the types and availability vary substantially at
different sites. The system should provide sites with
the ability to request exclusive control of others’ re-
sources or be granted best-effort access to resources
shared with others, depending on the policies govern-
ing interaction between the sites.

Figure 1: Cooperative V
2
O for IBM, HAL, and JCN.

We have previously described the concept of Common
Interest Policies (CIPs) [6], used to support intersite coop-
eration. For each V2O, there is a CIP that specifies what
resource sharing is allowed between which members. Mem-
bers in a V2O must conform to the CIP when sharing their
resources. Our current prototype uses a CIP text file con-
taining certain terms, such as:
SiteA;SiteB;ACCESS RESOURCE;SHOULD;
QUALIFIER:DATA SOURCE:
EXTENDED QUALIFER:TYPE=CAMERA:
MONETARY COST:100

This CIP defines that Site A should provide its camera data
sources for Site B to access and that the monetary cost for
accessing a data source is 100 units. System S has a VO
management component that is responsible for managing
the V

2
O. The VO management components on different

sites read in the CIP file and contact each other, thus form-
ing a V2O.

CIPs must be negotiated and agreed upon by members
of a V2O. The negotiations can be done by humans or
systems. Although currently the CIPs are negotiated by
administrators in our prototype, we envision that the VO
management component will eventually become the entity
to negotiate Common Interest Policies. Administrators will
set up site policies that define under what kinds of condi-
tions a site should form what V2Os with which other sites
or V2Os. This will enable them to choose the configura-
tion most suitable for their administrative requirements and
resource availability.

Consider an example (see Figure 1): Companies IBM,
HAL, and JCN form a V2O encompassing their respective
V2Os. When a fourth company (KDO) wants to establish a
cooperative relationship with IBM-HAL-JCN, it may select
among multiple configurations:

• It can negotiate to create a new V2O, with two V2Os
within it: KDO and IBM-HAL-JCN. This is suitable
when KDO does not have as high trust levels as the
three sites already have within the IBM-HAL-JCN
V2O.



• It can negotiate to join IBM-HAL-JCN, forming a new
IBM-HAL-JCN-KDO V2O. Each company within
this V2O will have the same rights and trust levels to
the other companies.

• It can negotiate to have sites within the KDO V2O join
a new V2O with the other companies, if it allows those
individual sites to have more autonomy to determine
their resource sharing in the new V

2
O.

3. Planning

In System S, a job is an execution unit that accomplishes
certain tasks through stream analysis. A job takes the form
of a processing graph, consisting of data sources and pro-
cessing elements (PEs) interconnected in a certain manner.
PEs are software components that take certain input data
streams and process the data in some manner, many times
using a specific algorithm, and produces output data streams
that can be consumed by other PEs.

System S has two self-optimizing features regarding
jobs, a planner [13] and event-based plan branches. Due
to the potentially large numbers of data sources and PEs
shared among many users, a processing graph may be
quite complex. There may exist many different process-
ing graphs, all of which can accomplish a given goal, but
with various performance/cost tradeoffs. It is infeasible for
human users to manually construct and identify the best al-
ternative. To this end, we let the system optimize itself: a
planner component can construct an optimized processing
graph autonomically, based on high-level descriptions of the
desired results from the user. We call such descriptions in-
quiries; they describe the semantic meaning of the desired
results.

To formally describe the semantics, we utilize ontolo-
gies [12], a standard from Semantic Web, to represent the
concepts and relations relevant to a certain domain of in-
terest. A concept is the abstraction for a kind of entities
sharing common characteristics. For example, for emer-
gency response applications, Sensor, Location and Multime-
diaData are concepts. There are specific entities for each
concept. Traffic Camera 10036-1 is an entity of concept
Sensor, and BwayAt42nd (the intersection of Broadway and
42nd Street) is an entity of concept Location. Concepts are
associated with each other through properties that describe
the relationship between them. Sensor and Location are re-
lated to each other through property atLocation, meaning
that a sensor is located as a certain location.

Using the concepts and relations defined in the ontolo-
gies, we can describe data sources, PEs and users’ inquiries.
Data sources are described by the semantics of the data ob-
jects they generate; PEs are described by the semantics of
data objects they consume and produce; inquiries are ex-

pressed by the semantics of end results users desire. An AI
planning algorithm [13], enhanced to utilize such seman-
tic descriptions, automatically composes appropriate data
sources and PEs together into jobs that answer users’ in-
quiries.

In our prototype, the planner can work in both the single-
site and V2O environments. In each case it utilizes infor-
mation about available data sources and PEs and then com-
poses plans out of them. The CIP of a V2O specifies what
kinds of data sources and PEs each site should contribute to
the V

2
O. A VO planner collects the semantic description

about such data sources and PEs, and produces plans using
resources from the whole V2O. Based on factors including
resource availability (e.g., which site has what data source,
PE, or special processing hardware; the network connectiv-
ity and bandwidth between any two sites; or which sites are
alive), the VO planner generates an optimized plan that uses
available resources and partitions the plan among available
sites. The result is a distributed job consisting of multiple
subjobs, each of which is dispatched to run on one member
site.

In a large V2O, there are significant variations in re-
source availability over long time periods and on different
member sites. They affect not only the partitioning of plans,
but also what plans are feasible at all. A plan that is pro-
duced and optimized initially may become inefficient (e.g.,
when the quality of some data source deteriorates), or com-
pletely infeasible (e.g., when communication between two
sites is lost) over time.

To allow the system adapt to dynamic environment, we
propose event-based plan branches. (These are like conti-
gency plans in the AI planning literature [8], but specialized
to the streaming context.) Instead of requesting a panacea
plan, the user defines a set of contingency scenarios with
which he or she is most concerned and wants to be prepared.
These are events that are very likely to happen (such as a
network connection known to be unreliable), or their occur-
rence will have a severe impact on the application (such as
a camera no longer providing relevant data because a hurri-
cane has moved out of its range). The system can employ
specialized PEs to detect and publish these events.

Under each scenario, there is certain resource avail-
ability. The planner will produce an optimized plan as a
“branch” under that scenario. It would also specify the con-
ditions under which a given plan branch should be activated.
The events and their plan branches would be submitted to a
Remote Execution Coordinator component. It would sub-
scribe to events published by those specialized detection
PEs and execute different branches accordingly.

Depending on the constraints such as how quickly the
system must adapt, plan branches have several options for
advance preparation. They range from pre-deploying and
activating branches to run when the event is triggered, to



deploying them on demand, or replanning when an unex-
pected scenario actually happens. In this way, the whole
V2O can self-optimize a long-running job to adapt not only
to events that alter resource availability during its lifecycle,
but also to user constraints on how to adapt.

4. Failover

Failover in System S has been described by Rong, et
al. [14]. Because it appears elsewhere, and due to space
limitations, we limit this discussion to a brief summary.

The key requirements for failover support are the ability
to self-heal, such as monitoring the liveliness of another site
and migrating executing PEs from a failed site to a backup
site (these two features are implemented in our current pro-
totype). The PEs may interact with only streams on the
failed site, or with remote streams that come from or go to
other sites. In the latter case, the system must not only re-
instantiate the failed PEs on another site, but also reconnect
the streams that cross site boundaries.

It is possible that data objects have already been trans-
mitted on a stream that goes to a failed site and get lost.
For completely reliable stream transport, the site transmit-
ting those objects must buffer the objects until the applica-
tion consuming them has been checkpointed and migrated
to a backup site. In general, there is a large body of work on
checkpointing in message-based systems, which our system
can leverage.

One self-healing scenario the system must address is
when an executing application cannot be recreated on a new
site. For instance, it might draw on data only available on
the failed site, use site-specific hardware, or need other spe-
cialized resources. In this case, upon the detection of a
failure, the inquiry responsible for the failed tasks can be
replanned and deployed using available resources, or the al-
ternative plan can be prepared in advance as an event-based
plan branch, triggered by the failure of one of the sites in-
volved.

5. Related Work

Cooperative System S has some commonality with other
streaming data analysis [1, 4, 15] systems, Grid comput-
ing [7], and parallel execution engines [9, 5]. A represen-
tative stream processing system is Borealis [1], which has
explicit support for fault tolerance [3].

Nevertheless, System S differs from Borealis and other
stream processing systems [15, 4] in several aspects. First,
the V2Os allow System S sites to self-configure and cooper-
ate under a variety of interaction models, from loosely cou-
pled to tightly integrated. They address different levels of
cooperation needs of sites with varying degrees of trust rela-
tionships. Second, System S adopts the planning approach

to self-optimize jobs without explicit human intervention.
Users need to specify only the desired results without man-
ually constructing jobs. The event-based plan branches
will further allow the cooperative processing environment
to self-optimize the runtime execution of jobs to adapt to dy-
namic changes in load and resource availability. This is very
important for long-running stream applications to adapt to
dynamic changes that cannot be predicted beforehand. Fi-
nally, System S supports arbitrary application-specific pro-
cessing rather than database operations— a more difficult
problem due to higher complexity, development costs and
times to completion.

The closest work to our V2O is hierarchical VOs pre-
sented by Kim and Buyya [11]. They define a VO as a
set of users, resource providers, and sub-VOs, which can in
turn consist of other users, resource providers and sub-VOs.
In each VO, there are policies associated with the resource
providers to specify the amount and cost of resources that
may be consumed by the users.

Compared to us, this work is limited to resource provider
lookup and only in hierarchical VOs; it does not provide the
more advanced features that we propose. First, only hier-
archical VOs are possible; a cooperative interaction model
when there exist multiple peer VOs without a common root
is not supported. Second, one VO can participate in only
one higher level VO, it cannot be members of multiple si-
multaneous collaborations. Finally, all sites within a VO are
treated identically and no differentiation is possible. These
all constrain the breadth and variety of possible collabora-
tions, and types of applications.

Various aspects of System S have been described in the
literature. The most relevant to this paper include a high-
level overview of cooperation in System S [6] and a recent
evaluation of autonomic support for job management in a
single System S site [10].

6. Conclusions

Large-scale stream processing is a grand challenge.
Making multiple such stream processing sites cooperate to
further scale up the analysis breadth and depth is even more
ambitious. The mere management demand needed to allow
such sites to operate and adapt to dynamically changing en-
vironments may already overwhelm users and administra-
tors.

In this paper we have described three autonomic fea-
tures that will relieve humans from much of the huge bur-
den. The flexible V2Os allow sites to self-configure and
form cooperation relations suitable for their common in-
terests and trust levels. The system uses a planner to self-
optimize streaming jobs from high level descriptions from
users; different plan branches can be executed upon cer-
tain events to self-optimize the runtime operation. Failover



support enables jobs on failed sites to be migrated to other
sites, and even trigger autonomic replanning for improved
performance. These features minimize explicit human in-
tervention needed to deal with dynamic changes in a large,
complex environment.

Acknowledgments

We thank the anonymous reviewers for feedback on an
earlier version of this paper, and the rest of the System S
team for their efforts on the system.

References

[1] D. J. Abadi et al. The Design of the Borealis Stream Pro-
cessing Engine. In Second Biennial Conference on Inno-
vative Data Systems Research (CIDR 2005), Asilomar, CA,
January 2005.

[2] A. Andrieux et al. Web Services Agreement Specifica-
tion (WS-Agreement), Version 2006/07. GWD-R (Pro-
posed Recommendation), Grid Resource Allocation Agree-
ment Protocol (GRAAP) WGGRAAP-WG, July 2006.

[3] M. Balazinska et al. Fault-Tolerance in the Borealis Dis-
tributed Stream Processing System. In ACM SIGMOD
Conf., Baltimore, MD, June 2005.

[4] S. Chandrasekaran et al. TelegraphCQ: Continuous dataflow
processing for an uncertain world. In Conference on Inno-
vative Data Systems Research, 2003.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. In Proceedings of the 6th Sym-
posium on Operating Systems Design and Implementation
(OSDI’04), pages 137–150.

[6] F. Douglis et al. Multi-site cooperative data stream analysis.
Operating System Review, 40(3):31–37, 2006.

[7] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
Grid: Enabling scalable virtual organizations. Lecture Notes
in Computer Science, 2150, 2001.

[8] J. Hoffmann and R. Brafman. Contingent planning via
heuristic forward search with implicit belief states. Proceed-
ings of Fifteenth International Conference on Automated
Planning & Scheduling (ICAPS-05), pages 71–80, 2005.

[9] M. Isard et al. Dryad: distributed data-parallel programs
from sequential building blocks. In Proceedings of the Eu-
ropean Conference on Computer Systems (EuroSys), 2007.

[10] G. Jacques-Silva et al. Towards autonomic fault recovery
in system-s. In Proceedings of the 4th IEEE International
Conference on Autonomic Computing, June 2007. To appear.

[11] K. Kim and R. Buyya. Policy-based Resource Allocation in
Hierarchical Virtual Organizations for Global Grids. Pro-
ceedings of the 18th International Symposium on Computer
Architecture and High Performance Computing (SBAC-
PAD’06)-Volume 00, pages 36–46, 2006.

[12] D. McGuinness and F. van Harmelen. Owl web ontology
language overview. In W3C Recommendation, 2004.

[13] A. Riabov and Z. Liu. Scalable planning for distributed
stream processing systems. In Proceedings of ICAPS 2006,
June 2006.

[14] B. Rong et al. Failure recovery in cooperative data stream
analysis. In Proceedings of the Second International Confer-
ence on Availability, Reliability and Security (ARES 2007),
Vienna, Apr. 2007.

[15] The STREAM Group. STREAM: The Stanford stream data
manager. IEEE Data Engineering Bulletin, 26(1), 2003.


