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Abstract—Internet of Things in enterprise environments fea-
tures large numbers of devices deployed in rooms, floors of
possibly multiple buildings. Delivering user commands to control
devices nearby and multiple hops away requires efficient and
scalable routing in such environments. Existing work in ad-hoc,
sensor or IoT network routing lacks good human accessibility
and scalability. In this paper, we propose a peer-based protocol
GraphiteRouting. All devices carry human-readable hierarchical
string names for easy reference. It leverages devices’ installation
hierarchy for scalable hierarchical routing: most devices maintain
only a few to dozens of routing entries for same-room devices,
and a fraction of devices act as gateways for traffic from/to other
rooms, floors or buildings. Also, it leverages users’ operation
patterns to less optimize infrequently used routes. Extensive
analysis and performance evaluation on a 20-node testbed prove
that GraphiteRouting is scalable: it has routing tables 10x~1000x
smaller than those in peer-based flat routing; also, upon device
joining/leaving, its routing entries converge in less than 5 s, and
forwarding a user command over 8 hops costs less than 0.3 s.

Index Terms—Peer-based Routing, Name-based Routing, Hi-
erarchical Routing, Internet of Things

I. INTRODUCTION

Internet of Things in enterprise environments features more
than thousands of devices distributed in rooms, floors and
possibly multiple buildings. A user issues a command to
operate devices close by or multiple hops away, e.g., close/turn
off all the “Things” (doors, windows, lights, etc.) in her office
when leaving, or turn on the lights in the next aisle.

Routing is critical in correctly and efficiently delivering a
command to the destination device. There is intensive routing
work for the Internet, wireless sensor networks, mobile ad-hoc
networks [1], [2], [3], and for IoT which focuses on energy
efficiency [4], throughput [5], security [6], etc. However,
a solution specifically devised for enterprise IoT deserves
further effort, due to the context’s unique characteristics.

First, though some IoT devices may be more resource-
rich, a lot of constrained devices may not have direct Internet
connectivity and they rely on peer-based routing to relay
messages to/from users. Second, different from traditional ad-
hoc networks that use numeric addresses to denote nodes,
IoT features frequent human operations. Thus facilitating easy
human access to discover, reference and control devices in
manners convenient to humans is critical. Third, traditional
ad-hoc network routing assumes “flat” traffic where any node
may need to communicate with any other, but in IoT traffic
is largely correlated with building structures. E.g., a user is
mostly interacting with the devices installed in her room or

floor. If routing paths are blindly established between all pairs
of devices, it would incur prohibitive amounts of overhead,
whereas most of which would be made in vain.

In this paper, we propose GraphiteRouting, a peer-based,
name-based, hierarchical routing protocol leveraging IoT de-
vices’ installation hierarchy and users’ operation patterns to
achieve scalability. Each IoT device has a hierarchical name
reflecting its building/floor/room of installation. Such names
are easy for users to discover, remember, reference and access.
By advertising names to neighboring devices, a fraction of
devices find out their abilities to serve as room/floor/building
gateways and they maintain routing entries for traffic across
rooms/floors/buildings. And most devices are non-gateways
which only maintain a few to dozens of routing entries for
traffic within their rooms. A user command is hierarchically
routed to the destination building first, then destination floor,
room, and finally device. Besides, based on users’ operation
patterns, we use an intra-floor strict while inter-floor loose
strategy that routing for traffic within a room or floor (which
is frequent) is strongly optimized while that across floors or
buildings (infrequent) is weakly optimized, to further reduce
routing establishment overhead. It is named after graphite
whose atoms have strong intra-layer forces while weak inter-
layer forces. Our contributions are:

e« We devise a hierarchical naming rule for IoT devices
to facilitate easy human discovery, reference and access,
without requiring a separate mechanism mapping human
specifications to device numeric identifiers.

o We design a strategy for devices to dynamically establish
a self-organized, hierarchical network based on their
names. It leverages IoT devices’ installation hierarchy to
achieve hierarchical routing scalable to enterprise IoT.

« We strongly optimize frequent intra-room and inter-room
routing, but not inter-floor or inter-building routing which
occurs much more rarely. It reduces routing establishment
overhead and further improves scalability.

o We implement our designs and conduct analysis and real
experiments on a 20-node testbed. Using GraphiteRout-
ing, one device needs at most dozens of routing entries
regardless of the number or size of buildings. On the
contrary, peer-based flat routing needs 10x~1000x more
entries. Besides, our solution has quick network conver-
gence (< 5 s when a device joins/leaves the network) and
fast command forwarding (< 0.3 s over 8-hop delivery).



II. MODELS AND ASSUMPTIONS

Node Types. Besides a backend server, two types of nodes
are considered: subject devices and objects. A subject is a
user who uses a subject device (e.g., smartphone) to access
objects [7], [8], [9], i.e., IoT devices or “Things”.

We argue that sufficient wall-powered objects (e.g., door
locks, lights, HVAC) exist in enterprise environments. They
have less concern about energy, and serve as routers. Battery-
powered objects (e.g., temperature/smoke sensors) are hosts of
routers and not involved in routing. In the remainder, objects
refer to wall-powered ones unless otherwise specified.

Network Connectivity. We assume network connectivity
exists among subject devices and objects in close proximity.
This could be enabled by certain radio modes (e.g., WiFi ad-
hoc, WiFi direct), and/or bridging devices that have multiple,
possibly heterogeneous radios to relay messages. Objects are
largely static once installed, but occasional, small-scale object
additions/removals make the network topology low dynamic.

A. Properties of Internet-of-Things

1) Human operations are frequent. Human users cannot
easily track numeric identifiers of objects. Instead, they are
used to specifying an object to access with its installation
location and device type, e.g., “living room, ceiling light”.

2) Numerous objects are distributed in a building
hierarchy. In a home environment there are usually dozens
to hundreds of objects scattered in multiple rooms or a few
floors; an enterprise can have up to tens of thousands of
objects deployed in possibly multiple buildings, with many
more floors per building and many more rooms per floor.

3) Command amounts vary inversely with target dis-
tances. Unlike Internet users who frequently perform remote
access (e.g., stream movies from distant servers), [oT subjects
are mostly interacting with nearby objects. i) Usually a subject
is controlling those (e.g., lights, windows, air conditioner)
in her current room. ii) Commands traveling across several
rooms on the floor or across several floors, are less frequent
but still common. E.g., before a manager leaves his office
for conference room on the floor, he sends a command to
boot the conference room computer/projector, such that when
he arrives the equipment is ready; seeing from the 2nd floor
that a visitor arrives, the secretary unlocks the building gate.
iii) Remote commands crossing many floors or even targeting
another building only happen occasionally.

III. DESIGN GOALS

Scalability. Routing table sizes and routing updating over-
head (in terms of convergence time and message overhead)
should be small enough such that the routing solution applies
to large-scale IoT in enterprise environments.

Human Accessibility. Objects should be easily referenced,
accessed by humans, without requiring a separate mechanism
mapping human specifications to object numeric identifiers.

Self-Organization. The network should be self-organized,
and dynamically updated upon object joining/leaving.

Non-Goals. We focus on IoT routing in enterprise environ-
ments, where objects are mostly installed indoor and human
users send commands of small sizes to them. It is different
from work [4], [10], [11] dealing with IoT of a wireless sensor
network style where objects deployed outdoor with possibly
constrained energy send large volumes of sensing data to
gateways. Also, our work is peer-based, for robust and efficient
routing in relative near ranges (e.g., < 10 hops). It is not for
replacing infrastructure-based, long-distance routing.

IV. ROUTING ALGORITHM

Our routing algorithm is based on link-state (LS) routing.
We choose LS other than distance-vector (DV) because it
does not have the latter’s count-to-infinity or slow convergence
issues. However, LS originally may have too high message
overhead to fit for an enterprise scale. Our design is name-
based for good human accessibility, and it leverages IoT
objects’ installation hierarchy and subjects’ operation patterns
to achieve hierarchical routing scalable to enterprise 1oT.

Bootstrapping. To join the system, a new subject or ob-
ject must first register at the backend, getting its ID. An
object additionally gets a hierarchical, human-readable string
name according to its installation location and device type,
with the format: Namespace/Building/Floor/Room/Type, e.g.,
SBU/EngBuilding/Floor1/Room217/Lightl. The last segment
can be any alias (e.g., “LightAboveWhiteBoard”) as long as
it is unique in that room. An object should get a new name
from the backend if moved to another room/floor/building.

Roles. Each object has variable roles—a set tracking its
role(s) in routing, which has one or more of the items below:

« Internal object. Each object has this role upon birth and
will always do. It may gain one or more other roles.

+ Room-gateway router object. A room-gateway routes
commands from one room to another on the same floor.

o Floor-gateway router object. A floor-gateway routes
commands from one floor to another in the building.

o Building-gateway router object. A building-gateway
routes commands from one building to another.

Other Variables. Each object has neighbors recording its
1-hop neighboring objects, and roomMates recording other
objects in its room. roomM ates constitute graph roomGraph
and the routes to them are stored in room RoutingT able. If it
is a room-gateway, it additionally has floor M ates recording
other room-gateways on its floor. floorMates constitute
floorGraph and the routes are in floor RoutingT able. extra
records objects in other floors or buildings.

Overview. Establishing routing has three steps: i) each ob-
ject discovers neighbors and its own role; ii) each object runs
LS algorithm to compute optimal paths to its roomM ates;
iii) each room-gateway runs LS algorithm to compute optimal
paths to its floor M ates. Most objects are non-gateways and
do not perform the 3rd step. This reduces routing table sizes,
updating overhead, and makes good scalability.
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Fig. 1: A topology example of 20 objects deployed in two buildings, where a solid or dashed line denotes a wireless link.
It is also the topology used by our testbed. Some objects are pure internal objects and have small routing tables; others are
additionally room-/floor-/building-gateways and have slightly larger tables.

A. Neighbor and Role Updating

An object O periodically broadcasts HELLO messages for
1 hop (Algorithm 1: line 1-4). The message carries message
type, sender ID, name, address (e.g., IP). ¢ is a timestamp of
message generation for ensuring that the latest information is
used for routing updating; n is a nonce for duplicate detection.

Algorithm 1 Routing algorithm: neighbor and role updating

1: procedure SEND HELLO

2: type < ‘HELLO’

3: broadcast HELLO: (type, O, O.name, O.addr,t,n)
4: end procedure

5: procedure PROCESS HELLO(O', name’, addr’)
6: relation < relation(name’, O.name)
7 role <+ relationToRole(relation)
8 add role to O.roles

add (O’,name’, addr’") to O.neighbors

10: end procedure

0 %° o

When receiving a HELLO from O’ (line 5-10), O com-
pares its own name with O’s to get the maximum pre-
fix length, and based on Tab. I it gets their location rela-
tionship and its role. E.g., in Fig. 1, Object 4 has name
“SBU/BuildingX/Floorl/RoomB/Lamp”; it hears Object 2’s
name ‘“SBU/BuildingX/Floorl/RoomA/Lamp”, and finds 3
matching prefixes, which means they are on the same floor but
different rooms. Then, a role is inferred from the relationship:
since Object 4 hears an object in the next room, it finds its
ability to serve as a bridge for traffic across the two rooms, i.e.,
it is a room-gateway. O’s roles and neighbors are updated.

B. Intra-Room Routing Updating

Now O has knowledge about its neighbors, it periodically
generates its intra-room link state packets (ROOM_LSP) and
propagates them within the room. The message carries O’s link
states to intra-room neighbors (Algorithm 2: line 4-7). E.g.,

TABLE [: Each maximum prefix length corresponds to a
location relationship and a routing role.

Length  Location Relationship Role
4 intra-room: O’ and O in the same room internal object
3 inter-room: different rooms, same floor room-gateway
2 inter-floor: different floors, same building  floor-gateway
1 inter-bldg: in different buildings bldg-gateway

Object 4’s ROOM_LSP contains link 4-7. We do not enforce
a metric for link cost, which can be hop count, expected trans-
mission count [12], etc. extra stores the information of inter-
floor or inter-building neighbors (line 8-9), and will be used
later in inter-floor or inter-building routing (Section IV-D).

Algorithm 2 Routing algorithm: intra-room routing updating

1: procedure SEND ROOM_LSP

2 type < ‘ROOM_LSP’

3 links <+ &, extra + @

4 for all O; € O.neighbors do

5: relation + relation(O;.name, O.name)
6

7

8

9

if relation = ‘intra-room’ then
add (O, O;, cost;) to links
else if relation="inter-floor’ or ‘inter-bldg’ then
: add O;.name to extra
10: end if
11: end for
12: propagate ROOM_LSP: (type, O, O.name, O.roles,
links, extra,t,n) within the room
13: end procedure

14: procedure PROCESS ROOM_LSP(O’, name’,roles’,
links', extra’)

15: add(O’,name’ roles’ cost’ ,extra’) to O.roomMates

16: add links’ to O.roomGraph, and update
O.roomRoutingT able using Dijkstra’s algorithm

17: end procedure




When receiving a ROOM_LSP from O’ (line 14-17),
O adds O”’s information to its roomMates, and updates
roomGraph and roomRoutingTable. So far, it can route
messages to other objects in its room along optimal paths.

C. Inter-Room Routing Updating

In this paper “inter-room” means across different rooms
on the same floor. If O is a room-gateway, it periodically
generates inter-room link state packets (FLOOR_LSP) which
have a similar format as a ROOM_LSP, and propagates them
within the floor. Unlike a ROOM_LSP, the message carries
O’s link states to inter-room neighbors and intra-room room-
gateways. E.g., Object 4’s FLOOR_LSP contains link 4-2 and
4-6. extra in a FLOOR_LSP is a union of all the extras of its
roomMates, for inter-floor/building routing (Section IV-D).

If O is a room-gateway, when receiving a FLOOR_LSP
from O’, it adds O”’s information to its floor Mates, and
updates floorGraph and floor RoutingT able. So far, it can
route messages to room-gateways in other rooms of its floor
along optimal paths, while a pure internal object cannot.

Object 4’s two routing tables are shown in Tab. II.

TABLE 1II: Object 4: roomRoutinglable (left) &
floor RoutingT able (right)

Destination  Next Hop Destination  Next Stop

5 7 2 2

6 7 6 6

7 7 8 6

D. Loose Inter-Floor/Building Routing

Unlike intra-room and inter-room routing, inter-floor and
inter-building need no shortest paths maintained proactively.
This is what we call “intra-floor strict while inter-floor loose”.

Inter-Floor Routing. Inter-floor routing is different from
the other three: floors are always named after regular numbers,
while objects, rooms, buildings not necessarily. We use such
numbers to devise a simple but effective routing strategy and a
shortest path algorithm is not needed: to deliver a packet to the
destination on Floor y, O on Floor x just checks if it or any
of its roommates has a neighbor O on Floor 2’ (by checking
roommates’ extra fields) such that |y — x| < |y — z|; if yes,
the packet is sent to O to vertically approach the destination;
if no, O sends the packet to another room on the floor (via
room-gateways) where the objects know such a neighbor Oy,
and then vertical approach is performed.

Inter-Building Routing. If the destination is in a different
building, O just checks if it or any of its roommates has a
neighbor Oy in the target building, and forwards the packet to
Oy if yes. Otherwise it sends the packet to another room of the
floor/building (via room-/floor-gateways) for further search.
This suffices routing to neighboring buildings.

Arguments. We use such loosely optimized strategies be-
cause: First, as mentioned in Section II-A, commands that
need to reach a different building or cross many floors are
rare, and always maintaining optimal routing paths for them

would incur prohibitive amounts of overhead, whereas most of
which would be made in vain. Instead, our strategies do not
guarantee shortest paths, but they achieve effective inter-floor
or building routing without needing extra link state exchange.

Second, occasionally commands need to travel far (e.g., to
another building), and in such cases peer-based routing, even
strongly optimized, would be too slow or unreliable because of
too many hops. It is better to route the command to the target
via infrastructures (access points, cables), or to its vicinity
(e.g., the same room or floor), then our intra-room or inter-
room routing can take the task over.
E. Dynamic Updating upon Object Joining/Leaving

By sending periodic HELLOs, ROOM_LSPs and
FLOOR_LSPs, an object which joins the network will
be detected by other objects. Those messages are all soft-

state, so the entries of an object which leaves the network
will be expired and then removed.

V. FORWARDING ALGORITHM

A user command is hierarchically forwarded to its des-
tination via routing table lookup: it reaches the destination
building first, then destination floor, room, and finally device.
An internal object depends on itself for optimal intra-room
forwarding, and delegates to a gateway the traffic going out
of the room to another room, floor or building.

As shown in Algorithm 3 (line 2-4), when receiving a
command c¢md, O extracts its destination dest. O executes
cmd if it is dest, otherwise it finds its relationship with dest
by comparing their names. Depending on the relationship, one
of the following forwarding strategies is used:

1) Intra-Room Forwarding. (line 5-8) If dest is in the
same room and exists in O’s roomMates, O simply forwards
cmd to it by roomRoutingT able lookup.

2) Inter-Room Forwarding. (line 9-13) If dest is in
another room of the floor: i) if O is a room-gateway, it has
floor RoutingT able and can forward cmd towards the room-
gateway in dest’s room; ii) otherwise O delegates cmd to a
room-gateway in its room.

3) Inter-Floor Forwarding. (line 14-20) If dest is on
another floor of the building: i) (line 15-16) O checks if it
or any of its roommates has a neighbor Oy which is on a
floor closer to dest’s floor, and sends cmd to Oy if yes; ii)
(line 17-18) otherwise O delegates ¢md to a room-gateway
in its room, to search Oy from other rooms on the floor.

4) Inter-Building Forwarding. If dest is in another build-
ing, the process is similar to inter-floor forwarding, except that
Oy is a neighbor in dest’s building.

Gateway Selection. When a pure internal object needs to
use a room-gateway, it may find multiple candidates among its
roommates and which is on the optimal path to the destination
is unknown to it. We use a hot-potato routing [13] like
strategy: the object sends the message to the closest room-
gateway (e.g., with the minimum hop count). The chosen
gateway, if not on the optimal path, will forward the message
to the correct gateway. Besides, it will inform the object which
gateway to use in the future for that destination.



Algorithm 3 Forwarding algorithm

1: procedure PROCESS COMMAND(cmd)
2: dest < cmd.destination
3: relation = relation(dest, O.name)
4 if dest = O.name then execute cmd
> intra-room forwarding

5: else if relation = ‘intra-room’ then
6: if dest € O.roomMates then forward cmd to-
wards dest
else return ERROR
end if
> inter-room (but the same floor) forwarding
9: else if relation = ‘inter-room’ then
10: if O is ‘room-gateway’ and 3 Op €
O.floorMates has relation(Op,dest) = ‘intra-room’
then forward emd towards Op
11 else if 3 Or € O.roomMates is ‘room-gateway’
then forward e¢md towards Og
12: else return ERROR
13: end if
> inter-floor forwarding
14: else if relation = ‘inter-floor’ then
15: if O is ‘floor-gateway’ and O has neighbor Oy
approaching dest’s floor then forward cmd to Oy
16: else if 3 O € O.roomMates has neighbor Oxn
approaching dest’s floor then forward cmd towards Ogr
17: else if O is ‘room-gateway’ and 3 Op €
O.floor Mates and Op or Op.roomM ates has neighbor
On approaching dest’s floor then forward cmd to Op
18: else if 3 O € O.roomM ates is ‘room-gateway’
then forward cmd towards Og
19: else return ERROR
20: end if

> inter-bldg forwarding is omitted for space constraints
21: end if
22: end procedure

VI. EVALUATION

We implement our routing and forwarding algorithms, and
conduct analysis and real experiments on a tested consisting
of 20 objects, each emulated by a Raspberry Pi 3. WiFi ad-
hoc is used for communication between two nodes. As argued
in Section II, wall-powered objects with needed radios serve
as routers while resource-/power-constrained ones do not, thus
using Pis can emulate networking and power aspects well.

Since the “graphite” network mirrors the building’s con-
struction hierarchy, a node’s routing table size is about the
number of nodes in the room it is in, plus (if it is a room-
gateway) the number of rooms on the floor, which is always
a very limited number regardless of the size of the whole
building. We first theoretically analyze our room/floor routing
table sizes; then we conduct real experiments using 20 objects
deployed as Fig. 1 to test a representative case of several
rooms/floors, and each intra-room network is 1~2 hops in

diameter. In reality there can be more objects per room,
but hop count would be limited, considering that mainstream
radios (e.g., WiFi, Bluetooth, ZigBee) have reasonably far
transmission distances (e.g., dozens of meters). So our testbed
consisting of 20 objects is regarded sufficient.

We make HELLOs/ROOM_LSPs/FLOOR_LSPs sent with
period Theio = 18, Troom = T'fioor = 2 s, and expired in
Ehetio =28, Eroom = Efloor =4s.

We find GraphiteRouting is scalable to enterprise environ-
ments: i) its routing table is small (dozens of entries) while
peer-based flat routing is 10x~1000x; ii) it has quick network
convergence (< 5 s when a device joins/leaves the network)
and fast command forwarding (< 0.3 s over 8-hop delivery).

A. Routing Table Size

Without loss of generality, we assume x (order of magni-
tude: 10° ~ 10!, i.e. one to dozens) buildings, averagely [
(10° ~ 10") floors per building, m (~ 10') rooms per floor,
and n (~ 10') objects per room. The numbers of room-/floor-
/building-gateways in each room are all denoted as k (~ 10Y).

In our system the number of routing entries kept by an
object depends on its role(s): i) every object is an internal
object and has (n — 1) entries for its roommates; ii) if it
also serves as a room-gateway, it additionally needs (mk —1)
entries for its floormates (i.e. same-floor room-gateways)j; iii)
if it also serves as a floor-/building gateway, it needs one or
a few entries for each of the floors/buildings it can reach in
1 hop; that number is usually a few and negligibly small. We
summarize the table sizes with small numbers omitted:

TABLE III: Routing table sizes of GraphiteRouting

Role Routing Table Size In Our Testbed

n (~ 101)
n 4+ mk (~ 101)

Internal object
Room-gateway

Object 3 has 3 entries
Object 2 has 6 entries

As shown, the table of a room-gateway and that of a pure
internal object have the same magnitude (~ 10!). Both are
significantly smaller than a flat routing table, which may have
xlmn (102 ~ 10*) entries and be 10x~1000x larger.

B. Message Overhead

Theoretically, one HELLO is broadcast (1-hop only) by each
object per Theiio; 1 (~ 10') ROOM_LSPs are propagated
within a room per T,oom; mk (~ 10') FLOOR_LSPs are
propagated within a floor per T4, We regard such message
overhead acceptably small, and the amount of traffic can
be reduced if lower transmission frequencies are used (e.g.,
Thetto = 10 s, Troom = 20 s) at the expense of longer
convergence time. In our implementation, HELLOs use sim-
ple broadcast. ROOM_LSPs, FLOOR_LSPs and CMDs have
retransmission for reliable delivery. For each of the three, the
retransmission rate found in our experiments is around 9.7%.

C. Routing Algorithm: Convergence Time

We test the convergence time (i.e. from an object’s join-
ing/leaving till the slowest affected object finishes updating its



routing table) of five representative objects with different roles.
They are: Object 5 (internal), 2 (room-gateway), 3 (internal),
0 (building-gateway), 1 (floor-gateway).
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Fig. 2: Convergence time when different objects join/leave the
network

Fig. 2 (a) shows that all cases have fast convergence: < 5
s for addition and 6 s for removal. For addition, adding an
internal object like Object 5 is the fastest since it only affects
its roommates (details shown in (b)). A room-gateway (e.g.,
Object 2) is slower because of additional inter-room updating;
a floor- or building-gateway (e.g., Object 1 or 0) is further
slower due to updating in other floors or buildings besides
of that in this room and floor (details shown in (c)(d)). Note
that although Object 3 is a pure internal object, it has slower
convergence than 5 because it happens to be a hub connecting
Object 2 and O, 1. Its existence makes Object 2 know the
existence of a floor-gateway (Object 1) in the room, thus its
presence/absence triggers Object 2’s floor routing updating.
On the other hand, convergence times for removal are less
different among the five objects. It is because each case needs
to wait for similar time for message expiration.

D. Forwarding Algorithm: Forwarding Time

We also evaluate the latency from a command’s departure
to arrival when using our forwarding algorithm. We test

two complicated, multi-hop (8-hop and 7-hop respectively)
forwarding cases. Case 1 is inter-building forwarding, from
Object 10 to 19. Our forwarding algorithm finds the path:
10—+8—6—7—4—2—3—0—19. Case 2 is inter-floor for-
warding, from Object O to 18. Originally our algorithm gets:
0—1—12—15—13—18. To make it more challenging, we
cut link 13-18, and find the algorithm succeeds in finding an
alternative: 0—1—12—15—14—16—17—18. Fig. 3 presents
the results for Case 1, and Case 2 without link 13-18.
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Fig. 3: Command forwarding latency

Both cases achieve quick forwarding, usually < 0.3 s, and
the median time costs are < 0.15 s. Note that the same hop
count in the two figures corresponds to totally different objects
which are deployed in different locations, and it is normal that
their arrival times differ.

VII. DISCUSSION

Link Cost. The link cost metric can affect directly the
routing decisions. Hop count is one option. If more dynamic
changes turn out significant, metrics accounting for them (e.g.,
expected transmission count (ETX) [12] can also be used.

Gateway Reduction. Due to objects’ high deployment
densities and radios’ long transmission distances, it is common
that many objects can hear objects in other rooms/floors, thus
are able to act as gateways. However, GraphiteRouting wants
most objects to be pure internal nodes and have small routing
tables. The number of gateways per room for reaching the
same external destination should be limited to a few, via e.g.,
gateway election, which is out of the scope.

Event-Driven Updating. Periodic updating is used in our
design and implementation for its simplicity and robustness.
An event-driven scheme that an object sends LSPs immedi-
ately when detecting a link state change, can result in faster
updating and less traffic. The two can be used in combination.

VIII. RELATED WORK

Ad-hoc Routing. DSR [1] is on-demand source routing
which needs a message to carry the whole route with it.
DSDV [2] relies on routing tables maintained by intermediate
nodes and uses sequence numbers to avoid routing loops.
Its periodic updating makes it unsuitable for highly dynamic
networks. Like DSR, AODV [3] is an on-demand routing
protocol; however, it maintains routing tables on nodes. They



work for “flat” traffic where any node may need to communi-
cate with any other, thus unscalable in enterprise IoT due to
their significant unnecessary overhead.

Named-data Routing. NLSR [14] is named-data link state
routing. Unlike IP-based, it propagates reachability informa-
tion denoted by name prefixes instead of IP prefixes. Our nam-
ing rule uniquely mirrors buildings’ construction hierarchy,
and realizes scalable routing in enterprise IoT.

IoT Routing. Multiple IoT routing solutions with various
goals have been proposed. In [15], [10], [4], IoT of a wireless
sensor network style is targeted, and energy efficient routing
is studied. In [11], content aggregation is performed during
routing to alleviate congestion and reduce latency; Lei et al.
[5] apply network coding techniques to named data networks
(NDN) [16] for high throughput in 5G IoT. In [17], path
survivability is considered in routing decision making. Real-
time routing is studied in [18], and secure routing in [6]. They
do not target the scalability issue in enterprise IoT.

Afanasyev et al. [19], [20] improve NDN routing scalability:
instead of expensively maintaining forwarding information for
all prefixes, forwarders only do that for a subset of prefixes
to which other producers delegate their namespaces. In [21],
to eliminate such maintenance, forwarders make on-demand
routing decisions. Laser [22] has a hierarchical network:
cluster heads maintain routes to each other, and are used by
their cluster members for inter-cluster communication.

Though using hierarchy for high scalability is not new,
ours is specifically devised for indoor enterprise IoT envi-
ronments and uniquely congruent with objects’ installation
hierarchy. Thus objects’ roles can be automatically, reasonably
determined instead of manually appointed. Besides, subjects’
operation patterns (e.g., intra-room operations are frequent,
inter-building ones not) are leveraged to reduce routing estab-
lishment overhead and further improve scalability.

IX. CONCLUSION

In this paper we describe the design, implementation and
evaluation of GraphiteRouting, a peer-based, name-based, hi-
erarchical routing protocol leveraging building hierarchy. Most
devices maintain routing entries for same-room devices only,
and a fraction of them are gateways for traffic from/to outside
of the room. It has good human accessibility, fast routing table
updating (< 5 s for convergence), quick command forwarding
(< 0.3 s over 8 hops), and is scalable (at most dozens of
routing entries per node) to enterprise IoT.
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