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Abstract
The proliferation of mobile devices equipped with rich sensing and computing resources has pushed the emergence of a new 
cloud paradigm, mobile edge clouds, where tasks are dispatched from the centralized cloud to the network edge. By taking 
the advantage of widely-distributed mobile devices, urban monitoring-oriented crowdsourcing services can be provided by 
a mobile edge cloud, where fine-grained monitoring data over time are crowdsourced by mobile devices and then useful 
information is extracted. However, as considerable costs are incurred on mobile devices, there exists a major problem that 
a high financial budget is required to guarantee the quality of service. Fortunately, we observe that real-world sensing data 
exhibit strong spatial and temporal correlations, and advanced inference methods can be employed to efficiently recover 
missing data. Motivated by the observation, we provide a near-optimal online task dispatching approach for crowdsourcing 
services provided by a mobile edge cloud, aiming to minimize the total cost incurred on devices while guarantee the qual-
ity of service in the meantime. Besides, considering strategic device users with private cost information, we also propose a 
truthful pricing policy. Extensive simulations based on real datasets show that our approach outperforms other competing 
schemes, producing a high quality of service with a much lower budget.

Keywords Edge computing · Task dispatching · Quality of service and pricing

1 Introduction

Recent years have witnessed the wide penetration of smart-
phones in our daily life. It is reported that the number of 
smartphone users in the world is as high as 2.1 billions 
(World-wide smartphone users 2018). Thanks to the prolif-
eration of smartphones equipped with various sensors and 
computing resources, mobile edge clouds (also known as 
edge computing and fog computing) (Shi et al. 2016; Luan 
et al. 2016) has become a promising paradigm for collecting 
and processing sensing data, where smartphones are seen 
as small servers at the network edge. Taking the advantage 
of widely-distributed smarthphones, urban monitoring ser-
vices can be provided by a mobile edge cloud, in which 
fine-grained sensing data over time can be crowdsourced by 
smartphone users, such as traffic event reporting (Shi et al. 
2016), noise mapping (Rana et al. 2010) and air pollution 
monitoring (Mendez et al. 2011).

In this work, a general mobile edge cloud is considered, 
comprised of base stations and mobile smartphones with 
cloud-like computing capacity and storage, as shown in 
Fig. 1. When a crowdsourcing service request arrives to the 
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system, the centralized cloud first divides it into individual 
sensing and computing tasks, and then dispatches them to 
mobile smartphones through base stations. Such services 
need to collect spatial–temporal sensing data in order to 
monitor a given urban area over time. For simplicity, the 
urban area is divided into grids of the same size and the time 
slotted. The straightforward method is to collect the com-
plete sensing data of all grids in all time slots, as illustrated 
in Fig. 2a. However, many smartphones need be employed, 
which incurs a high financial budget to the service requester. 
As we know, doing sensing and computing tasks incurs a 
certain cost on each resource-limited smartphone, such as 
battery consumption and bandwidth usage. Thus, monetary 
incentives should be provided to smartphone users for per-
forming crowdsourcing tasks.

Fortunately, we observe that in a real-world urban moni-
toring application, the sensing data exhibits strong spatial 
and temporal correlations. For example, we analyzed PM2.5 
Air Quality (Zheng et al. 2013) data of Beijing, China, by 
spliting the monitored area into 1 km × 1 km grids and time 
into 1 h time slots. We found that the spatial correlation 

between two adjacent grids is as high as 0.9518, and the 
temporal correlation between two contiguous time slots is 
as high as 0.9311. The existence of strong spatial and tem-
poral correlations suggests that it is unnecessary to collect 
all sensing data of all grids in all time slots. Instead, only 
a subset of sensing data is collected (as shown in Fig. 2b) 
and data recovery methods can be exploited, such as matrix 
factorization (Dhillon and Sra 2006), to infer the rest miss-
ing data.

Motivated by the observation, we propose a new sens-
ing data collection and pricing scheme for a mobile edge 
cloud. The main idea is collecting only a small subset of 
sensing data, and then applying data recovery methods via 
leveraging the spatial–temporal correlations. Thus, the total 
budget is dramatically reduced since the total amount of col-
lected sensing data is much smaller. To implement this idea, 
however, there are two coupled problems to address. The 
first problem is to determine the cells and the corresponding 
smartphone users to do the sensing tasks, with the objective 
to lower the total cost while retain a high quality of service. 
The second problem is to determine the pricing policy pro-
vided to strategic smartphone users. The payment should be 
made in such a way that all strategic users would truthfully 
report their sensing and computing costs of doing tasks. We 
stress that the two problems are coupled, since the amount 
of payment to each recruited user is typically dependent on 
the set of specific users who are recruited.

Solving the two coupled problems faces several major 
challenges. First, mobile samrtphones are dynamic who 
may join and leave at any time. And their costs may change 
over time. This suggests that greedily selecting users with 
the lowest costs may not be optimal, since better users may 
become available in future. Second, the relationship between 
the collected sensing data and the accuracy of recovered 
data, i.e., the quality of service, is not clear. A formalized 
model is required to characterize the quality of service based 
on collected sensing data. Finally, smartphone users are 
typically strategic and their cost information is private. A 
strategic user may misreport his or her cost information to 
the platform in order to gain a higher payment.

A few existing works (Xu et al. 2015a, b; Wang et al. 
2015) have noticed the correlations in sensing data and pro-
posed methods to lower the cost of data collection. However, 
they simply assume smartphone users are voluntary crowd-
sourcing workers. Recently, some task dispatching methods 
(Liu et al. 2016; Xu et al. 2017; Sun et al. 2017; Mao et al. 
2016; Tan et al. 2017) have proposed for mobile edge com-
puting. Most of them focus on determining whether a task 
should be executed on the edge severs or the remote cloud, 
with the objective of minimizing the total delay. Different 
from these previous works, we consider the quality of sens-
ing data collection service provided by a mobile edge cloud, 
and leverage the correlations in sensing data.

Fig. 1  An illustration of a mobile edge cloud system, where base sta-
tions and mobile smartphones are seen as small servers at the network 
edge. For an urban monitoring service, fine-grained sensing data need 
to be collected and processed by these small servers

(a) (b)

Fig. 2  a The straightforward approach to satisfy an urban monitor-
ing service by collecting the complete sensing data. It incurs a high 
budget to the service requester. b The proposed approach leverages 
the spatial–temporal correlations and collects a subset of sensing 
data, which significantly reduces the budget
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In response to the aforementioned challenges, we first 
introduce the concept of spatial–temporal coverage which 
bridges the quality of service and the set of collected sens-
ing data. Then, our approach consists of two main building 
blocks. The first building block determines in which cells 
sensing data are collected and which smartphone is selected 
to do the sensing task. Note that even the offline version of 
this problem is an integer linear program (ILP), which is a 
well-known NP-Complete problem. An online near-optimal 
algorithm is proposed in this paper, which minimizes the 
time-averaged total cost while meeting the requirement of 
quality of service. The second building block determines 
the payment to each smartphone users. We first introduce 
a reverse auction model with two levels of competition. A 
pricing policy is designed, which guarantees the truthful-
ness of strategic users. To evaluate the performance of our 
approach, we have conducted extensive simulations based 
on real datasets. Comparative results show that our online 
approach outperforms other competing schemes, producing 
a high quality of service with a much lower budget.

The major contributions of this work are summarized as 
follows.

• This work is the first attempt, to the best of our knowl-
edge, to consider the spatial and temporal correlations 
among sensing data in task dispatching for mobile edge 
clouds with rational and selfish edge-cloud servers. We 
analyze the spatial and temporal correlations based on 
real datasets and show that a subset of sensing data col-
lected can recover the uncollected data.

• By defining the quality of service as the spatial and tem-
poral coverage of collected data, we formulate the task 
dispatching problem as an ILP problem, assuming all 
true costs of smartphone users over time are known. An 
online algorithm is proposed, which is proved to achieve 
the near-optimal time-averaged total cost.

• Based on the algorithm of task dispatching, we propose a 
pricing policy by modeling the interactions between the 
platform and users as a reverse auction with two-level 
competition. The payment policy is proved to guarantee 
the truthfulness of rational users.

• We perform comprehensive simulations based on real 
datasets. The results show that our online algorithm 
achieves lower total incentives compared with base-
line algorithms under different settings. Moreover, the 
recover error of uncollected data is reduced as well.

The remainder of the paper proceeds as follows. The next 
section presents the motivation, the system model, the 
problem formulation, and the overview of our proposed 
approach. In Sect. 3, the online task dispatching algorithm 
for mobile edge clouds is described. Section 4 describes 
the pricing policy. The performance is evaluated in Sect. 5. 

Related work is discussed in Sect. 6. We conclude the paper 
in Sect. 7.

   

2  Motivation and overview

2.1  Motivation

In this subsection, we first employ a real dataset, PM2.5 
Air Quality (Zheng et al. 2013), to analyze the existence 
of spatial and temporal correlations in sensing data. Then, 
we present how spatial and temporal correlations can help 
reduce the amount of collected sensing data. The dataset is 
collected from 36 air pollution monitoring stations in Bei-
jing, where each station records a measurement of the local 
PM2.5 concentration per hour. Like (Zheng et al. 2013), we 
split the whole area into 1 km × 1 km grids (only grids with 
stations are used) and divide time into 1 h time slots (during 
2/2/2014∼2/8/2014). Thus, there are 36 (grids) × 168 (time 
slots) measurements in total.

Figures 3 and 4 show the correlations among the meas-
urements collected in different locations and time slots, 
respectively. In Fig. 3, each blue point is plotted by calcu-
lating the Pearson correlation between the measurements 
collected by two stations over all time slots and the distance 
between the two stations. The red line linearly fits all the 
points plotted by all pairs of the stations. Similarly, the verti-
cal axis of Fig. 4 presents the Pearson correlation between 
the measurements collected in two time slots by all sta-
tions, while the horizontal axis presents the time difference 
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Fig. 3  Correlation vs. distance. The red line linearly fits all blue 
points
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between the two time slots. Any pair of time slots whose 
time difference is between 1 and 5 h are plotted, and the 
red line linearly fits all the points. We can clearly see that 
sensing data in nearby locations and time slots have strong 
correlations, while the correlation declines as the distance 
or time difference increases.

Inspired by the existence of spatial and temporal correla-
tions, a required service can be completed by collecting a 
subset of sensing data and recovering the uncollected data 
by employing interpolation methods. To verify this intui-
tion, we do experiments on the PM2.5 dataset. We randomly 
select a proportion of the measurements as collected data, 
and others are viewed as missing data. The ratio of selected 
measurements is noted as sampling rate. To infer the missing 
data, we employ three interpolation methods: (1) AS fills a 
missing data with the average of the measurements collected 
by the nearest three stations belonging to the time slot; (2) 
AT fills a missing data with the average of the measurements 
collected in the nearest three time slots by the same station; 
(3) MF (Dhillon and Sra 2006) interpolates a missing data 
by searching the optimal factorization of the measurement 
matrix belonging to ℝ36×168 . By comparing the recovered 
results and the ground truth of the missing data, averaged 
Mean Absolute Percentage Error (MAPE) (2018) is cal-
culated to quantify the performance of recovery accuracy 
achieved.

Figure 5 shows the accuracy achieved by the three meth-
ods when the sampling rate increases from 0.3 to 0.9. In 
accord with our intuition, more samples, better recovery 
accuracy. However, we can find that MF can achieve less 
than 20% error with even only 50% samples. Moreover, the 

increase of recovery accuracy becomes smaller and smaller 
when the sampling rate tends to 1. Figure 5 demonstrates 
that collecting a small subset of sensing data is sufficient 
to obtain a high recovery accuracy, due to the existence of 
spatial and temporal correlations in sensing data.

Besides the sampling rate, the distribution in space and 
time dimensions of collected sensing data can also impact the 
performance of recovery. To study it, we limit the minimum 
number of measurements collected in each grid over time (as 
well as in per time slot of all grids) instead of completely 
random selection. Note that a higher ratio indicates that col-
lected sensing data are more uniformly distributed in space 
and time. In Fig. 6, we fix the sampling rate as 0.7, and vary 
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Fig. 4  Correlation vs. time slot. The red line linearly fits all blue 
points (color figure online)
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the ratio of measurements per-grid (slot) from 0 to 0.3 (i.e., at 
least 11 ≈ 0.3 × 36 measurements per grid and 50 ≈ 0.3 × 168 
measurements per slot). From Fig. 6, we can see that the more 
uniform distribution, the better performance achieved by 
interpolation methods. However, the performance improve-
ment is very limited when the ratio exceeds a threshold (e.g., 
0.2 in Fig. 6). Thus, we can conclude that the spatial–temporal 
distribution of collected data is unnecessary to be completely 
uniform, which brings more choices for data collection. As 
shown in Figs. 5 and 6, MF performs better than AS and AT, 
as it takes advantage of both spatial and temporal correlations.

2.2  System and service model

In this work, we consider a typical edge-cloud system for 
urban monitoring applications, which consists of a central-
ized cloud, base stations and mobile smartphones at the 
network edge. The goal of a specific service (e.g., noise 
mappling) is to continuously collect fine-grained sensing 
data by recruiting mobile smartphone users. We divide the 
area into grids of the same size, and divide time into slots of 
equal interval. The sets of grids and time slots are denoted 
as  = {1, 2,… ,N} and  = {1, 2,… , T} , respectively. 
Then, the complete set of sensing data can be represented 
by a two-dimensional matrix � ∈ ℝ

N×T as shown in Fig. 7, 
where each data entry �(n, t) is called a cell. For simplicity, 
we assume that the sensing data collected in a cell have the 
same value, while different cells may have different values. 
Thus, sensing data collected from an arbitrary user in grid n 
and time slot t can fulfill cell �(n, t).

We denote the set of smartphones which can participate 
in collecting sensing data for cell �(n, t) as n[t] . Note that 
n[t] varies over time, because edge-cloud smartphones 
are mobile who may join and leave at any time. Besides, 
the union of all smartphones in the edge-cloud system, ⋃
{n[t]} , is dynamic as well. A considerable cost, such as 

energy consumption and bandwidth usage, is incurred to an 
arbitrary smartphone s for collecting sensing data, which 
is denoted as cs ≥ 0 . Note that the costs of different smart-
phones are heterogenous and unknown to the centralized 
cloud. We assume there exists a base station in each grid, 

which acts as a edge server in our edge-cloud system model. 
The set of base stations are denoted by  = {B1,B2,… ,BN}.

In a real-world edge-cloud system, monetary incentives 
need to be provided to the smartphone users who are dis-
patched tasks. To reduce the total budget of a service, the 
system tends to choose the smartphone with the lowest cost 
for collecting the data in a specific cell. Thus, with true cost 
information of all smartphones, the cost spent for collecting 
sensing data in cell �(n, t) can be derived as

where sn,t denotes the smartphone with the lowest cost in 
grid n and time slot t. The payment given to sn,t is denoted 
by pn[t] . However, strategic smartphone users may misreport 
their costs to obtain a higher payment. To differentiate from 
true cost cs of smartphone s, we denote the claimed cost of 
s as c′

s
.

According to the observations presented in Sect. 2.1, only 
a small subset of the complete sensing data in all cells of � 
is needed to collect. Thus, the budget of a service can be low-
ered by controlling which cells are selected to collect sensing 
data. We define an index vector � = {In[t],∀n ∈  ,∀t ∈  } 
to indicate whether a cell is selected, where

Accordingly, smartphone sn,t is recruited to contribute sens-
ing data for cell �(n, t) when In[t] = 1.

Finally, we characterize the quality of service by defining 
the concept of spatial and temporal coverage, based on the 
amount and spatial–temporal distribution of the cells with 
collected sensing data.

Definition 1 (Spatial and temporal coverage) Given a 
matrix � ∈ ℝ

N×T with fulfilled cells indexed by vector � , 
its spatial and temporal coverage is defined as three metrics:

• Spatial–temporal coverage, i.e., 1

TN

∑T

t=1

∑N

n=1
In[t];

• Temporal coverage per grid, i.e., 1
T

∑T

t=1
In[t],∀n ∈  ;

• Spatial coverage per slot, i.e., 1
N

∑N

n=1
In[t],∀t ∈  .

Remark We would like to emphasize that one of the key 
contributions of this work is the novel concept definition 
of quality of service, which is inspired by our observations 
based on real datasets. As shown in the problem formulation, 
this concept bridges the quality of service and the amount 
and distribution of collected sensing data.

2.3  Problem formulation

In this paper, two coupled problems should be addressed. 
The first problem is to determine the cells and the corre-
sponding smartphones selected to collect sensing data, with 

(1)cn[t] = csn,t = min{cs,∀s ∈ n[t]},

(2)In[t] =

{
1, if �(n, t) is selected to collect data,

0, otherwise.

Fig. 7  An example of matrix � , where missing data are marked as 
“?”
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the goal of minimizing the total cost spent and guarantee the 
quality of service required by a certain request. For clarity, 
we only consider a service request in our work. As shown in 
Sect. 2.1, a high recovery accuracy can be achieved by data 
recovery methods if the spatial and temporal coverage of the 
cells satisfies certain requirements. Thus, we mathematically 
formulate the problem of task dispatching in real time as 
Definition 2.

Definition 2 (Task Dispatching Problem) Based on true 
cost cs of each smartphone, the centralized cloud selects a 
subset of cells (indexed by � ) to collect sensing data by solv-
ing the following problem with constraints on the spatial and 
temporal coverage of Matrix � . Smartphone sn,t is recruited 
if cell �(n, t) is selected.

Problem 1 (ILP):

Constraints (4), (5) and (6) are used to guarantee the 
quality of service, in which parameters �1, �2 and �3 are 
the requirements of a service request.1 For completeness, 
we provide a straightforward approach for determining the 
parameter values, with the assumption that the correlations 
among sensing data of a specific application keep unchanged 
over time. The approach is executed in a real-world crowd-
sourcing application as follows. When the platform receives 
a new request from an urban monitoring application, it con-
tinuously collects sensing data in all grids for a short period. 
With the complete sensing data, the application can obtain 
the relationship between the data recovery accuracy and the 
values of �1, �2, �3 as shown in Figs. 5 and 6, by randomly 

(3)min
1

T

T∑

t=1

N∑

n=1

cn[t] ⋅ In[t]

(4)s.t.
1

TN

T∑

t=1

N∑

n=1

In[t] ≥ �1,

(5)1

T

T∑

t=1

In[t] ≥ �2, ∀n ∈  ,

(6)1

N

N∑

n=1

In[t] ≥ �3, ∀t ∈  ,

(7)In[t] ∈ {0, 1},∀n ∈  , ∀t ∈  .

removing some data. Given a specific requirement, the plat-
form can decide the values of �1, �2, �3 according to their 
relationship.

For convenience, we use C(�) to denote the total cost 
incurred on smartphones, i.e., C(�) =

∑T

t=1

∑N

n=1
cn[t] ⋅ In[t] . 

Due to constraint (7), Problem  1 is an ILP prob-
lem, which is a well-known NP-Complete prob-
lem. We denote the optimal solution of Problem  1 as 
�
∗ = {I∗

n
[t] ∈ {0, 1},∀n ∈  ,∀t ∈  }.

The second problem is to determine the amount of pay-
ment given to each recruited smartphone. As we consider 
strategic smartphone users who may misreport their cost 
information, a pricing policy should be provided to smart-
phone users which can enforce them being truthful. Con-
sequently, Problem 1 can be solved based on the true costs 
reported by smartphone users. To achieve this goal, the pric-
ing policy should satisfy the following three properties.

Definition 3 (Individual Rationality) The payoff (i.e., 
pn[t] − cn[t] ) of each recruited smartphone user is 
nonnegative.

A rational smartphone user will not participate in sensing 
if his/her cost is not covered by the payment.

Definition 4 (Computational Efficiency) An algorithm has 
the property of computational efficiency if it terminates in 
polynomial time.

As the process of recruiting users is repeated over time, 
the pricing policy cannot have high computational complex-
ity. Otherwise, it is useless for an online system.

Definition 5 (Truthfulness) An incentive mechanism is 
truthful if and only if each smartphone user s, cannot raise its 
payoff by reporting a false cost, i.e., �s(cs, c−s) ≥ �s(c

�

s
, c−s) , 

where �s(⋅) denotes the payoff obtained by s given all 
claimed costs, and c−s denotes the set of costs reported by 
other users except s.

This property guarantees that strategic smartphone users 
have no motivation to misreport their costs.

2.4  Overview

To reduce the budget of an urban monitoring service in a 
edge cloud system by leveraging the spatial and temporal 
correlations of sensing data, we propose an online approach 
containing two main building blocks, which are explained in 
details in the following two sections, respectively. To better 
understand our approach, we first give an overview in this 
subsection.1 Note that there should always exist 𝛿1 > max{𝛿2, 𝛿3} , otherwise (4) 

can be satisfied directly when (5) or (6) is satisfied.

Author's personal copy
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The interactions between the centralized cloud, base sta-
tions and each smartphone in each time slot are shown in 
Fig. 8. At the beginning of a time slot, each smartphone 
who can do sensing tasks reports its cost to the base station 
in its grid firstly. Then, each base station selects the smart-
phone with the lowest cost in the grid and report the cost 
information to the centralized cloud. Then, the centralized 
cloud selects a subset of grids where sensing data are col-
lected, based on the cost information in all grids. Thus, the 
smartphone with the lowest cost in the selected grids are dis-
patched tasks and collect sensing data. Finally, the payment 
given to each recruited smartphone is calculated accord-
ing to the pricing policy. To implement the approach, two 
main building blocks are designed, i.e., determining which 
grids selected for collecting sensing data and determining 
how many payments given to the recruited smartphones, 
respectively.

For the first building block, an online near-optimal algo-
rithm is proposed. In each time slot, with true costs of smart-
phone users, the algorithm selects a subset of grids to collect 
sensing data. The time-averaged total cost achieved by this 
algorithm is close to the offline optimum. For the second 
building block, we introduce the reverse auction model with 
two-level competition and design a truthful pricing policy 
for strategic smartphone users. Thus, true cost information 
can be obtained. Based on the pricing policy and the result 
of the first block, the payment given to each recruited smart-
phone can be calculated.

3  Online task dispatching algorithm

In this section, we design an online algorithm for the first 
building block in Fig. 8, which determines the grids selected 
to collect sensing data in the current time slot. Here, we 

assume true costs are reported by smartphones in the begin-
ning of the current time slot, given the pricing policy intro-
duced in the next section.

3.1  Problem decomposition

We first decompose Problem 1 defined over time into a series 
of subproblems, each of which can be solved in a time slot.

3.1.1  Virtual queues

According to the Lyapunov optimization (Neely 2010), vir-
tual queues can be introduced to guarantee time-averaged 
constraints [such as (4) and (5)] to be satisfied. Here, we 
define a virtual queue P for constraint (4) and a virtual queue 
Qn for each constraint in (5), respectively. These queues are 
called “virtual” as they do not exist physically. Note that 
only their backlogs need to be kept by the centralized cloud. 
We denote the backlog of P in time slot t as P[t], which can 
be updated as

according to (4). The value of P[t] can be seen as the aver-
aged number of grids that should be selected in time slot t 
to satisfy the requirement on the spatial–temporal coverage. 
The arrival rate of P is equal to �1 while the departure in t 
is 1

N

∑N

n=1
In[t].

Similarly, the backlog Qn[t] of Qn represents how many 
grids should be selected in t to satisfy the requirement on 
the temporal coverage of grid n. The updating rule of Qn can 
be derived as

where �2 is the arrival rate of cells required to fulfill, and 
In[t] denotes the number of cells departing from the queue 
in time slot t. Note that, satisfying constraints (4) and (5) can 
be equivalently converted into maintaining the stability of 
virtual queues P and {Qn,∀n}.

3.1.2  Queue stability

To maintain the stability of P and {Qn,∀n} , we define the 
Lyapunov function, i.e.,

to measure the level of queue congestion. The smaller value 
of L[t], the smaller queue backlogs of P and {Qn,∀n} . Then, 
the Lyapunov drift can be defined as

(8)P[t + 1] = max{P[t] −
1

N

N∑

n=1

In[t], 0} + �1,

(9)Qn[t + 1] = max{Qn[t] − In[t], 0} + �2, ∀n ∈  ,

(10)L[t] ≜ 1

2
(P[t]2 +

∑

n∈

Qn[t]
2),

(11)�[t] ≜ L[t + 1] − L[t],

Fig. 8  The interactions between the centralized cloud, base stations 
and smartphones in our proposed approach in each time slot. Two 
main building blocks are designed to determine the grids selected 
for collecting sensing data and determine the payments given to the 
recruited smartphones, which are enclosed in red rectangles
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which represents the shift of Lyapunov function between two 
consecutive time slots. A smaller value of �[t] indicates that 
the backlogs of all virtual queues are pushed towards to a 
lower level. The smaller value of �[t] , the stronger stability 
is achieved by the virtual queues.

Corollary 1 An upper bound of the Lyapunov drift can be 
derived as

where B ≜ 1

2
[(1 + �2

1
) + N ⋅ (1 + �2

2
)] is a constant.

Proof Based on the fact that (max{a − b, 0} + c)2 ≤
a
2 + b

2 + c
2 + 2a(c − b) , we can deduce that

We can obtain that

Therefore, the upper bound of �[t] is proved.

3.1.3  Problem reformulation

To minimize the total cost and maintain the queue stability 
at the same time, we define a new objective in each time slot 
by combining the two aspects, named drift-plus-penalty, i.e.,

where V is a tunable nonnegative parameter, denoting the 
weight of minimizing total cost, compared with keeping 
queue stability. Note that minimizing the drift-plus-penalty 
function directly is impossible due to the definition of �[t] . 
Thus, we turn to minimizing its upper bound instead. The 

�[t] ≤ B + P[t]

(
�1 −

1

N

∑

n∈

In[t]

)
+

∑

n∈

Qn[t](�2 − In[t])

P[t + 1]2 ≤ P[t]2 +

(
1

N

∑

n∈

In[t]

)2

+ �2
1
+ 2P[t](�1 − In[t])

≤ P[t]2 + (1 + �2
1
) + 2P[t]

(
�1 −

1

N

∑

n∈

In[t]

)
,

Qn[t + 1]2 ≤ Qn[t]
2 + In[t]

2 + �2
2
+ 2Qn[t](�2 − In[t])

≤ Qn[t]
2 + (1 + �2

2
) + 2Qn[t](�2 − In[t]).

�[t] =
1

2
[(P[t + 1]2 − P[t]2) +

∑

n∈

(Q[t + 1]2 − Q[t]2)]

≤ 1

2
[(1 + �2

1
) + 2P[t]

(
�1 −

1

N

∑

n∈

In[t]

)

+ N(1 + �2
2
) + 2

∑

n∈

Qn[t](�2 − In[t])].

(12)�
�

[t] = �[t] + V ⋅
∑

n∈

cn[t]In[t],

upper bound of ��

[t] can be easily obtained based on Corol-
lary 1 as

3.2  Online algorithm

In each time slot, given the backlogs of virtual queues, the 
centralized cloud can decide which grids should be selected 
by minimizing the last term in the upper bound of ��

[t] (as 
the other terms are constants). So far, we have decomposed 
Problem 1 into a series of subproblems, each of which can be 
solved in a time slot given the current true cost information. 
The subproblem solved in time slot t is formulated as follows.

Problem 2 (in time slot t):

The time-averaged constraints in Problem 1 have been con-
verted to keeping stability of virtual queues and combined 
into optimization objective (14). According to (14), we 
define regulated cost as

where �n[t] =
P[t]+NQn[t]

VN
 . The optimal solution of Problem 2 

in time slot t is denoted as �‡[t] = {I‡
n
[t] ∈ {0, 1},∀n ∈  } . 

The overall solution, comprised of the solutions of Prob-
lem 2 in all time slots, is denoted as �‡ = {�‡[t],∀t ∈  }.

(13)

�
�

[t] ≤B + �1P[t] + �2
∑

n∈

Qn[t]

+
∑

n∈

(Vcn[t] −
P[t]

N
− Qn[t])In[t].

(14)min

N∑

n=1

(cn[t] −
P[t] + NQn[t]

VN
)In[t]

(15)
s.t.,

N∑

n=1

In[t] ≥ �3 ⋅ N,

In[t] ∈ {0, 1}, ∀n ∈  .

(16)c̃n[t] ≜ cn[t] − �n[t],
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As Problem 1 has been decomposed into Problem 2 to be 
solved in each time slot, we propose a greedy-search-based 
algorithm to determine which grids should be selected in 
time slot t to collect sensing data. The details are given in 
Algorithm 1. The regulated cost c̃n[t] is calculated by base 
station Bn based on the true costs of all smartphones in the 
grid. All grids with non-positive values are selected. If con-
straint (15) is not satisfied, the centralized cloud sorts other 
grids in an increasing order of their regulated costs, and 
select grids one by one until (15) is satisfied. The smart-
phones with the lowest costs in the selected grids are dis-
patched sensing tasks. The computational complexity of 
Algorithm 1 is O(N log(N)) . Note that �‡[t] output by Algo-
rithm 1 is the optimal solution of Problem 2. The online 
algorithm for task dispatching is to repeatedly execute Algo-
rithm 1 in each time slot.

Remark Note that our key contribution in this part is not on 
the utilization of Lyapunov optimization theory, but rather 
how we explicitly define the virtual queues, derive the upper 
bound, and propose the optimal algorithm.

3.3  Theoretical analysis

Theorem  1 (Optimality) The time-averaged total cost 
obtained by our proposed online algorithm is near-optimal 
when the number of time slots tends to infinity. Especially, 
the gap between it and the offline optimum is within a con-
stant B

V
 , i.e.,

Proof We assume there is an arbitrary online policy � that 
chooses a feasible solution �� of Problem 1. As our algorithm 
minimizes the upper bound of ��

[t] , there is

Let us sum both sides from t = 1 to t = T  and divide them 
by T simultaneously. We can obtain that

lim
T→∞

1

T

∑

t∈

C(�‡) ≤ lim
T→∞

1

T
C(�∗) +

B

V
.

�
�

[t] ≤ B + �1P[t] + �2
∑

n∈

Qn[t]

+
∑

n∈

(Vcn[t] −
P[t]

N
− Qn[t])I

�
n
[t]

≤ B + P[t](�1 −
1

N

∑

n∈

I�
n
[t])

+
∑

n∈

Qn[t](�2 − I�
n
[t]) + V

∑

n∈

cn[t]I
�
n
[t]

Taking the limit T → ∞ of both sides after diving them by 
V, we obtain that

since lim
T→∞

L[T+1]−L[1]

T
= 0 , and

where Pmax = max{P[t],∀t} and Qmax
n

= max{Qn[t],∀t}.

From Theorem 1, it can be easily seen that a larger value of 
V implies better performance in minimizing the total cost. 
However, it may also cause time-averaged constraints not 
satisfied, due to the less stability of virtual queues.

4  Online pricing policy

In this section, we design an online pricing policy for the 
second building block in Fig. 8, which determines the pay-
ments given to the smartphones dispatched tasks in real time. 
The pricing policy is proved to guarantee the truthfulness of 
strategic smartphone users, which makes the assumption of 
our online task dispatching algorithm is satisfied.

4.1  Reverse auction modeling

We first introduce reverse auction (Nisan et al. 2007) to 
model the interactions between the centralized cloud, base 

L[T + 1] − L[1]

T
+
V

T

∑

t∈

C(�‡) ≤ B +
V

T

∑

t∈

C(��)

+
1

T

∑

t∈

P[t](�1 −
1

N

∑

n∈

I�
n
[t])

+
1

T

∑

t∈

∑

n∈

Qn[t](�2 − I�
n
[t])

lim
T→∞

1

T

∑

t∈

C(�‡) ≤ lim
T→∞

1

T
C(�∗) +

B

V
,

lim
T→∞

1

T

∑

t∈

P[t](�1 −
1

N

∑

n∈

I�
n
[t])

≤ Pmax ⋅ (�1 − lim
T→∞

1

NT

∑

t∈

∑

n∈

I�
n
[t]) = 0,

lim
T→∞

1

T

∑

t∈

Qn[t](�2 − I�
n
[t])

≤ Qmax
n

⋅ (�2 − lim
T→∞

1

T

∑

t∈

I�
n
[t]) = 0,
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stations and smartphone users, as shown in Fig. 8. In this 
auction, smartphone users trading in sensing data are sellers 
while the centralized cloud is the unique buyer. The auc-
tion is called “reverse” because sellers compete to obtain 
business from the buyer. Different from a standard reverse 
auction, there exist two levels of competition in our problem, 
which increases the difficulty of designing a truthful pricing 
policy.

• Level 1: The competition among smartphone users in the 
same grid, e.g., {∀s ∈ n[t]};

• Level 2: The competition among the smartphone users 
winning in their own grids, i.e., {sn,t,∀n ∈  }.

The final winners are the smartphones selected to do sensing 
tasks by Algorithm 1, i.e., {sn,t|I‡n [t] = 1,∀n ∈  }.

4.2  Payment design

To begin with, we define some notations for the convenience 
of description. Let {I�

k
[t],∀k ∈ �} be the solution of Prob-

lem 2 when   is replaced by a subset of grids 𝛱 ⊆   . The 
total regulated cost optimized by Algorithm 1 in time slot t is

which is a function of � . We have the following corollary, 
which can be easily proved by the reduction to absurdity.

Corollary 2 Ct(�) is monotonously decreasing, i.e., for 
∀� ⫋ � , there exists Ct(� ) ≥ Ct(�).

For the first level ( l1 ) of competition, according to the 
second price theory (Nisan et al. 2007), smartphones will 
keep truthful if the payment given to winner sn,t is equal to 
the second minimum cost of all smartphones in the same 
grid, i.e.,

For the second level ( l2 ) of competition, the idea of Vick-
rey-Clarke-Groves (VCG) mechanism (Nisan et al. 2007) 
is employed. Besides cost csn,t , an extra payment should be 
given to sn,t if it is selected, which is equal to the marginal 
cost caused due to the absence of sn,t . Thus, we define

where the first two terms are derived from the standard VCG 
mechanism, and the third term is for compensating the cost 
regulation.

Taking the two payments into consideration, we design 
a pricing policy for determining the payments given to 
selected smartphones as follows. 

(17)Ct(�) ≜
∑

k∈�

c̃k[t]I
�
k
[t],

(18)pl1
n
[t] ≜ min{cs,∀s ∈ n[t]�{sn,t}}.

(19)pl2
n
[t] ≜ Ct(�{n}) −

∑

k∈�{n}

c̃k[t]I

k
[t] + �n[t],

Pricing Policy: If grid n is selected to collect sensing data 
in time slot t according to the solution of Problem 2, i.e., 
I‡
n
[t] = 1 , the payment given to winner sn,t is

Based on the above payment policy and the result of task 
dispatching, the payments given to the selected smart-
phones can be calculated in each time slot, which is detailed 
described in Algorithm 2. At the beginning of each time slot 
t, the centralized cloud calculates the result of grid selection 
�
‡[t] based on the true cost information reported by smart-

phones, and then determines the payments given to the 
selected smartphones with according to the pricing policy.

Remark We would like to emphasize that our key contribu-
tions in this part are two-fold. First, we develop the standard 
reverse auction model into a novel one with two-level com-
petition among smartphones, to accord with the result of 
task dispatching. Second, we propose a novel pricing policy, 
which sophisticatedly combines the payments of the two lev-
els of competition.

4.3  Theoretical analysis

Theorem 2 (Truthfulness) The proposed pricing policy is 
truthful, i.e., each smartphone submits its true cost no matter 
what others submit.

Proof Firstly, we show that a smartphone has no motivation 
to claim a higher cost. If smartphone s claims a higher cost, 
i.e., c′

s
> cs , the only possible situation is that it wins in the 

two-level competition (e.g., s = sn,t and I‡
n
[t] = 1 ) regardless 

of bidding cs or c′

s
 . However, smartphone s obtains the same 

payment under both strategies. It is because that pl1n [t] and 
p
l2
n [t] have no relation to the value of csn,t according to (18) 

and (19), as long as the bids submitted by others are fixed.
Secondly, we show that a smartphone has no motiva-

tion to claim a lower cost. If smartphone s claims a lower 
cost, i.e., c′

s
< cs , the only possible situation is that it loses 

(wins) if bidding truthfully (non-truthfully). We illustrate 
that its payoff (e.g., pn[t] − cs ) is negative under the two 
cases. Case 1: smartphone s loses (wins) in the first-level 
competition if bidding truthfully (non-truthfully), which 
means c�

s
≤ min{cr,∀r ∈ n[t]�{s}} < cs . Thus, we have 

(20)pn[t] = min{pl1
n
[t], pl2

n
[t]}.
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cs > p
l1
n [t] ≥ pn[t] . Case 2: smartphone s wins in the first-

level competition but loses (wins) in the second-level 
competition if bidding truthfully (non-truthfully), i.e., 
I‡
n
[t] = 0(1) when c̃n[t] = cs(c

�

s
) − �n[t] . As I‡

n
[t] is set to one 

by the increasing order of c̃n[t] in Algorithm 1, there exists 
max{c̃k[t]|I

‡

k
[t] = 1} ≤ min{c̃k[t]|I

‡

k
[t] = 0} . We can derive 

that

Thus, we have cs > p
l2
n [t] ≥ pn[t].

Theorem 3 (Individual Rationality) Our proposed pricing 
policy achieves individual rationality, i.e., pn[t] ≥ cn[t] if 
I‡
n
[t] = 1.

Proof As smartphones are truthful, there exists 
cn[t] = csn,t = min{cs,∀s ∈ n[t]} . Clearly, p

l1
n [t] ≥ cn[t] 

according to (18). Based on (19), we can deduce that

Since Ct(�{n}) − Ct( ) ≥ 0 according to Corollary 2, we 
have pl2n [t] ≥ cn[t] . Therefore, we prove that pn[t] ≥ cn[t] no 
matter it equals pl1n [t] or pl2n [t] .   □

Theorem 4 (Computational Efficiency) Algorithm 2 pro-
posed for the payment determination problem has polyno-
mial time complexity.

Proof In each time slot, the complexity of selecting grids 
(line 4), and updating queues (line 6) is O(N) while the com-
plexity of determining payments (line 5) is O(N2) . Thus, the 
aggregate complexity of Algorithm 2 is O(N2).

5  Performance evaluation

5.1  Simulation setup

We have conducted extensive simulations to evaluate the 
performance of our online algorithm for grid selection, by 
comparing with two baseline algorithms described in the 
following.

• Random algorithm: In each time slot, �1N  grids are 
randomly selected to collect data. Note that our pricing 
policy does not work in this grid selection algorithm.2

Ct(�{n}) −
∑

k∈�{n}

�ck[t]I

k
[t] < min{�ck[t]|I

�{n}

k
[t] = 0}.

pl2
n
[t] = Ct(�{n}) − Ct( ) + c̃n[t]I


n
[t] + �n[t]

= Ct(�{n}) − Ct( ) + cn[t].

• Greedy algorithm: In each time slot, �1N grids with the 
lowest costs are selected to collet data. Our pricing policy 
can be applied to this algorithm by replacing the regu-
lated cost with the true cost of each smartphone.3

In our simulations, we consider an interested area with size 
8 km × 8 km in New York City, which is divided into 1600 
grids (each grid is a square of 200 m × 200 m). The total 
time span is ten days, divided into 240 time slots with each 
time slot equal to 1 h. The number of complaints about noise 
in 311 data (2018) is counted in each cell to represent the 
ground truth of its noise level. The missing data are recov-
ered based on matrix factorization method. To simulate the 
population densities in different grids and time slots, we 
employ the check-in dataset crawled from Gowalla, a loca-
tion-based social network. There are 127,558 check-ins from 
April 24, 2009 to October 13, 2013. Since not all smart-
phones would like to participate in sensing, we set a default 
percentage of willing smartphones, e.g., 50%. Two different 
cost distributions of each smartphone, i.e., uniform distri-
bution (e.g., cs ∼  (1, 10) ) and normal distribution (e.g., 
cs ∼  (5, 1) ) are studied respectively. The default values 
of spatial and temporal coverage thresholds are �1 = 0.3 , 
�2 = 0.1 and �3 = 0.1.

5.2  Impact of V

The impact of parameter V on the performance of Algorithm 1 
is studied first, as shown in Figs. 9, 10 and 11. Three metrics 
are compared by varying the value of V from 0.02 to 0.12, 
which are 1) total cost C(�‡) , 2) averaged backlog 
1

N+1
(P[T] +

∑N

n=1
Qn[T]) , and 3) gap between �1 and the 

achieved spatial–temporal coverage. Figure 9 confirms our 
analysis in Sect. 3.1 that a larger V can achieve better perfor-
mance in minimizing the total cost. Figure 10 shows that the 
averaged backlog of virtual queues increases with V. Accord-
ingly, Fig. 11 reveals that V cannot be infinitely enlarged to 
achieve better performance, since the time-averaged constraints 
cannot be satisfied. For fairness, we take the value of V satisfy-
ing all constraints in the following performance comparison.

5.3  Performance comparison

5.3.1  Total cost

We compare the total costs achieved by our online algo-
rithm and the two baseline algorithms. From Figs. 12 and 
15, we can see that the total cost rises with the increase of 

2 Because VCG only works when the optimal selection is achieved. 
Obviously, random selection cannot achieve the minimum total cost.

3 Note that these two baseline algorithms cannot guarantee the spa-
tial coverage constraint and the temporal coverage constraint are sat-
isfied.
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�1 , as more sensing data are collected. The results show that 
our online algorithm achieves the lowest total cost. When 
�1 = 0.7 , 91.9% and 44.8% costs are saved by our algorithm 
under the normal cost distribution, compared with random 
algorithm and greedy algorithm respectively.

5.3.2  Total payment

We evaluate the total payment achieved by our pricing pol-
icy integrating with Algorithm 1 and greedy algorithm. The 
total payment has the same variation trend with the total 
cost, when varying the value of �1 . From Figs. 13 and 16, it 
is easy to find that the total payment achieved by our algo-
rithm is lower than greedy algorithm, no matter the value of 

�1 and the cost distribution. When �1 = 0.6 , 51.9% and 47.7% 
payments are saved by our algorithm under the uniform and 
normal cost distributions, respectively.

5.3.3  Recovery accuracy

Averaged MAPE is computed to evaluate the accuracy of 
recovering missing data based on the collected data given 
by different grid selection algorithms. Figures 14 and 17 
show our algorithm and random algorithm outperform 
greedy algorithm. This is because the grids with the low-
est costs may concentrate in a small area, resulting in high 
recovery errors in the area without collected data. By inte-
grating the evaluation results of total payment and recovery 

Fig. 9  Total cost of online algorithm vs. V 

Fig. 10  Averaged backlog of virtual queues vs. V 

Fig. 11  Gap between coverage and �
1
 vs. V 

Fig. 12  Total cost vs. �
1
 under uniform distribution
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accuracy, we can conclude that our proposed approach 
achieves a high data recovery accuracy with a lower budget 
(Fig. 15, 16, 17).

6  Related work

6.1  Edge computing

Cloud computing (Fernand et al. 2013; Buyya et al. 2009) 
enables heavy computation jobs offloaded to remote cloud 
data centers. However, it suffers long latency for data trans-
mission, processing and storage, as data are increasingly 
generated at the edge of the network. With the development 
of Internet of Things, edge computing (Shi et al. 2016; 
Luan et al. 2016) is becoming a novel computing paradigm, 
which allow computation performed at the edge of the net-
work. Here, any computing and network resources along 
the path of data transmission between edge devices and the 
centralized cloud can be referred as “edge”, such as smart-
phones and gateways. Previous work have proposed micro 
data centers (Greenberg et al. 2008; Cuervo et al. 2010), 
cloudlet (Satyanarayanan et al. 2009), and fog computing 
(Bonomi et al. 2012) which belong to the community of 
edge computing.

6.2  Task dispatching

Task dispatching problem is a major open issue in mobile 
edge computing, which has attracted a lot of research inter-
ests. The challenging of solving this problem is to decide 
whether a task is offloaded to the edge devices or the 

centralized cloud, by taking both energy consumption and 
network transmission into consideration. In Liu et al. (2016) 
and Tan et al. (2017), the stochastic nature of task arrivals 
are considered. A Markov decision precess approach is pro-
posed for task scheduling to minimize the averaged delay of 
tasks under power constraints in Liu et al. (2016). A com-
petitive algorithm is proposed to minimize the total weighted 
response delays by Tan et al. in Tan et al. (2017). Mao et al. 
consider energy harvesting technologies to power mobile 
edge devices in mode edge computing (Mao et al. 2016). 
A Lyapunov optimization-based dynamic computation off-
loading algorithm is proposed, which jointly determines the 
offloading decision, CPU-cycle frequencies and transmission 
power. Similarly, renewable energy harvesting mobile edge 

Fig. 13  Total payment vs. �
1
 under uniform distribution

Fig. 14  Recovery error vs. �
1
 under uniform distribution

Fig. 15  Total cost vs. �
1
 under normal distribution
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computing is considered in Xu et al. (2017). In this work, a 
reinforcement learning-based resource management algo-
rithm with considering the dynamics of renewable energy 
is provided, to minimize the long-term system cost. In Sun 
et al. (2017), propose an online algorithm for mobile users 
to decide which base station their tasks are offloaded to, with 
considering base stations may switch on or off randomly. 
Different from these works, we consider how to guarantee 
the quality of urban monitoring services provided by mobile 
edge computing, and propose an online task dispatching 
algorithm by taking the advantage of the existence of spatial 
and temporal correlations in sensing data.

6.3  Spatial–temporal data recovery

A few works (Xu et al. 2015a, b; Wang et al. 2015) have 
studied the spatial–temporal correlations among sensing data 
in urban monitoring applications. In Xu et al. (2015a, b), 
compressive sensing was applied, which first converts spa-
tial–temporal sensing data into a sparse structure, then does 
sampling under the sparse structure and finally reconstructs 
the original data based on samples. Both Xu et al. (2015a) 
, (b) focus on solving the technical issues of applying com-
pressive sensing. In Wang et al. (2015), a novel framework 
was proposed for compressive crowdsensing, where a mini-
mum number of grids are selected for task allocation in each 
time slot to satisfy the quality requirement. Different from 
the previous works, we consider strategic smartphone users, 
who may misreport their cost information to the centralized 
cloud. Thus, a truthful pricing policy should be provided.

7  Conclusions

In this work, we have proposed a new approach for providing 
urban monitoring crowdsourcing services by mobile edge 
clouds, which leverages the spatial and temporal correla-
tions existing in sensing data. This approach handles two 
coupled problem, i.e., determining the smartphones selected 
to collect sensing data and determining the amount of pay-
ments given to them. An online near-optimal algorithm and 
a truthful pricing policy are designed to solve the problems, 
respectively. Rigorous theoretical analysis demonstrates that 
our pricing policy guarantees the truthfulness of strategic 
smartphone users. Extensive simulation results show that 
our algorithm outperforms the baseline algorithms, achiev-
ing a higher quality of service with a lower budget.
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