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ABSTRACT
24/7 continuous recording of in-home daily trajectories is infor-
mative for health status assessment (e.g., monitoring Alzheimer’s,
dementia based on behavior patterns). Indoor device-free localiza-
tion/tracking are ideal because no user efforts on wearing devices
are needed. However, prior work mainly focused on improving
the localization accuracy. They relied on well-calibrated sensor
placements, which require hours of intensive manual setup and
respective expertise, feasible only at small scale and by mostly re-
searchers themselves. Scaling the deployments to tens or hundreds
of real homes, however, would incur prohibitive manual efforts,
and become infeasible for layman users. We present SCALING, a
plug-and-play indoor trajectory monitoring system that layman
users can easily set up bywalking a one-minute loop trajectory after
placing radar nodes on walls. It uses a self calibrating algorithm that
estimates sensor locations through their distance measurements
to the person walking the trajectory, a trivial effort without taxing
layman users physically or cognitively. We evaluate SCALING via
simulations and two testbeds (in lab and home configurations of
sizes 3×6 sq m and 4.5×8.5 sq m). Experimental results demonstrate
that SCALING outperformed the baseline using the approximate
multidimensional scaling (MDS, the most relevant method in the
context of self calibration) by 3.5 m/1.6 m in 80-percentile error of
self calibration and tracking, respectively. Notably, only 1% degrada-
tion in performance has been observed with SCALING compared to
the classical multilateration with known sensor locations (anchors),
which costs hours of intensive calibrating effort.
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Figure 1: We present SCALING (Self-Calibrating Indoor Tracking),
which uses distributed monostatic radars to measure distances to
the human subject for multilateration thus tracking daily indoor
trajectories, informative for health status assessment.We aim to save
intensive efforts on calibrating sensor placements with a novel self
calibrating algorithm which formulates the problem in a bipartite
graph and obtain the uniqueness of geometrical topology according
to the rigidity of graph. With that, the daily indoor trajectories can
be extracted in this local positing system in the absence of anchors
of known locations to be referenced.

1 INTRODUCTION
With rapid advancements in Internet of Things (IoT), in-home
health monitoring systems are receiving increasing attention in our
aging society with the goal of creating smart homes that support
older adults to age in place. Among several types of monitoring
data, users’ daily indoor trajectories are invaluable for health status
assessment. With that, we can extract the low-level information
about how capable or how fast a user can ambulate from one place
to another. We can further derive the high-level information, for
example, the duration and the frequency of engagements in certain
functional spaces, such as the bathroom. Such information provides
insights about users’ daily routines and behavior patterns, critical
indicators not available from hospital visits (e.g., hesitant steps
could indicate the onset or progression of Alzheimer’s dementia).
Prior Work on Device-free Indoor Tracking and Scoping.
Device-free schemes for indoor tracking are user-friendly because
they do not require users to carry or wear any devices. Among
typical categories, geophones or vibration sensors require costly
refurbishment for large coverage [28, 30]; vision [18] or acous-
tic [16] based monitoring solutions are highly susceptible to back-
ground interferences (lighting conditions or background noises),
and sometimes may incur privacy concerns. Recent efforts have
shown preferable features of RF techniques [5], which are free of the
aforementioned issues. People have explored localization/tracking
using WiFi [24, 37], FMCW [2, 3], UWB [13, 41] based on proxim-
ity [9], fingerprinting [7], parameter joint estimation [32, 37], and
triangulation (including trilateration and angulation) [24]. While
such solutions were reported with promising results, they usually
rely on well-calibrated sensor placements, which require hours
of intensive manual setup and respective expertise, feasible only
at small scale and by mostly researchers themselves. Scaling the
deployments to tens or hundreds of real homes, however, would
incur prohibitive manual efforts, and become infeasible for layman
users. Some may argue that RF sensing systems with single-site
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configurations [1–3] can be preinstalled and wrapped up in a com-
pact box thus easy for scaling. However, their localization perfor-
mance will degrade significantly when the subject is far away from
the single-site sensor due to the fixed angle resolution [24], and
coordinating their hand-off from one site to another remains an
open challenge [2]. Therefore, we limit the scope of our paper to
device-free indoor localization/tracking using distributed setups of
multiple sensors, which by nature eliminate the hand-off concerns
by consistent coverage thus localization performance no matter
where the subject is located.
Design Considerations.With the above discussion, the costly sen-
sor deployment effort for scaling remains as an issue to be solved.
More specifically, the core challenge comes from the necessity of
calibrating sensor placements with careful measurements and re-
spective expertise. To address that, we present a plug-and-play
indoor trajectory monitoring system that layman users can easily
set up by walking a one-minute loop trajectory after placing sensor
nodes on walls. For practical scaling purposes, we consider using
low cost COTS RF devices in distributed nodes. To be specific, we
use COTSmonostatic radars [25] in this study, each configured with
a single pair of co-located transmitter and receiver. This radar facili-
tates interference-free simultaneous sensing by dithering phase for
orthogonality [6] at the cost of cross-talk between nodes. Therefore,
the distributed nodes can only measure the distance of the target
based on the channel impulse response [6] but no pairwise distance
measurement. While such configurations add to challenges from
different levels, our design is without loss of generality because it
works with minimum requirements on RF sensors and is applicable
and compatible with more advanced RF devices (e.g., those with
simultaneous communication and sensing) for self calibration. We
will discuss further in Section 5.
Our Method. Taking into consideration the above challenges, we
introduce a self calibrating algorithm that automatically estimates
sensor locations using only distance measurements to the person
walking in the monitoring space. The algorithm takes simultaneous
observations from distributed nodes to optimize the estimation of
relative sensor locations which minimize the distance measure-
ment errors as an inverse process of multilateration, and we en-
sure its convergence at a unique solution by formulating it in a
bipartite graph and analyzing its rigidity. Figure 1 shows the in-
tuition of SCALING (Self-Calibrating Indoor Tracking). This self
calibrating process only takes a trivial effort without taxing layman
users physically or cognitively, and the average computing time
is within one minute and can concurrently finish at the stop of
one-minute walking trajectory in the online mode. We evaluate
our design via simulations and two real-world testbeds, one with
dense deployment in a lab of 3×6 sq m and the other one with
sparse deployment in a home configuration of sizes 4.5×8.5 sq m.
Volunteers with no expertise in calibrating sensor placements were
invited for data collection, during which they walked freely in the
monitoring space without specific instructions to be followed and
even without knowing where the sensors were mounted. According
to volunteers’ feedback, they all appreciated the easiness of the data
collection process because they were not required to be trained or
instructed to conduct walking freely, which only costed them about
one minute on average. Experimental results demonstrate that our
design achieves satisfying accuracy with the 80-percentile error of
53 cm in estimating the sensor locations and 40.5 cm in tracking
the subjects, and largely outperforms a baseline with the adapted
MDS, by 3.5 m/1.6 m in in 80-percentile error of self calibration
and tracking, respectively. Notably, when comparing the tracking
accuracy of self calibrated setup using our method against the clas-
sical multilateration with known sensor placements, we found that

we can save hours of intensive calibrating effort with respective
expertise to achieve comparable indoor tracking performance at
the cost of only 1% degradation in accuracy, which is negligible.
Overall Contributions.We summarize our key contributions as
follows:

• We propose SCALING, a plug-and-play device-free indoor
trajectory monitoring system that a layman user can easily
set up by walking a one-minute loop. It uses a self calibrating
algorithm to eliminate the intensive manual efforts and tech-
nical expertise feasible with only researchers on calibrating
the sensor placements (anchors) in prior work, paving the
way for large scale self installation to benefit populations
beyond small numbers of homes.

• We analyze self calibration of distributed sensor placements
using only distance measurements in a bipartite graph, and
ensure the uniqueness of its geometrical topology according
to the graph rigidity. To achieve the convergence of self
calibrating process, we introduce an iterative optimization
in the mass-spring model [8] using a sequence of walking
trajectory to address the uncertainty in self calibrating sensor
placements for indoor localization/tracking.

• We implement a prototype of SCALING using low cost COTS
monostatic UWB radars and evaluate our design in two real-
world testbeds, one with dense deployment in a lab of 3×6
sq m and the other one with sparse deployment in a home
configuration of 4.5×8.5 sq m, in addition to extensive sim-
ulations. Experimental results demonstrate that SCALING
achieves satisfying accuracy with the 80-percentile error
of 53 cm in estimating the sensor locations and 40.5 cm in
tracking the subjects, accurate enough to extract informative
daily in-home trajectories. When comparing the tracking
accuracy of self calibrated setup using our method against
the classical multilateration with known sensor placements,
the results imply that we can save hours of intensive calibrat-
ing effort with respective expertise at the cost of negligible
degradation in accuracy by 1%.

The remainder of this paper is organized as follows: Section 2
discusses the related work. Section 3 introduces SCALING with a
self calibrating algorithm. Section 4 describes the evaluation of our
design against the baseline. Finally, we discuss the limitations and
opportunities in Section 5 and conclude in Section 6.

2 RELATEDWORK
In this section, we discuss the relevant work in three categories:
device-free monitoring, RF-based indoor tracking systems, and self
calibration methods.

2.1 Device-free Monitoring
The device-free schemes for indoor monitoring are popular because
of their user-friendly nature because they do not require users to
carry any device to be monitored [38, 39]. In recent work, the con-
cept of “structures as sensors” [42] becomes popular, which aims to
indirectly sense humans and surrounding environments through
their structural responses by using geophones or vibration sensors.
However, such systems usually require costly refurbishment for
large coverage [28, 30]. On the other hand, traditional methods
using cameras with advanced computer vision methods [18, 40]
are still useful for surveillance in the public space. Research also
investigated acoustic sensors for in-home monitoring with preva-
lent IoT devices, e.g., Amazon Echo and Google Home [22, 35].
However, either vision based surveillance [18] or acoustic based
monitoring [16] solutions are highly susceptible to background
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Figure 2: The overall framework of SCALING (Self-Calibrating Indoor Tracking), which has three major components: 1. Distance Measurements;
2. Localization; 3. Self Calibration. First, the human subject is detected for distance measurements in cluttered environment through the
Doppler Map. Second, the simultaneous distance measurements from distributed nodes are fed to the multilateration algorithm for localization,
given known sensor locations. Finally, a novel self calibrating algorithm formulates the problem in a bipartite graph and leverages its rigidity to
obtain the uniqueness of geometrical topology for tracking trajectories of a walking person in the self calibrated local coordinate. With the first
two components, we can build a device-free tracking system at cost of intensive manual effort and respective expertise on calibrating sensor
placements. The third component estimates the relative sensor locations automatically, thus eliminating the need for manual calibration.

interference (lighting conditions or background noises) and some-
times may incur privacy concerns. We choose to exploit RF-based
techniques, which is free of the aforementioned issues.

2.2 RF-based Indoor Tracking Systems
Because of preferable features of RF-based solution, people have
widely explored localization/tracking using different RF techniques.
WiFi devices [24, 37] are popular for research investigation in this
field because of its ubiquitous feature. With recent rapid advance-
ments, more COTS RF devices become available, and people start
to look into FMCW [2, 3] and UWB [13, 41] for indoor sensing
because of their fine-grained ranging resolution. For indoor track-
ing specifically, researchers developed various solutions based on
different information, including proximity [9], fingerprinting [7],
parameter joint estimation [32, 37], and triangulation (including tri-
lateration and angulation) [24]. While such solutions were reported
with promising results, they usually rely on well-calibrated sensor
placements, which require hours of intensive manual setup and
respective expertise, feasible only at small scale and by mostly re-
searchers themselves. Scaling the deployments to tens or hundreds
of real homes, however, would incur prohibitive manual efforts, and
become infeasible for layman users. Some may argue that RF sens-
ing systems with single-site configurations [1–4], can wrapped up
in a compact box thus easy for scaling. However, their localization
performance will degrade significantly when the subject is far away
from the single-site sensors due to the fixed angle resolution [24],
and when extending to multi-site setup to address this issue, coordi-
nating their hand-off from one site to another still remains an open
challenge [2]. Therefore, we build our system using distributed
setups, which by nature eliminate the aforementioned issues by
consistent coverage thus localization performance no matter where
the subject is located.

2.3 Self Calibration
Self calibration [11, 27] is always a hot topic in the field of sensor net-
works, because it is a key enabler and promising for large scale de-
ployment. We have seen a good body of work in self calibration for
indoor localization/tracking. Research exploited prior knowledge
about the participatory walking trajectory for self calibration [26]
When the cross communication between neighbour nodes is avail-
able, Multidimensional Scaling (MDS) [14] has been applied for self
calibration [10] given node-to-node distance measurements. Recent
work leveraged MIMO platforms for self calibration, which is based
on their satisfying space resolution to ensure the uniqueness of the
pedestrian trajectory [23, 33]. However, the existing work either

leverages the prior knowledge about the moving trajectories, or
based on advanced RF platform with additional information than
pure distance measurements. To the best of our knowledge, we
are first to investigate self calibration using monostatic radars of
minimum requirements (with only distance measurements to the
walking subjects available).

3 SYSTEM DESIGN
In this section, we introduce SCALING (Self-Calibrating Indoor
Tracking), a plug-and-play device-free indoor trajectorymonitoring
system that a layman user can easily set up by walking a 1-minute
loop, thus free of the intensive manual efforts and respective ex-
pertise. Our system uses distributed monostatic radars to collect
concurrent distance measurements for localization. The key enabler
of our system is a novel self calibrating algorithm that estimates sen-
sor locations based purely on distance measurements to the person
walking a sequence of unspecified trajectories in the monitoring
space. Upon the convergence of self calibrating process, we use the
estimated sensor locations as pseudo anchors for multilateration,
different from the existing work using know sensor locations.

Figure 2 shows the overall framework of SCALING, which has
three major components:

(1) Distance Measurement (Section 3.2): Each distributed mono-
static radar measures the distance of the subject away from
it according to ToF of the emitted signal bounced off the
human body back to the corresponding receiver.

(2) Localization (Section 3.3): We can apply multilateration to
localize the subject when the distance measurements of a
subject in the monitoring area are available from distributed
nodes, assuming the locations of distributed nodes are known.

(3) Self Calibration (Section 3.4): When the locations of dis-
tributed nodes are unknown and the only available infor-
mation is the distance measurements to the human subject
walking unspecified trajectories in the monitoring area, we
form the problem in a bipartite graph, of which the edges are
the distance measurements between the unknown sensor lo-
cations and unknown participatory step locations in walking
trajectories. With only distance measurements as constraint,
the vertices may flex thus varying the geometrical topology
of the bipartite graph. With the analysis of graph rigidity
to ensure the uniqueness of the geometrical topology, we
use iterative optimization to reach convergence of estimated
sensor locations.

Before getting into the technical details, we first discuss the
design considerations in (Section 3.1) to help shape the problem.
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3.1 Design Considerations
Out of practical considerations for future large scale deployment
of device-free indoor tracking systems, we have to balance trade-
offs among several key factors: localization/tracking performance,
deployment efforts on well-calibrated sensor placements, and cost
of RF sensor nodes. Distributed configurations provide consistent
localization/tracking performance in contrast to single-site config-
urations, at the price of prohibitive deployment cost. Therefore,
we are challenged to minimize the deployment cost, which mainly
comes from intensive efforts in calibrating sensor placements with
careful measurements and respective expertise, in addition to the
expense of sensor nodes.
Hardware Choices. While we know the goal of hardware choices
is to minimize the expense of sensor nodes, it is non-trivial to
understand what it takes to meet the minimum requirements for
device-free indoor tracking:

• For the minimum overhead on communication, we consider
the case that sensor node will only forward measurement
data to the central server for computations, but there is no
cross-talk among sensor nodes to exchange information.

• Each node has to be configured with at least one transceiver
so that multilateration can be applied for localization with
distance measurements from distributed nodes.

• The critical but tricky part is that we have to ensure the
orthogonality of RF signals for simultaneous sensing with
distributed nodes, when the coordinated transmission is un-
available with no cross-talk.

To address the above concerns all together, we use a low cost
COTS UWB sensor [25] which achieves orthogonality by dithering
phase [6], such that concurrently emitted signal will not interfere
each other even in the absence of cross-talk to coordinate transmis-
sion among distributed nodes. This COTS UWB sensor is a monos-
tatic radar, configured with a single pair of co-located transmitter
and receiver. It measures the distance of the target according to the
time of flight (ToF) of the repeatedly emitted signal bounced off
from the target and captured by the receiver. Herein, we clarify our
hardware choices to meet minimum requirements for device-free
indoor tracking.
Design Goals. The remaining issue to minimizing the deployment
cost is to mitigate the intensive efforts in calibrating sensor place-
ments with careful measurements and respective expertise. That
unveils the major goal of this paper, which is to design a plug-and-
play device-free indoor tracking system using low cost COTS RF
devices. And the key enabler of this system is a novel self calibrating
algorithm, that eliminates the need for intensive manual calibrating
effort on sensor deployment. While this design goal is derived from
the configuration of minimum requirements premised on specific
hardware choices, we believe the discussion of such design is with-
out loss of generality, because it works with RF sensors of minimum
requirements and is applicable and compatible with more advanced
RF devices for self calibration [23, 33]. We will discuss how our
design can be applied to advanced RF devices given more features
in Section 5.

3.2 Distance Measurement
As clarified in Section 3.1, we use low cost COTS UWB radars at the
band 7.25-10.2 GHz in distributed nodes for distance measurements,
and this UWB radar was designed with swept-threshold sampling
with cumulative 1-bit quantized value [6], enabling a high-speed
sampler that operates at 23.328 GS/s, sufficient to sample received
signals at high resolution. With that, it may appear to be straight-
forward to obtain distance measurements to the human subject
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Figure 3: Figure (a) shows a range profile, where the channel im-
pulse response due the human subject is not easily distinguishable.
Figure (b) shows Doppler maps of different activities. The x-axis of
the Doppler map is the index of range bins, corresponding to the
distances aligned with the range profile; y-axis shows the index of
frequency band determined by the length of time window and the
frame rate of the range profiles. The color code of the plot corre-
sponds to a heat-map of the intensity in the reflected signal. Strong
reflectors are indicated by light colors such as yellow and green,
weaker reflectors are indicated by dark blue, and the absence of a
reflector is indicated by black at the corresponding frequency. The
red circles indicate the reflection from a human subject, and the
yellow circles indicate the multi-path components.

as the time of flight (ToF) can be estimated according to the de-
lay between transmission of short UWB pulses and receiving the
signals reflected by the human body. However, two key factors
challenge reliable distance measurements: 1) The multi-path effect
may cause ambiguity in differentiating the human subject from the
static objects in the cluttered environment. 2) The human body is
more complex than a point scatterer, so echoes may come from the
head, arms, legs, and torso, which span dozens of centimeters in
space, introducing ambiguity in determining the actual distance
between the human subject and sensor nodes.

To localize human subjects, we first have to detect them from
the cluttered environment, so we need to eliminate the impact
from static reflectors. Figure 3(a) shows the range profile generated
directly sampled Channel Impulse Response (CIR), from which
the reflection from human body is not prominent for detection.
The x-axis of the range profile is the index of range bins, linearly
proportional to the distance; y-axis shows the normalized amplitude
of the received signal; a point in the curve of the range profile
indicate the intensity of the reflection from a certain distance. We
detect the human subject by leveraging the observation that signals
from static reflectors are constant in both amplitude and phase over
time, different from Doppler effects caused by moving subjects.

We visualize the Doppler effects [21] in the reflected signal with
Doppler maps [12] by applying Short-Time Fourier Transform to a
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sequence of consecutive range profiles along the time dimension.
Figure 3(b) shows five Doppler map examples, of which the data
was collected when performing five typical indoor activities. While
the patterns of Doppler maps may differ between different activities,
the moving human subject is always highlighted with prominent
intensity in the Doppler map.

After eliminating static components, we notice that the signals
reflected from human body may spread thin in a wide chunk be-
cause different body parts move differently and the corresponding
reflections may interfere each other constructively or destructively.
Besides, the Doppler map may show the highest intensity at a dis-
tance other than where the human subject is located due to dynamic
multi-path components [3], which are the reflections that bounce
off the human body then bounce off static objects in the cluttered
environment before arriving at the receiver. To reduce the ambigu-
ity from the dynamic multi-path components, we reject them based
on that fact that dynamic multi-path signals are always traveling
longer paths and coming later than the direct reflections from the
human body. To be specific, we apply CFAR [36] to detect pixels in
the Doppler map corresponding to the valid reflections and take the
closest chunk of detected pixels as the reflections from human body
according, and the distance measurement to the human subject is
calculated as the distance to the mass centroid of the closest chunk:

𝑑𝑚𝑐 = lim
Δ𝑚→0

∑𝑁
𝑖=1

∑𝑀
𝑗=1 Δ𝑚𝑖 𝑗𝑑 𝑗∑𝑁

𝑖=1
∑𝑀

𝑗=1 Δ𝑚𝑖 𝑗

, (1)

where 𝑖 is the index of total 𝑁 frequency bands, 𝑗 is the index of
total𝑀 range bins, Δ𝑚𝑖 𝑗 is the intensity of the pixel at the index of
(i, j) in the Doppler map, and 𝑑 𝑗 is the corresponding distance of
the range bin of index 𝑗 .

3.3 Localization
As discussed in Section 3.1, we aim to develop a device-free tracking
system using low cost RF sensors of minimum requirements thus
without loss of generality. Therefore, the only available information
for localization is the distance measurements through the time of
flight, but the angle of arrival is not available due to the limited
space diversity of the monostatic radar configured with a single pair
of co-located transmitter with receiver. To achieve angle informa-
tion with limited space diversity, some existing work [4] explored
a classical radar technique called inverse synthetic aperture radar
(ISAR) [29], which emulates a virtual antenna array in the reference
system of the moving target. While this method was able to detect
sharp changes in the angle, it is not applicable for fine-grained
trajectory tracking, because the angle resolution of ISAR methods,
determined by the time window of observations, is relatively low
and not sufficient to capture the walking movement of low speed
and changing direction. The coarse-grained angle information from
ISAR may add some constraints for localization through joint pa-
rameter estimation, it is out of the scope of this paper. We will
focus on the discussion of using distance measurements only for
localization.

After detecting the human subject in the cluttered environment
by addressing ambiguities from multi-path effects with the Doppler
map, each sensor node obtain reliable distance measurements to the
human subject. Then, we can combine simultaneous distance mea-
surements from distributed nodes for localization. Given known
sensor locations, we can easily estimate the location of the human
subject which gives the least squared error of distance according
to their respective distance measurements. For simplicity, we il-
lustrate localization in 2D plane as shown in the middle part of

(a) With 2 sensors. (b) With 3 sensors. (c) With 4 sensors.

(d) With 5 sensors. (e) With 6 sensors. (f) With 7 sensors.

Figure 4: We use different number of sensors to localize a target
in a 1m×1m space. The red dot indicates the ground truth of the
human subject’s location. With increasing number of sensor nodes,
the intersection region is with less uncertainty, thus more accurate,

Figure 2. When we consider just one transceiver, one distance mea-
surement can form one circle around the sensor location, indicating
the confidence area where the human subject is located assuming
no other constraints applied. At any time, if there are at least three
distributed sensor nodes available for simultaneous distance mea-
surements, we can find a intersection between three circles to locate
the human subject. To generalize the argument to localization in
3D space, we only need one additional sensor node. While three
distributed sensor nodes are sufficient for getting a unique estimate
of the human subject’s location in 2D plane, we notice that increas-
ing the number of sensor nodes can help reduce the uncertainty in
localization with noisy distance measurements. Figure 4 shows the
uncertainty of localization can be reduced with increasing number
of sensor nodes. We will study the impact of the number of sensor
nodes on our design in Section 4.

3.4 Self Calibration
With the previous two design components, we can build a reliable
device-free indoor localization/tracking system if we could afford
the intensive effort for calibrating the sensor placements. However,
it becomes prohibitively expensive when scaling such system to
large scale deployment. To address that, this section introduces a
novel self calibrating algorithm that estimates the relative sensor
locations through purely the distance measurements to walking tra-
jectories of the human subject in the monitoring area by leveraging
the rigidity of bipartite graph. This estimated sensor locations are
used as anchors for localization/tracking together with the previous
two design components. The proposed self calibrating algorithm
largely reduces hours of intensive calibrating efforts with respective
expertise to merely one-minute walking affordable by layman users
at cost of negligible loss in localization/tracking accuracy.

We first describe our self calibrating algorithm that estimates
the relative sensor locations using merely distance measurements
to the walking trajectories. We also describe a relevant method and
discuss why it is not applicable in this problem, and how we adapt
it as a supplementary process.

3.4.1 Self Calibrating Algorithm. Consider 𝑀 sensor nodes dis-
tributed at unknown locations in the monitoring space. As de-
scribed in Section 3.1, we assume each node can only measure the
distance to the present human subject, but not node-to-node pair-
wise distance because their signals are orthogonal thus no cross-talk.
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preserving the distances.

Distance measurements are available for 𝑁 step locations in the
walking trajectories of the human subject. The task is formed as to
estimate the relative sensor locations using distance measurements
only. For clarity, we assume the following discussion of localiza-
tion/tracking is in 2D plane (R2) if not specified; the 3D version is
a simple and natural extension.

We first analyze whether it is a solvable problem and in what con-
ditions. When the problem is modeled in a linear system, a natural
but naive way is to check whether it has more independent equa-
tions of constraints/observations than the number of unknowns.
However, our problem is modeled with constraints from distance
measurements, which is quadratic but not linear, so the necessary
and sufficient conditions for solvability of linear systems are not
applicable here. We formulate the problem in a graph 𝐺 (𝑉 , 𝐸), as
illustrated in the third part of Figure 2, to determine whether it
is solvable to estimate relative sensor locations by analyzing the
uniqueness of the geometrical topology. 𝑉 denotes the vertices,
including𝑀 sensor locations (denoted as 𝑎𝑖 ∈𝑊 ) and 𝑁 step loca-
tions (denoted as 𝑝 𝑗 ∈ 𝑈 ) in walking trajectories where the distance
measurements to the human subject are taken. 𝐸 denotes the edges,
corresponding to the distance measurements 𝑑𝑖 𝑗 between the sen-
sor locations 𝑎𝑖 and step locations 𝑝 𝑗 . Apparently, this graph is a
bipartite graph and is a complete bipartite graph because there is
no edge among the subsets of sensor locations𝑊 or step locations
𝑈 , every edge in 𝐺 (𝑉 , 𝐸) connects a vertex in𝑊 to one in 𝑈 , and
every pair of vertices between Set𝑊 and Set𝑈 are connected.

We note that the coordinate assignments thus the geometrical
topology of the bipartite graph may not be unique even up to
rotation, translation, and reflection, because certain vertices could
flex while preserving the distances, as illustrated in Figure 5. To
obtain a unique geometrical topology, the graph has to be globally
rigid [19, 20]. According to characteristics of the globally rigid
graph [17, 31], several conditions need to be met:

(1) The distribution of vertices (including sensor locations and
step locations) needs to be generic, thus no three vertices
form a line like the distribution of Set W in Figure 5.

(2) Applying Euler’s formula gives the relation between the
number of edges 𝑙 and the number of vertices𝑚, 𝑙 ≥ 2𝑚 − 3.
In our case, 𝑙 = 𝑀 × 𝑁 ,𝑚 = 𝑀 + 𝑁 , so we get𝑀 ≥ 2 + 1

𝑁−2
and 𝑁 ≥ 2 + 1

𝑀−2 .
(3) Globally rigid graph needs vertices to be (d+1)-connected in
R𝑑 , thus 3-connected in 2D, met by nature of the complete
bipartite graph.

The last two conditions can be easily met whenwe use least three
sensor nodes and three step locations. For the first condition, we
can distribute sensor nodes to different walls around the monitoring
space to avoid forming a line. Although step locations in walking
trajectories may fail to meet the first condition due to randomness,
however, people usually would not walk along a perfectly straight
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M sensor locations 

N step locations 

M

N

(a) Distance matrix. The sub-matrix A/B
denotes the pairwise distance measure-
ments within sensor/step locations (Set
𝑊 /𝑈 ). Sub-matrices C and C’ denote dis-
tance measurements across sensor loca-
tions Set𝑊 and step locations Set𝑈 .
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(b) The step location close to a certain sen-
sor location opens the opportunity to ap-
proximate the sensor-to-sensor distance
measurements with sensor-to-step distance
measurements for MDS to achieve initial
topology.

Figure 6: While distance measurements are only available in C and
C’, we can use sensor-to-step distance measurements to approximate
sensor-to-sensor distancemeasurements. Therefore, we can useMDS
to achieve an initial coordinate assignment with an approximate
sensor-to-sensor distance matrix A’.

line in natural settings. By randomly selecting step locations from
a walking trajectory, it is a rare case that three step locations form
a line, and can be mitigated with iterative optimization.

Now we are confident about the solvability of our problem, and
can focus on estimating the sensor locations through distance mea-
surements to the step locations in walking trajectories. With the
graph, our goal is to generate a geometrical topology in which
the coordinate assignments of sensor locations 𝑎𝑖 ∈ 𝑊 and step
locations 𝑝 𝑗 ∈ 𝑈 are consistent with all distance measurements 𝑑𝑖 𝑗 ,𝑎𝑖 − 𝑝 𝑗

 = 𝑑𝑖 𝑗 for all 𝑑𝑖 𝑗 ∈ 𝐺 (𝑉 , 𝐸). Therefore, we can estimate of
sensor locations by optimizing each residual between the measured
distance 𝑑𝑖 𝑗 and the estimated distance (between the estimated
sensor location 𝑎𝑖 and the corresponding step location 𝑝 𝑗 ), defined
as 𝑒 = |∥𝑎𝑖 − 𝑝 𝑗 ∥ − 𝑑𝑖 𝑗 |. We adapt it in the mass-spring model for
optimization, where each edge in the graph is taken as a spring
between two masses, with a rest length equal to the measured dis-
tance. When the estimated distance between 𝑎𝑖 and 𝑝 𝑗 is larger
than the measured distance, the spring incurs a force that pushes
two nodes apart. Similarly, when the estimated distance is shorter
than the measured distance, the spring pulls them together. Along
the optimization process, the estimated nodes move in the direction
of the resulting force of the spring. The stress of this mass spring
model to be optimized is expressed as:

Stress =

∑ (
𝑑𝑖 𝑗 − ∥𝑎𝑖 − 𝑝 𝑗 ∥

)2∑ ∥𝑎𝑖 − 𝑝 𝑗 ∥2
(2)

When the stress becomes zero, the whole mass-spring system
reaches equilibrium, so the optimization process reaches the global
minimum. We empirically choose Sequential Least Squares Pro-
gramming (SLSQP) as the optimization solver. Because the mea-
sured distance is noisy, the estimated sensor locations are expected
to jiggle to a certain extent. Instead of using one-time estimated
sensor locations𝑊 , we combine results from multiple rounds. At
the k-th round, we select a set of step locations along walking trajec-
tories (denoted as 𝑈𝑘 ) with corresponding distance measurements
to estimate the configuration of sensor locations (denoted as𝑊𝑘 ).
A new round of self calibrating process will be executed with a new
set of step locations 𝑈𝑘+1 until the residual difference between𝑊𝑘
and𝑊𝑘−1 reaches a small empirical threshold.
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(a) Setup in a home environment.

(b) Sensors 3, 4. (c) Sensors 1, 2. (d) Sensors 7--10.

(e) Sensors 14, 15. (f) Sensors 11, 12. (g) Sensors 12, 13.

Figure 7: The testbed with sparse deployment in a cluttered home environment decorated with furniture.

TX RX

(a) Setup in a small lab. (b) Testbed with dense deployment.

Figure 8: The testbed with dense deployment in a lab environment.

3.4.2 Approximate MDS for Initial Coordinate Assignment. While
the mass-spring model is powerful for self calibrating process, it has
a chance to converge at local minimum if it starts with a random
initial coordinate assignment. We aim to introduce a supplementary
process that provides the self calibrating process with a reliable
initial coordinate assignment with a similar geometrical topology
to the ground truth, such that the mass-spring model can easily
converge at a global minimum rather than a local minimum. One
relevantmethod,Multidimensional Scaling (MDS) [14], is often used
as a dimension reduction technique to graphically visualize data in
2D, and can be applied to convert distance measurements between
nodes into node locations [43]. While MDS requires a complete set
of node-to-node distance measurements, it is not available in our
problem as illustrated in Figure 6(a): we only have available distance
measurements across sensor locations Set𝑊 and step locations Set
𝑈 in sub-matrices C and C’, but the pairwise distance measurements
within Set𝑊 or Set𝑈 corresponding to sub-matrices A or B are not
available. The fact that certain step locations in random trajectories
are close to a certain sensor location opens the opportunity for
using MDS with approximate node-to-node distance measurements
for initialization. As shown in Figure 6(b), given a step location
close to a certain sensor node 1, we obtain the triangle inequalities:
𝑟 − 𝑞 < 𝑅 < 𝑟 + 𝑞. According to the Squeeze Theorem, we can
use the sensor-to-step distance 𝑟 to approximate the sensor-to-
sensor distance 𝑅 when 𝑞 is relatively small. Notably, because MDS
requires the distance matrix to be positive semi-definite, we keep
the elements symmetric to the diagonal by using the one closer
to the sensor among a pair. Therefore, we can use MDS with the
approximate sensor-to-sensor distance matrix A’ for initialization
of coordinate assignments.

4 EVALUATION
To evaluate our design, we conducted extensive experiments via
two real-world testbeds as well as simulations. We first describe
the experimental setups, the purpose experiments we conducted
and the metrics and ground truth used for evaluation in Section 4.1.
Then, the experimental results with real-world testbeds are pre-
sented in Section 4.2. We also conduct extensive simulations to
study the impact of different factors on the end-to-end performance
in Section 4.3.

4.1 Experimental Methodologies
To collect real-world data for evaluation, we built two testbeds,
one with sparse deployment in a cluttered home environment of
size 4.5×8.5 sq m, shown in Figure 7, and the other one with dense
deployment in an empty lab environment of 3×6 sq m, shown in
Figure 8. Notably, settings in two testbeds configured with redun-
dant sensors on tripods are for research purpose only. A much
smaller number of sensors (e.g., mounted on walls) would be suf-
ficient in real-world scenarios. The UWB signal can sense human
movements through the wall/door with penetration ability [1],
thus can be shared across different rooms to further reduce the
number of necessary sensor nodes. In each sensor node, we use a
COTS IR-UWB sensor XeThru x4m03 [25] as a monostatic radar for
distance measurements. The emitted pulse is configured with the
frequency band 7.25-10.2 GHz centered at 8.75 GHz, and the sam-
pling frequency of this COTS UWB sensor is 23.328 GHz, sufficient
to capture reflections with a high resolution. The frame rate of the
UWB sensor is configured to be 20 frame-per-second (fps), thus
able to update distance measurements 20 times per second, and its
measurement range is up to 10 meters. Distributed sensor nodes are
synchronized through the Network Time Protocol (NTP), and con-
current sensing data (e.g., distance measurements) are forwarded
to an on-site central server in batches and aligned according to
the associated timestamps at a resolution of 0.05 sec for further
computation (e.g., self calibration and localization/tracking) in a
retrospective manner.

4.1.1 Data Collection and Experiments. For data collection, we in-
vited volunteers with no expertise in calibrating sensor placements,
and they walked freely in the monitoring space without specific
instructions and without knowing the sensor locations to gener-
ate random walking trajectories thus emulating the natural indoor
trajectories as users will be performing in a real world scenario.
According to the feedback from volunteers, they were not feeling
challenged physically or cognitively during data collection, because
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Figure 9: Comparison of dis-
tancemeasurements between
methods with challenging is-
sues addressed progressively.
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Figure 10: Tracking perfor-
mance using distance measure-
ments with known sensor loca-
tions.

it was as simple as taking a walk in a room for about one minute,
even though they did not take any training program to prepare
them for that. During data collection, we follow a pre-established
protocol that protected the anonymity of the students. We use 50%
of collected data for evaluation of self calibrating algorithm and the
remaining 50% for evaluation of end-to-end tracking performance
using the self calibrated sensor locations. We also use the approxi-
mate MDS described in Section 3.4.2 as a baseline for comparison
and compare the end-to-end performance with and without the
approximate MDS for initial coordinate assignments. In addition,
we conducted extensive simulations to study the impact of different
factors, including the accuracy of distance measurements, the num-
ber of sensor nodes, the number of step locations, and the number
of optimization rounds.

4.1.2 Metrics and Ground Truth. To better understand the perfor-
mance of our system, we evaluate the performance of three design
components (i.e., distance measurement, localization and self cali-
bration) and their impacts on the end-to-end performance, respec-
tively. We use the distance error (i.e., the residual error between
the ground truth distance and measured distance, 𝑒𝑑 = |𝑑 − 𝑑 |) to
evaluate the distance measurement module, and use the localization
error (i.e., the residual error between the ground truth position and
estimated position, 𝑒𝑝 = ∥𝑝 − 𝑝 ∥) to evaluate the localization and
self calibration modules. For easy evaluation, we transformed the
estimated relative sensor locations from the self calibrating process
in a local coordinate system to align with the global coordinate
system through Procrustes analysis [15] (with a composition of
translation, rotation, and reflection).

We use Kinect XBox which incorporates a human body pose
recognition model [34] to detect human bodies with its embedded
depth sensor. The depth sensor by nature can provide measure of
the distance and position of detected persons relative to the depth
sensor, and they are recorded as ground truth. For simplicity, we
mount each UWB sensor on top of a Kinect depth sensor, so that
they are co-located for comparison. In addition to the ground truth
from the depth sensor, we also use some fixed pre-known locations
and trajectories as the ground truth for evaluation.

4.2 Experiments with Real-world Testbeds
We first evaluate the performance of distance measurements with
UWB monostatic radars to characterize the distance error at a
single sensor node. Then, we evaluate the localization module using
simultaneous distance measurements from distributed sensor nodes
assuming the sensor locations are known. Finally, we evaluate the
self calibrating algorithm compared to using MDS only as well as
combining with MDS for initialization.

4.2.1 Distance Measurement. Figure 9 shows CDF of distance mea-
surement error compared to naive methods which do not address
issues due to the multi-path effects and/or spread scatterer of hu-
man body. The results indicate an incremental improvement in the
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(a) Comparison of self calibration in
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(b) Comparison of tracking after self cal-
ibration in CDF.

Figure 11: Our proposed method with random initial coordinate as-
signments outperforms the adaptedMDS as a baseline.WithMDS for
initial coordinate assignment, the performance is further improved.

distance measurements by addressing challenges from the static
reflection and dynamic multi-path components in the cluttered
environment progressively. With all issues addressed using our
method, we achieve the median error of distance measurements
about 10 cm.

4.2.2 Localization. Figure 10 shows the error distribution of local-
ization using known sensor locations, and our system can achieve
a 80-percentile error of 40.1 cm, which is promising for indoor
trajectory tracking and corresponding analytics. However, using
known sensor locations means such performance is achieved at the
cost of hours of intensive manual calibration of sensor placements,
which hinders large scale deployment of such systems.

4.2.3 Self Calibration. Figure 11(a) shows the error distribution
of self calibrated sensor locations. Figure 11(b) shows the error
distribution of tracking performance using the estimated sensor
locations after self calibration. We observe that the performance
of using MDS alone is not satisfying and of large variability due to
its dependency on the step locations which is of large randomness.
On the other hand, using MDS for initial coordinate assignment
does improve the performance of self calibration, thus end-to-end
tracking performance with a 80-percentile error of 40.5 cm. The
proposed self calibrating method combined with the adapted MDS
for initial coordinate assignments outperforms the adapted MDS as
a baseline by 3.5m/1.6m in in 80-percentile error of self calibration
and tracking, respectively. Observations that tracking errors are
smaller than self calibration errors can be explained by that comple-
mentary information in multilateration with redundancy mitigates
the impact from the error in estimated sensor locations. It is also
interesting to observe that the tracking performance with noisy es-
timated sensor locations is comparable to the tracking performance
with known sensor locations. Such an observation implies that our
system can save hours of intensive manual calibration efforts at the
cost of negligible degradation in tracking performance by mere 1%.

4.3 Factor Study with Simulations
To better understand the effectiveness of our design, we conducted
extensive simulations to examine the impact of different factors
on the system, including the accuracy of distance measurements,
the number of sensor nodes, the number of step locations, and the
number of optimization rounds. To evaluate SCALING with simula-
tions, we randomly generate coordinates of distributed sensors and
steps, as well as noisy distance measurements between them. The
default setting is configured with 5 sensor nodes, 9 step locations,
1 optimization rounds, and the Gaussian noise of 10 cm in distance
measurements. When we vary one factor, the other parameters
remain unchanged if not specified in the following discussion. We
believe such knowledge can help form some guidelines to improve
the performance and lead to more effective sensor deployment.
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varying accuracy of distance measure-
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(b) Tracking performance with varying
accuracy of distance measurements.

Figure 12: With better accuracy of distance measurements, a better
performance can be achieved in both self calibration and tracking.
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(a) Self calibration performance with
varying number of distributed sensor
nodes.
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(b) Tracking performance with varying
number of distributed sensor nodes.

Figure 13: With increasing number of distributed sensor nodes, it
is harder to achieve convergence of self calibration, thus worse es-
timate of sensor locations. However, the tracking performance is
comparable among different number of sensor nodes, because the
tracking errorwasmitigated by the redundancy of the anchorswhere
a portion of them are well calibrated.

4.3.1 Accuracy of Distance Measurement. To understand how the
accuracy of distance measurements will impact system, we simulate
distance measurements with Gaussian noise of different standard
deviations, varying from 0 to 30 cm. Figure 12(a) shows the perfor-
mance of self calibration with different accuracy levels. Figure 12(b)
shows the tracking performance with different accuracy levels after
self calibration. Both results indicate that the accuracy of distance
measurements is vital to both self calibration and tracking.

4.3.2 Number of Distributed Sensor Nodes. In previous discussion,
we conjectured that increasing the number of sensor nodes can
reduce in the uncertainty in localization with multilateration. To
examine the conjecture, we vary the number of distributed sensor
nodes from 3 to 9. Figure 13(a) shows the performance of self cali-
bration with increasing number of sensor nodes. Surprisingly, the
self calibration error becomes larger with more sensor nodes. That
can be explained by the fact that more sensor nodes add uncertainty
in the geometrical topology, and a small portion of nodes may flex
while preserving constraints in distance measurements. Figure 13(b)
shows the tracking performance with increasing number of sen-
sor nodes. Counter-intuitively, the tracking performance remains
similar with increasing number of sensor nodes, even though their
calibration performance degrades. It can be explained by the fact
that multiple (redundant) anchors can compensate the noisy loca-
tion of each other owe to the merit of multilateration based tracking
method. This observation implies that a small number of nodes
would provide sufficient accuracy, while partitioning may need to
be considered for self calibration to cover a large space.

4.3.3 Number of Step Locations. We compare the self calibration
performance with different number of step locations and the re-
sulting tracking performance with self calibrated sensor locations.
Figure 14(a) shows the performance of self calibration with different
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(a) Self calibration performance with
varying number of step locations.
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(b) Tracking performance with varying
number of step locations.

Figure 14: With increasing number of step locations, both self cali-
bration and tracking are getting better performance.
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(a) Self calibration performance with
varying number of optimization rounds.
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Figure 15: With increasing number of optimization rounds, both self
calibration and tracking are getting better performance.

number of step locations. Figure 14(b) shows the tracking perfor-
mance based on sensor locations calibrated with different number
of step locations. Interestingly, we observe a consistent trend in
that increasing the number of step locations improve the perfor-
mance of both self calibration and tracking. Such an observation
suggest using more step locations will help improve the end-to-end
performance.

4.3.4 Number of Optimization Rounds. The optimization process
for self calibration may converge at a local minimum with dis-
torted topology due to noisy distance measurements and random
step locations. Multiple rounds of optimization can help mitigate
convergence at the local minimum. We observe improvements in
performance of both self calibration and tracking givenmore rounds
for self calibration in Figure 15(a) and Figure 15(b), respectively.

5 DISCUSSION
In this section, we discuss the limitations and opportunities to guide
future work.

Scalability. For clarification, the term “large scale deployment”
in this paper specifically refers to scaling deployments to a good
number (e.g., tens or hundreds) of homes of diverse layouts. Cover-
ing one site with large indoor spaces (e.g., a transportation hub) is a
different issue: while self calibration with a small number (e.g., 3–5)
of sensor nodes can be reasonably accurate, more nodes do not nec-
essarily lead to better performance due to increasing uncertainty
of sensor placements. In the future, we will explore dynamically
partitioning a large area and optimizing the self calibration in each
partition (e.g., with only three closest nodes). To adapt SCALING to
co-habiting scenarios, we can follow the previous work to achieve
multi-user tracking using successive interference cancellation [2].

Compatibility and extensibility with various RF devices.
The choice of the COTS UWB used in this paper is a trade-off
between several factors, including its range resolution for dis-
tance measurements, orthogonality for simultaneous sensing of
distributed nodes, and low price. With this hardware choice, SCAL-
ING demonstrates its generazability with RF sensors of minimum
requirements. It is noted that such a trade-off is achieved within the
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scope of COTS RF devices. We can further optimize such a trade-
off with our customized RF design. Ingoring practical concerns
about the cost, SCALING is compatible with other COTS RF tech-
niques, and can be easily extended when additional information
becomes available. Three possible cases are: 1) a better accuracy
can be achieved using RF techniques of finer range resolution, e.g.,
mmWave. 2) When using RF sensors configured with phased array
antennas instead of a single transceiver, additional AoA measure-
ments can be integrated to further reduce the ambiguity in self
calibration and localization. 3) When the cross-communication be-
tween nodes is available, we can apply the classical MDS with a
complete distance matrix instead of the approximate one for more
reliable initial coordinate assignment.

Daily indoor trajectory analysis.We plan to scale data collec-
tion to tens or hundreds of real homes with easy self-installation
enabled by SCALING so that we can focus more on health analytics
with long-term daily indoor trajectories. We believe daily indoor
trajectories would carry more information than just the occupancy
state of inhabitants in a certain space. For example, daily trajecto-
ries can be used for profiling the ambulation ability of inhabitants,
and changes in patterns such as decreasing activities in the kitchen
might indicate declines in cognitive and physical abilities, early
indicators for people at risks of diseases like Alzheimer’s.

6 CONCLUSION
We propose SCALING, a plug-and-play device-free indoor trajec-
tory monitoring system that a layman user can easily set up by
one-minute walking. It uses a self calibrating algorithm to save
hours of intensive manual efforts and technical expertise at the cost
of negligible degradation in end-to-end performance. We believe
SCALING opens door for large scale deployment of in-home moni-
toring system, manageable by relatively small size research teams,
thus potentially benefiting large populations beyond a handful of
homes.
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