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Preface

This book is the first systematic exposition on the emerging domain of wireless
power transfer in ad hoc communication networks. It selectively spans a coherent,
large spectrum of fundamental aspects of wireless power transfer, such as mobility
management in the network, combined wireless power and information transfer,
energy flow among network devices, joint activities with wireless power transfer
(routing, data gathering and solar energy harvesting), safety provisioning through
electromagnetic radiation control, as well as fundamental and novel circuits and
technologies enabling the wide application of wireless powering.

Wireless Power Transfer (WPT) has recently evolved as a very active research
subject in the field of ad hoc communication networks, as well as a topic of rapid
technological progress and emerging practical development and application activ-
ities. However, a solid foundational, systemic, and applied background seems still
necessary for wireless power transfer to achieve its full potential. The provisioning
of relevant abstract models, algorithmic design and analysis methods, networking
principles, circuit and system design, and application methodologies is a chal-
lenging task.

Several such models, algorithms, circuits, systems, and applications for WPT
have already appeared, in relevant journals, conferences, and workshops. This book
aims to reinforce the emergence of a critical mass of algorithmic and applied
foundations by bringing together, for the first time in a systematic way, high-quality
research contributions (in the form of invited book chapters) by leading experts
worldwide, relevant to important algorithmic, systematic, and technological WPT
applications in ad hoc communication networks.

The content is organized into six thematic parts, covering respective common
aspects, issues, and methodologies: Technologies, Communication, Mobility,
Energy Flow, Joint Operations, and Electromagnetic Radiation Awareness. Because
of the inherent relations of different topics, layers, and problems, many chapters
could have been associated with more than one theme, and the themes themselves
could have been chosen in a different manner. Still, we hope that the chosen
structure will be methodologically useful for the reader. In total, 27 chapters are
included, contributed by leading relevant experts worldwide.

vii
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viii Preface

We now briefly describe each theme. The first one discusses characteristic key
circuits and technologies for wireless power transfer in communication networks
and briefly presents several regulations. The second theme presents several appli-
cations for achieving efficient communication in wirelessly powered networks and
identifies relevant performance trade-offs. The next theme concerns basic efficient
solutions for mobility management in WPT networks, both distributed and cen-
tralized. Mobile nodes and chargers, effective traversal strategies, cost minimization
of mobile elements, and the use of cutting-edge technologies like UAVs are some
of the proposed approaches. The fourth theme covers the concept of energy flow,
a major challenge in wirelessly powered networks. Different aspects of energy flow
are addressed, such as collaborative mobile charging, hierarchy assignment, use of
resonant repeaters, and energy balance in populations of mobile peers. Different
networking operations that can be combined with WPT are addressed in the fifth
theme, such as routing, data gathering, and solar energy harvesting. The book
concludes with a recent combination of research between wireless power transfer
and electromagnetic radiation awareness. In particular, two algorithmic approaches,
which apply radiation control methods to ensure human safety without sacrificing
effectiveness, are presented.

We hope that this book will be helpful to its readers and contribute to a solid
foundation and deeper understanding of the fascinating and rapidly evolving
research area of wireless power transfer. The intended audience includes
researchers, engineers, educators, and advanced graduate students interested in the
area of wireless power transfer in ad hoc communication networks. In addition to
use as a text for advanced university courses and research seminars, the book may
also be used as a supplement to academic courses on algorithmic applications,
wireless protocols, distributed computing, and networking.
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Chapter 1
Non-radiative Wireless Power Transmission:
Theory and Applications

Giuseppina Monti, Mauro Mongiardo, Franco Mastri,
Alessandra Costanzo, Laura Corchia and Luciano Tarricone

Abstract Non-radiative Wireless power transfer (NR-WPT) is currently receiving
considerable attention in very different application scenarios. To design optimum
solutions, a systematic approach based on circuit theory is needed and not yet avail-
able in the literature. In this chapter, by using a network formalism, the WPT link
is modeled as a two-port network and a methodology to derive an equivalent circuit
is proposed. This allows to compute in a rigorous and general way the maximum
achievable performance for any given WPT link. The latter can be expressed in terms
of either maximum power transfer efficiency (MPTE), or maximum power delivered
to the load (MPDL), or by any suitable combination of the two. This chapter provides
a comprehensive theoretical and general framework to predict such performance for
both inductive and capacitive coupled links. In order to facilitate a practical imple-
mentation, both impedance and admittance matrix representations are discussed and
computational examples are provided.
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4 G. Monti et al.

1.1 Introduction

In recent years, NR-WPT is gaining a growing interest [3, 4, 11, 13, 15, 16], as a
promising technology for energy autonomous systems (intended as electronic devices
and systems able to perform their functions without having on board batteries or
being connected to a power grid). In its simplest formulation, the desired goal of
any NR-WPT system is to transfer energy, at a given operating frequency, with no
wires, from a transmitter in position A to a receiver in position B located in the
near-field of each other. The basic configuration can be implemented by realizing
between the transmitting and the receiving device a mere capacitive or inductive
coupling. However, several experimental and theoretical studies have demonstrated
that the performance of the NR-WPT link can be significantly improved by using a
resonant scheme, i.e., by designing the receiver and the transmitter as synchronous
resonators. In this regard, the attention has been focused on mid-range WPT links
realized by using inductively coupled resonators [2, 8, 9, 12, 14, 18]. In fact, with
respect to an inductive coupling, the use of a capacitive coupling has the disadvantage
of being more sensitive to the surrounding environment; additionally, it is limited to
applications characterized by a small gap distance between the transmitting and the
receiving device. However, in this latter case capacitive WPT represents a competitive
alternative to inductive WPT [7, 17].

Accordingly, depending on the specific application, the best choice for imple-
menting the NR-WPT can be either based on a capacitive or on an inductive coupling
using appropriate compensating elements (inductances or capacitances) realizing the
resonance condition at the operating frequency of the link.

Another key point is the optimization of the parameters of the link for performance
maximization. In this regard, two different design approaches can be of interest [10]:
(1) maximization of the power transfer efficiency defined as the ratio between the
power delivered to the load and the power provided by the source, (2) maximiza-
tion of the power delivered to the load. In this chapter, by using a network formal-
ism for describing a generic single transmitter—single receiver NR-WPT link, both
approaches are introduced and discussed. Useful design formulas are derived and
two examples of applications referring to an inductive and a capacitive WPT link are
illustrated.

1.2 Two-Port Network Representation of a WPT Link

1.2.1 Statement of the Problem

We refer to a linear reciprocal link for wireless power transmission from a generator
to aload. By using a network formalism, the WPT link can be modeled as a reciprocal
two-port network. In order to introduce the variables of interest, it is assumed that a
generator is on port 1 and that a load Z; is on port 2. With reference to Fig. 1.1, the

fan.ye@stonybrook.edu



1 Non-radiative Wireless Power Transmission ... 5

Fig. 1.1 Two-port network L I
modeling a WPT link — —

Two—port

network

active input power delivered from the generator to the two-port network, p;,, can be
expressed as
1 *
Pin =5 I, (LD

where the asterisk, “*’, denotes the complex conjugate. Similarly, the active power
on the load, p;, can be expressed as

1 *
pL = =WI;. (1.2)
2
With regard to the use of the two-port network for WPT applications, two different
solutions are of interest

e the solution aiming at maximizing the active power delivered to the load (MPDL
solution);

e the solution aiming at maximizing the power transfer efficiency (MPTE solution),
n, defined as

=P (1.3)
Pin
In the following part of this section, closed form analytical formulas to compute
the loads that realize the MPDL and the MPTE solutions will be derived. In particular,
taking into account that, depending on the network topology, an impedance or admit-
tance matrix can be more suited to model the two-port network, both representations
will be adopted and discussed.

1.2.2 Impedance Matrix Modeling of a WPT Link

In this subsection the case of a reciprocal two-port network modeled by its impedance
matrix, and realizing a WPT link is considered [10]. According to the impedance
matrix representation, it is assumed that port 1 is connected to a voltage generator,
while port 2 is terminated on a load impedance Z; = R; + j X (see Fig.1.2).
With reference to Fig. 1.2, the two-port network can be represented by the following
relation:

fan.ye@stonybrook.edu



6 G. Monti et al.

Fig. 1.2 Impedance matrix Zin
modeling a WPT link: it is —
assumed that port 1 is

connected to a voltage Vi T()
generator, and that a load
impedance Zy is on port 2

L J2)
— —

211 212
ZL
221 222

V=71, (1.4)

where V is the vector of port voltages, I is the vector of port currents and Z is the
impedance matrix of the network:

Z= (Z” Z‘Z) : (1.5)
221 222
with elements z;; = r;; + jx;;, (i, j = 1, 2), and, for the hypothesis of reciprocity,

Z12 = z21. With reference to Fig. 1.2, by denoting with Z;, the input impedance at
port 1

2
i1

Zin = Rin + jXin = 211 — mtZL

(1.6)

the active power delivered by the voltage generator to the network can be expressed
as:

= R yp (L.7)
pm_2|Z,‘n|2 1 ) .

similarly, the active power delivered to the load is

R. )
pL=———IVal". (1.8)
21Z.1

It is convenient to define the parameters

2

xi= 2 (1.9)
riirn

2 ’"122

£ = —— (1.10)
rir

and

X

Ly = A (1.11)
rn

v, =22 (1.12)
))

fan.ye@stonybrook.edu



1 Non-radiative Wireless Power Transmission ... 7

It is also advantageous to introduce the following definitions:

0. =1+ x2\1-E2, (1.13)

ex.z = Xzsz . (1.14)

Accordingly, the impedance matrix of the two-port network can be written as

7 ( rm (Gu+1)  rir (éz‘i‘]'Xz)) (1.15)
S G+ jx) e (u+ 1) .

The inverse of the impedance matrix is readily written as

Y:i( o v+ —rum (§z+sz)) (1.16)
A, \—Vrurn G +jx) i (Gu+1) )

with A, being defined as

Ay=rirn [Gur:+D Go+ D) — E+jx)?]. (1.17)

For this case, by adopting the two-port network for WPT applications, we
address the problem of determining the optimum values of the load impedance
Z;, = Ry + jXp. Analytical formulas will be derived for both the MPDL
(ZV = R + jX7)and the MPTE cases (Z¢ = RS + jX$).

1.2.2.1 Maximum Power Delivered to the Load Solution

With reference to Fig. 1.2, the load impedance that realizes the maximum power
condition is the complex conjugate of the input impedance (Z;,.) seen at port 2
when the generator is short-circuited

1% 1 i ¥.)>
Zow=22 =L ey 2ETIET
L= Y2 I+ ju)

As a consequence, the MPDL solution is

Z? =RV + jXx¥ (1.19)
2 2 2
+x, +1-£&°"-2
R = (n + X : £7 =2t 11: &) (1.20)
pe”+1
2 2 2
— +2 - v, — Vv
Xf = 1y (Xz My — &, - X6 — U7 v, z) (121)
me®+1

fan.ye@stonybrook.edu



8 G. Monti et al.

The active power on the load is given by
1
Pl = 3 |LI* Ry (1.22)

where I, can be calculated by using Thevenin’s theorem. In particular, it can be easily
verified that Thevenin’s generator (i.e., the open circuit voltage at port 2) is given by

Vi = 2y, (1.23)
211

while the series equivalent resistance is Z; .. Accordingly, the expression of the
current I, is
1 212

= 1.24
Z0 4 (ZD) (29

I

Assuming that the internal resistance of the generator at port 1 is 7, the available
active power is
_nP?

87’11 '

Py (1.25)

By using (1.20), (1.21) and (1.24), the active power delivered to the load, normalized
with respect to Py, is

pr— (&2 + Xzz)
P18 =2 ek + 1+ x2)

(1.26)

By equating to zero the derivative of (1.26) with respect to ., we obtain that p,
must satisfy the following relation:

Mz = ex,z (1.27)
or equivalently,
r
X =xp—. (1.28)
2

Condition (1.28) can be satisfied by adding in series to port 1 a compensating reac-

tance X.; (see Fig. 1.5)
r2
Xe1 = xpp— — x11. (1.29)
722

When X is added to the network, 1, satisfies (1.27) and the following expression
can be derived for the MPDL solution

fan.ye@stonybrook.edu



1 Non-radiative Wireless Power Transmission ... 9

Z{ = RZ + ]Xf (1.30)
2
R? = — 1.31
L rzz@)?,z 1 (L.31)
p exyzerz,z
XL = —Xxp + by ; +r221+9x2’z. (1.32)

Additionally, when (1.27) is satisfied, from (1.6) it can be easily verified that the
input impedance of the network is purely resistive and is given by

2
9’”,2

L 133
1+62, +62, (139

P __
Rin = 2)‘11

According to (1.33), the input power, normalized to Py as defined in (1.25), is

1+67, +6;.

P
Ph =2 (1.34)
rz
while the normalized active power on the load is
2 2
X" +§
Pl = % . (1.35)
rz

Finally, the expression of the efficiency corresponding to the MPDL solution given
in (1.30)-(1.32) is
2
p_ l Xzz + &

= . (1.36)
21+62 462,

It is worth observing that, when 7, = 0 the MPDL solution simplifies as follows:

Z] =R} 4+ jX7} (1.37)
Rz = rzzezz (138)
X] = —xm». (1.39)

In this case, the expression for the efficiency becomes

X2

_ 1.40
22+ x2) (140)

n’ =

which asymptotically, for x, — oo, provides an efficiency value of n5, — 1/2. For
this case, the normalized active power on the load is given by

fan.ye@stonybrook.edu
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Fig. 1.3 Normalized power 1
with respect to x, when
&, = 0. The black line refers . 08 pr
to the MPDL solution (1.41), 9 __pe
while the red line refers to ‘g 0.6 L
the MPTE solution (1.65) 2 '
N
= 04
£
S
Z 02
0
0 5 10 15 20
Fig. 1.4 Efficiency with 1
respect to x; = x12//711722
when &; = ria//riirn = 0. 0.8 —
The black line refers to e
MPDL solution (1.40), while 2 06 n
the red line refers to the .S ’
MPTE solution (1.56) l}:’
= 04
m
0.2
0
0 5 10 15 20
e
2
X
pP=_2z (1.41)
5 .
(1+x2)

which asymptotically, for x, — oo, gives P, — 1. Assuming thatry; is the generator
resistance, the power on the load approaches the generator available power as y, —
oo. For this solution, the dependence on x, of P} and of 7 is illustrated in Fig. 1.3
and in Fig. 1.4, respectively. From Fig. 1.3 it can be seen that the maximum of the
normalized output power increases monotonically with x, approaching its maximum
value (i.e., 1), corresponding to the case where all the power available for the source
is delivered to the load. Conversely, from Fig. 1.4, it can be seen that, although also
the efficiency increases monotonically with yx., in this case the asymptotic value is
0.5, and thus lower than the maximum achievable value of 1.

1.2.2.2 Maximum Power Transfer Efficiency (MPTE)

As already seen, the power transfer efficiency 7 is expressed as the ratio between the
active power delivered to the load (i.e., the power dissipated on the load impedance

fan.ye@stonybrook.edu



1 Non-radiative Wireless Power Transmission ... 11

Z1) and the active power delivered to the network by the generator. By using (1.7)—
(1.8), the efficiency of the two-port network can be expressed as follows:

_ e Re|Zul VP

= — . (1.42)
pin  Rin 1Z0)* V12
The voltage V, can be expressed as follows:
Vo =zl + 2020 (1.43)
where the currents /; and I, are given by:
V
I = Z,»l,. (1.44)
L=_" (1.45)
2= 7 .

By substituting (1.44)—(1.45) in (1.43), the following expression can be obtained for
the voltage at port 2:
2L

Vy= —S2fL
Zin(zn+Z1)

Vi (1.46)

accordingly, the efficiency of the network is given by

2
212

in+Z

(1.47)

The value of the MPTE solution can be obtained by solving the following system of
equations:

on

=0
IRy

3

oy (1.48)
X1

By solving (1.48), the following expression is obtained for the MPTE solution:

Z¢ = RS + jX¢ (1.49)
RZ = 7‘229,,1 (150)
Xz = r229x,z — X2 (151)

fan.ye@stonybrook.edu
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By comparing (1.49)—(1.51) with (1.30)—(1.32), it is evident that the MPTE solution
has both the real and the imaginary parts different from the ones corresponding to
the MPDL solution.

By substituting (1.49)—(1.51) into (1.47), the expression for the efficiency corre-
sponding to the MPTE solution (i.e., n°) is obtained:

2 2
.+
oo S X X (1.52)
6.+ 1) +62,
It is worth observing that, when ri, = 0, the MPTE solution reduces to
Z; =R{ +jX{ (1.53)
R} =rnby, (1.54)
X§ = —xp (1.55)

By comparing (1.53)—(1.55) with (1.37)—(1.39), it can be noticed that for rj, = 0
the MPTE and the MPDL solutions have the same imaginary part. In this case, the
expression of the efficiency given in (1.52) becomes

2
e

Xz
n'=
(I+ 1+ x2)?
which asymptotically, for x, — oo, provides an efficiency value of 55, — 1 (see

Fig. 1.4).
The input impedance Z;, at port 1 when port 2 is terminated by Z] is given by

(1.56)

Z'enZrller,z—j(l’n@x,z—xn) . 1.57)

1
The active input power P¢, normalized to Py corresponding to this solution is

46,
P¢ = < (1.58)

N

The active power on the load Py, always normalized to Py, is expressed as

Oz (&7 + x:%)
(6 =) +62) ((6:c+ 1) +62.)

It is evident that both P;, and P/ are maximized when the following condition is
satisfied:

Pi=4 (1.59)

Mz = ex,z (160)

or explicitly

fan.ye@stonybrook.edu
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Zin Zq N b
iy — —
L

211 212
Zy
221 222

Fig. 1.5 Two-port network with added impedance Z.; = R.1 + jX.1. The value of X, is given
in (1.29), while R.; = 0 for both the maximum efficiency and maximum power transfer approach

00}

r
X11 =X12£. (1.61)

22

As already seen for the MPDL case, condition (1.61) can be satisfied by adding a
compensating reactance X, in series to port 1 (see Fig. 1.5), of value

,
X = xp—= — x5 (1.62)

2

By comparing (1.62) and (1.29) it is evident that the same compensating reactance
is necessary for the MPTE and the MPDL solution.

When X, as given by (1.62) is added, the condition (1.61) is realized and from
(1.58) we have the following expressions for the normalized input power:

P = 4 (1.63)
in — gr,z :
and for the power on the load
4n¢
Pt =1 (1.64)
Or.2

When &, = 0, (1.64) reduces to the following expression:

4)(22
ST+ 21+ T+ x2)°

which, asymptotically, for x, — oo, gives a behavior of the type P; — Py/x., as
shown in Fig. 1.3. As a consequence, for the MPTE solution, when the efficiency
tends to one the output power reduces to zero.

As a simple example of application of (1.61), let us consider the case of two cou-
pled inductors L, L, with the following impedance matrix: zi; = r; + jwLi, 212 =
JjoM and 20 = ry + jwL;. In this case we have X.; = —x;; = —jwL ;. Therefore,
at the frequency of interest wy, a series capacitance C; of value C; =1/ (w(%Ll)
realizes the sought X ;. Table 1.1 summarizes all the relevant formulas which allow
maximizing either the power on the load or the efficiency of a WPT link described
by its impedance matrix.

P = (1.65)

fan.ye@stonybrook.edu
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I

1
1
! Y11 Y12
h : <}’2| )’22) Yo
1
[
1

Fig. 1.6 Admittance matrix modeling a WPT link: it is assumed that port 1 is connected to a current
generator, and that a load admittance Y, is on port 2

1.2.3 Admittance Matrix Modeling of a WPT Link

Let us now consider the case of a reciprocal two-port network modeled by its admit-
tance matrix. According to the admittance matrix representation, it is assumed that
port 1 is connected to a current generator, while port 2 is terminated on a load
admittance Y, = G + jB,. With reference to Fig. 1.6, the two-port network can be
represented by the following relation:

I=YV, (1.66)

where V is the vector of port voltages, I is the vector of port currents and Y is the
admittance matrix of the network:

Y= (y” y”), (1.67)
Y21 Y22
with elements y;; = g;; + jbij, (i, j = 1,2), and, for the hypothesis of reciprocity,

Y12 = y21. With reference to Fig. 1.6, by denoting with Y;, the input admittance of
the network at port 1

2
Y12

Yin = Gin + jBin = yu1 — m,

(1.68)

the active power delivered by the current generator to the network can be expressed

as
F n 2|le |2| ]l ( )

similarly, the active power delivered to the load is

201

pL |L|*. (1.70)

For this case, we address the problem of determining suitable values for the
load admittance Y, = G + j By, forrealizing wireless power transfer. In particular,
closed form analytical formulas will be derived for the MPDL solution, Y} = G/ +
jBY, and the MPTE solution, Y; = G¢ + jB¢.

fan.ye@stonybrook.edu
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It is convenient to define the parameters

bZ
Xy = —>— (1.71)
811822
2
8
g}? = _°1z (1.72)
811822
and
My =bi1/g11 (1.73)
l)y = b22/g22 . (174)

It is also advantageous to introduce the following definitions:

Oy = /14 1,21 — &2, (1.75)

Oy = XyEy . (1.76)

According to the above definitions the admittance matrix of the two-port network
can be written as

Y — ( 811 (]My+1) /811 822 (€y+ij)) (1 77)
V811 82 (Ey +J Xy) 822 (j vy + 1) .

The inverse of the admittance matrix is

71 ( g (jvy+1) —veuen &+ Xy)) (1.78)
A \—4/811 82 (gy +J Xy) 811 (j Ky + 1) .

with A being defined as

A=gugn [(n+1) Gu+1)= EG+in)]. A1

1.2.3.1 Maximum Power Delivered to the Load Solution

With reference to Fig. 1.6, the load admittance which realizes the maximum power
transfer condition is the complex conjugate of the input admittance (Y> ,.) seen at
port 2 when the generator on port 1 is replaced with an open circuit

. 2
I 1 4
Vroe =1 =—=g22(1+jvy)_M

, (1.80)
Vain=o 222 (14 juy)
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According to (1.80), the MPDL solution, Y = G} + jB}, is

Y/ =G| +jB[
(1 + 2+ 1= &7 =2 xy 1y &)
Hy Xy &y Xy My Ey

G! = 1.81
L= 8» P (1.81)
P (Xy2 My — Ky S,vz +2xy & — M_vz Vy — ”y)

B =g» 5 (1.82)

My=+1

Assuming that the generator on port 1 has a conductance g, the active available
power is
L)

Py= 1
8g11

(1.83)

By using (1.81), the active power on the load normalized with respect to P is

&%+ x7)

Pl =
‘ (1 - Eyz =2 xymyEy + 1yt + Xyz)

(1.84)

By deriving (1.84) with respect to w, and setting to zero the derivative, the
following condition can be obtained:

MHy = Xysy . (1.85)
Condition (1.85) is equivalent to
by = b12&~ (1.86)
822

This condition can be satisfied by adding a parallel susceptance B, at port 1 (see

Fig. 1.7) .
12

B.i = bin=— — by1. (1.87)
822
Yi I b
— = —
| ) Two—port
I 1JBcl Yy
' network

Fig. 1.7 Two-port network modeled by its admittance matrix: a susceptance Y. = j B, is added
for realizing the MPDL and the MPTE solution. The value of B, is given in (1.87) for both the
maximum efficiency (MPTE) and maximum power transfer (MPDL) approach
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When B, is added to the network, the following expressions can be obtained for
the MPDL solution:

Y/ =G} + jBY (1.88)
2

G/ = s 1.89
L= 82 Qf,y 1 (1.89)

» 0r.6;,
BL = —by + g229x,y + g221 T 93") . (1.90)

When (1.85) is fulfilled, the input admittance is expressed by
92

G =2¢gn = (1.91)

1+62 +67, '

It is noted that the input admittance is purely resistive. The input power, normalized
to Py of (1.83) is easily computed as

2 2
1+6,, +065¢,

P — , 1.92
in 02, (1.92)
while the normalized active power on the load is
2 2
X~ +&
P = % . (1.93)
Finally, the expression for the efficiency is recovered as
2 2
PR (o T (1.94)
21+ Qr%y + 93,),
When g, = 0, we obtain the following expression for the efficiency:
2
Xy
nf=—" (1.95)
2(2+x7)

which asymptotically, for x, — oo, provides an efficiency value of n5, — 1/2. For
this case we can express the normalized active power on the load as
2
X5
pr=__=r _ (1.96)
o+ x)
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which asymptotically, for x, — oo, gives P{ — 1. Assuming that g;; is the gen-
erator resistance, the power on the load approaches the generator available power
as x, — oo. Note that the maximum power on the load, for this solution, increases
monotonically with .

1.2.3.2 Maximum Power Transfer Efficiency (MPTE)

By using (1.68), the following expression can be obtained for the efficiency of the
network:

2
Y12

e G
yo+Y

Pin Gin

(1.97)

For a given two-port network the efficiency n is maximized when the following
relations are satisfied

an
— =0 1.98
3G, (1.98)
an

1 —0. 1.99
3B, (1.99)

By solving (1.98)—(1.99) for the MPTE the following results can be obtained [1]:

Y¢ =G4 + jBS (1.100)
G = gnb, (1.101)
BS = gnb, —xn . (1.102)

The expression of the efficiency corresponding to the MPTE solution is

2 2
n = Lj‘yz (1.103)
(O +1) 162,
Noticeably, when g, = 0, (1.103) reduces to:
2
€ (1.104)

Xy
=
I+ 1+ 3022
which asymptotically, for x, — oo, provides an efficiency value of ¢, — 1. Simi-
larly, also for &, — 1 we have n° — 1.

The input admittance Y/, at port 1 when port 2 is terminated by Y; is given by

YS =gub — j (rbey —xn) . (1.105)

fan.ye@stonybrook.edu
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We can express the active input power P, normalized to Py as

49,
pe — ’ , (1.106)

" (ex,y - My)2 + Qrz,y

The active power on the load Py, always normalized to Py, is expressed as

Ory (&7 + 1°)
((6ey — )" +02,) (0 +1)* +62,)

Itis evident that both P, and P} are maximized when the condition (1.86), or equiv-
alently the condition (1.85), derived for the MPDL case is satisfied. Consequently,
as already seen for the MPDL solution, the MPTE solution can be realized by adding
in parallel to port 1 the susceptance B, given in (1.87).

When B, is added, the condition (1.86) is realized and from (1.106) we have the
following expressions for the normalized input power:

P =4 (1.107)

Pt = 1.108
"= ( )
and for the power on the load
4n®
Pt =1 (1.109)
Or.y
When &, = 0 (1.109) reduces to the following expression:
4x2
P = Xy (1.110)

2
,/1+x§(1+ 1+ x2)

which, asymptotically, for x, — oo, gives a behavior of the type P/ — Py/x,.
Thus, for the solution that maximizes the efficiency, when the efficiency tends to one
the output power reduces to zero. Table 1.2 summarizes the relevant formulas for
maximizing either the power on the load or the efficiency of a WPT link described
by its admittance matrix.

1.3 Application of Theory: The Case of Two Coupled
Inductances

The simplest case of WPT that can be conveniently described by an impedance matrix
approach is provided by two coupled inductors. With reference to Fig. 1.8, the mutual
inductance is denoted with M:

fan.ye@stonybrook.edu
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C 1 CZ
M
@ &
Vi T L Ly Rr

Fig. 1.8 Matching network for coupled inductances. Note that L;C; = 1/ w(z), i = 1,2 at the oper-
ating angular frequency wq. The value of R is provided in Table 1.3

M = kJLiL,, (1.111)

where k is the magnetic coupling coefficient. When a particular configuration is
chosen the nominal coupling coefficient for that configuration will be denoted by k.
The impedance matrix of the two coupled inductors is

Z11 212 r+joly  joM
= . . . 1.112
|:zz1 221] |: JoM  r+ joL, ( )

Assuming that the WPT link operates at the angular frequency wy, it is convenient
to introduce the following parameters:

w = uwy (1.113)
Xo
L =22 (1.114)
wo
L, = L;N? (1.115)
M = LNk (1.116)
Xo
n=g (1.117)
1
XoN?
ry = 0 (1.118)
2

The parameter u is the frequency normalized with respect to the operating frequency
of the link. The parameter N 2 is the ratio between L, and L. The resistances are
expressed in terms of the quality factors Q| and Q5. According to these definitions,
(1.112) becomes

(1.119)

|2 +iXe jkoXoN
T ik XoN 2 4 j X N?

With reference to Table 1.1, since rj, = 0, for the parameters ., &., 6, . and 0, ., the
following simplified expressions can be derived

x: =kiQ10> (1.120)
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Table 1.1 Impedance matrix representation of a two-port WPT link: a summary of the parameters’
values for the approaches that maximize efficiency and power. The parameters have the follow-

ing meanings: x; = x12//T11722, §; = r12/ /111722, 0z = V1 + Xzz v1-— ézzs Ox.z = x:&;- The

power has been normalized w.r.t. Py = |V 12 /(8r11)

Parameter | Maximum efficiency Maximum power

RL 226, rnd? /07 + 1)

XL 1220x,; — X202 —x20 + 100y - + 100 07/ OF. + 1)
Re 0 0

Xet X12r12/r2 — X11 X12r12/r2 — X11

Rin 1165, 2r102. /(1 + 62, +62.)

Xin 0 0

Pin 4/6, 201+ 62, +62.)/62.

Py 4n° /6. & +x)/6;.

n N’ = E 4+ xD/ (A 46, +67 ) E2+x3/QU+62 +62)

Table 1.2 Admittance matrix representation of a two-port WPT link: a summary of the parameters’
values for the approaches that maximize efficiency and power. The parameters have the following

meanings: x, = b12//g11822: £y = 812//811822: Ory = /1 + x,2\/1 — &%, 6y = xy&y. The

power has been normalized w.r.t. Py = |I; 12 /(8g11)

Parameter| Maximum efficiency Maximum power

Gr 2226, 82207, /02, + 1)

By, 826x,y — bx —by + 800y + g26. 67, /67, + 1)

Gcl 0 0

By bi2812/82 — bu b12812/822 — b11

Gin 8110y 281167, /(14 6%, + 6% )

B, 0 0

Pin 4/, 21+ 62, 462 )/6})

PL 41° /6y &+ x)/67,

0 = E D/ A+ 6,2 +02 ) [ €2+ D/ QU+ 62, +67 )

£2=0 (1.121)

0., =,/1+ Xzz (1.122)
Oy, =0. (1.123)

Accordingly, it can be easily derived that the matching element X is given by

Xcl = —Xo = —X11 = —(,()Ll (1124)
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Table 1.3 A summary of the parameters’ values for the approaches that maximize efficiency and
power for coupled inductors. The parameters have the following meanings: Xzz =o = k%Ql 0>
and Ry = XoNz/Qz. Note that the quantities P;;,, Py, are normalized w.r.t. Py = |V \2/(8r1|). In
the present case we have ri; = Xo/ 01

Parameter Maximum efficiency Maximum power

Ry Va+ 1Ry Ro(l +a)

XL —XoN? —XoN?

Xe1 —Xo —Xo

Rip XovT+a/0Qi 2Xo(1+)/(2Q1 + )
Xin 0 0

P 4/a + 1 2 +2)/(1 +a)

P da /(1 + Ve + D2VT+w) o/ +a)

n a/(1+ Vo +1)? o/ +2))

consequently, as illustrated in Fig. 1.8, X is realized by a capacitance C; of value
=1/ (a)(%L 1). Similarly, the reactive part of the load impedance of both the MPDL
and the MPTE solution, is given by:

X, =Xl =X, = —XoN* = —xn = —owl, (1.125)

Accordingly, X, is realized by a capacitance C, of value C, = 1/(wjL>). These
results are highlighted in Table 1.3, where all the relevant quantities of interest for
both the MPDL and the MPTE solution are summarized.

It is worth observing that, in the MPTE solution the active power on the load
decreases as the parameter « is increased. In fact, from Table 1.3 it can be seen that
asymptotically, for « — 00, the behavior of the power on the load is Pf — Py//«.
Therefore, even when selecting coils with high quality factor and relatively high
nominal coupling ky and thus obtaining high values of «, the power delivered to the
load will be modest, even if the efficiency is close to 1. Conversely, in the case of
the MPDL solution, asymptotically, for « — oo, the behavior of the output power
on the load, which also represents the available output power of the WPT system, is
P} — Py. These considerations are highlighted in Fig. 1.9, where the ratio between
the output power provided by the MPTE (Pf) and by the MPDL (P/) is reported.
The corresponding efficiencies are reported in Fig. 1.10. It can be observed that, as
the figure of merit « is increased, P/ becomes a smaller fraction of the available
power.
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Fig. 1.9 Ratio between 1
output power corresponding
to the MPTE solution (i.e., 0.8
Pf) and maximum output
. p .
power (i.e., P;) as i.i function %:] 0.6
of the figure of merit o =
R
0.4
0.2
0
0 50 100 150 200
o
Fig. 1.10 Efficiency: the 1
black line corresponds to the
solution maximizing the 0.8
power on the load; the red
line corresponds to the & 0.6
solution maximizing the 5
efficiency k3
£ 04
[8a) —n p
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0
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1.3.1 Coupled Inductances with a Capacitive T Network on
the Primary Side

In this section the network analyzed in [5, 6] and realizing a 1 : n transformer is
discussed. The corresponding schematic is illustrated in Fig. 1.11, it consists of two
coupled inductances modeled by an impedance inverter with a capacitive T network
on the primary side. According to the analysis developed in [5], a 1 : n transformer
can be realized by choosing

1
C = ﬁz_ (1.126)
Na)okoLl
k
C,=C-— (1.127)
v ko
k
G, =Cry o (1.128)
w ko

It is convenient to derive the impedance matrix of the network from the ABCD
matrix that can be easily computed as the product of the ABCD matrix of the capac-
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Fig. 1.11 Coupled inductors M L,

with a capacitive T added on
the primary side ° I 6666 % 6666 °
o

itive T network and the one of the impedance inverter. The following expressions
can be obtained for the elements z;;

(Xo Q1u? — jXou+ (K3 —1) Xo Q1) N?
jQ1n2u3+n2u2ij1n2u
koXlekuN2
T jQinut+nu—jQOin
[(Xo0 Q1 Q2ko® — X0 Q1 Q2) u® + (j Xo Q2 + j Xo Q1) u® + (X0 01 Q2+xO)u—;XoQ1]N2
JO102u>+Qou—jQ10s

211 =

22 =

(1.129)

Accordingly, at the nominal frequency # = 1 and for the nominal coupling & = k),
we obtain

(kg Xo @1—Jj Xo) N* k2 Xo Qi N?
2 —
Z= RXo0 N Xo(B 01 0st) 0at1) N2 (1.130)
n 0>

It is worth observing that, differently from the previous case of mutually coupled
inductors, in this case, rjp # 0 although x;, = 0. From (1.130), by introducing the
parameter o defined as o = ké 01 0> the following expressions are obtained:

x>=0 (1.131)
k2
g id ¢ (1.132)
kO Q| Q2+1 1+«
1
0, = 1.133
2 o ( )
6, =0. (1.134)

The expressions for the parameters of interest can be readily computed and are
summarized in Table 1.4. By comparing Table 1.4 with Table 1.3, it can be seen that
the expressions of the active power on the load are different; however, the efficiencies
are identical and, also the ratio between P} and PLP is the same. Hence the results
shown in Figs. 1.9 and 1.10 hold in this case, too.

From Table 1.4 it can be also seen that the reactive part of the load impedance X,
corresponds to a capacitance of value:
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1
C,L= , 1.135
L i, ( )

as in the case of two coupled inductances, while the matching reactance X, corre-
sponds to an inductance of value L N?/n?. In this regard, it is worth noticing that
the circuit can be simplified by replacing the series of the compensating inductance
corresponding to X, and the capacitor C, with an equivalent single inductance of
value

N
Leq :kOLl;a (1136)

1.3.1.1 The Coupling Independent MPDL Solution

From Table 1.4, it can be seen that for the network illustrated in Fig. 1.11 the optimum
load, Z; = Ry + j X, does not depend on the magnetic coupling coefficient k.
Accordingly, the active power on the load (not normalized)

v 2 .2 V 2 2
Vit n” _ IVl n_&’ (1.137)
8 Ro 8 N2 Xy

pL=Pr-Py=

does not depend on the coupling ky. As a consequence, as long as the losses on the
capacitive T are negligible, we can theoretically achieve the same maximum power
for different values of the coupling.

Finally, it is worth observing that, in the coupled inductors case, the resistance of
the MPTE solution is always greater than the resistance of the MPTE solution; in
particular, the following optimum range can be derived for R;: (1 + @)Ry > R >
~/1 4+ o Ry. On the other hand, for the 1 : n transformer configuration, the resistance
of the MPTE solution is always greater than the one of the MPDL solution. In this
case the optimum range of operation for Ry, is: /1 + « Ry > Ry > Ry. According
to these considerations, it is apparent that, depending on the desired value of the load
resistance, one of the two configurations may be preferred.

1.4 Application of Theory: The Case of a Capacitive WPT
Link

In this section, in order to provide an example of application of the admittance matrix
representation introduced in Sect. 1.2.3, a WPT link based on a capacitive coupling
will be analyzed.

We consider the lossy capacitive WPT link illustrated in Fig. 1.12, described by
its admittance matrix
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Table 1.4 A summary of the parameters’ values for the approaches that maximize efficiency
and power in the case of a capacitive T on the primary side. The parameters have the following
meanings: o = k%Qle and Ry = XoN?2 /Q>. Note that the quantities P;,, Pr, are normalized

w.rt. Py = V12/(8r11), In the present case we have ri| = Rooz/n2

Parameter Maximum efficiency Maximum power
RL Ja+1Rg Ro

Xr —XoN? —XoN?

Rei 0 0

X1 XoN?/n? XoN?/n?

Rin Roat/(n>/a + 1) Ro2a/(n% (o +2))
Xin 0 0

Pin 4o+ 1 2(a +2)

P (daa+ D/ +Va+D? |a

n a/(1+ o+ 1)? a/Qa +2))

Yy — Yi1 Y12 i
Y12 Y21

(1.138)

where y;; = g;; + jb;; (i, j = 1, 2). The admittance matrix of the Pi equivalent net-

work given in Fig. 1.13 is:

-Y: 1tV

Y=|:Y1+Y3 —Y; }

83
AAAY
JoCs3

._{ }_4

(1.139)

Fig. 1.12 Network representation of a wireless power transfer system realized with coupled

capacitances

Fig. 1.13 Pi equivalent Y;
network representation

Y )2
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According to (1.139), the terms of the admittance of the capacitive link are given by

yir = (g1 + g3) + jo (Cr + C3)
Y2 = (g2+g3) + jo(Cy + C3)
yi2 = —g3 — jwCs. (1.140)

Let us consider the case g3 = 0 which refers to a lossless dielectric and corresponds
to assuming g, = 0. In this case, referring to Fig. 1.12, from Table 1.2 the following
expression can be derived for the compensating admittance Y ;:

Yoo = Ge1 + jBa = —jbn = —jo(Cy + C3) (1.141)

As for the load realizing the maximum power transfer solution (i.e., the MPTE
solution), it is

Yo =G+ B, (1.142)
GL=g,/1+x;, (1.143)
B, = —jw(Cy+ C3), (1.144)

where the parameter y,, for the case under analysis is

22

c
x2=23 (1.145)
’ 8182

and represents a figure of merit (f.o.m.) of the system. According to the hypothesis
g3 = 0, the expressions of the efficiency and of the normalized power delivered to
the load for the MPTE solution are

2

= R (1.146)
(1+/1+ %)
2
pe_a4 Xy (1.147)

2
Jree (1+ 1+ )

The network corresponding to the MPTE solution is illustrated in Fig. 1.14.

Let us now consider the MPDL solution, according to the theory summarized
in Table 1.2, the compensating admittance is the same of the MPTE solution and
reported in (1.141). As for the load, from Table 1.2 the following expression can be
obtained:

Y. = Gp+ jBr = g2(1 + x2) — jo(Cs+ C3). (1.148)
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jﬂ)C3

| T . 1
I JoLy 81 & juC JoC, 2 82 JjoL, m

[

Fig. 1.14 Maximum efficiency network for a WPT system realized with coupled capacitances; the
source is on the left side and the load, G, = g2,/1 + x)z,, is on the right side. The values of the
inductances, are L = 1/ [w3(Cy + C3)] and Ly = 1/ [03(C2 + C3)]

it is worth observing that, for the hypothesis gz = 0, the reactive part is the same as
calculated for the MPTE solution, while the resistive part is different. The expressions
for the efficiency and the active output power are

XZ
P=__r (1.149)
g 2(2+X3)
XZ
P __ y
Pl = POm (1.150)
y

Table 1.5 Example of capacitive WPT link. The parameters refer to the networks illustrated in
Figs.1.14 and 1.15

Parameter Maximum efficiency Maximum power
Frequency 15MHz =

1A 1mA =

Ci=C 6.771 pF =

C3 0.784 pF =

81 =82 5.242uS =

Li=1L, 14.89 nH =

=1/GL 13499.65 Q 955.31Q
J (DC3
I JjoL; g1 JjoCy ‘L ‘L JoCr & &2 JjoL,

T 7 i

Fig. 1.15 Network for maximum power transfer; the source is on the left side and the load, G| =
g (1 + Xyz), is on the right side. The values of the inductances are the same as in Fig. 1.14
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Fig. 1.16 Output power
when a current /1 = 1 mA is
provided by the input
generator. The black line are
the results corresponding to
the MPDL solution, while
the red line are the results
obtained for MPTE solution

Fig. 1.17 Comparing effi-
ciency: the MPDL solution
generates the black line,
whilst the red line is obtained
from the MPTE solution.
Note that the maximum
power approach provides

the limit of 1/2 for the
maximum efficiency at the
operating frequency (in this
case 15 MHz). At other fre-
quencies, the load realizing
the maximum power transfer
will be, in general, different

29
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As an example of application, let us consider the capacitive WPT link described
in Table 1.5, where the parameters refer to the networks illustrated in Figs. 1.14 and
1.15. As it can be seen, the value of R; realizing the maximum power condition is
955.31 2 and is quite different from the value of 13499.65 2 realizing the maximum
power transfer efficiency. The frequency behavior of the active power on the load
corresponding to both the MPDL and the MPTE solutions is illustrated in Fig. 1.16,
while the results obtained for the efficiencies are given in Fig. 1.17. From these fig-
ures, it is evident that the two approaches provide very different results. In particular
when the MPDL solution is searched, an output power of about 23.73 mW is obtained
with a 0.5 efficiency, which is the theoretical maximum. Similarly, the MPTE solution

provides a value of 0.87 for n and an active power on the load of about 5.86 mW.
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Chapter 2
Wireless Power Transfer Based
on Metamaterials

Bingnan Wang, William Yerazunis and Koon Hoo Teo

Abstract Near-field-based wireless power transfer (WPT) technology is
promising for many applications from consumer electronics to industrial
automation. By utilizing resonant coupling, the power transfer can be made more
flexible than conventional inductive WPT. However, the range is still limited. In
this chapter, we report research work on near-field wireless power transfer (WPT)
based on metamaterials-related ideas, aiming to extend the range and improve the
flexibility of a WPT system. In the first part, we show that with a thin slab of meta-
material, the near-field coupling between two resonant coils can be enhanced; the
power transfer efficiency between coils can also be greatly improved by the meta-
material. The principle of enhanced coupling with metamaterials will be discussed;
the design process of metamaterial slabs for WPT will be introduced; experimental
results on WPT efficiency improvement with metamaterials will also be presented.
In the second part, inspired by metamaterials theory, we study the mutual coupling
of an array of coupled resonators, and their application for WPT. We show that the
range of WPT can be greatly extended with an array of coupled resonators. More
importantly, the technology enables wireless power delivery to both static and mobile
devices. The principle of this technology will be explained; analytical and numerical
models will be introduced to estimate the performance of a WPT system based on an
array of coupled resonators; methods for WPT optimization will be discussed and
experimental results will be presented.
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2.1 Introduction

Wireless power transfer (WPT) has a long history of over 100 years that dates back
at least to Tesla in 1893. In recent years, WPT research and product development
is reemerging due to rapidly increasing demands in new applications. For exam-
ple, WPT technology is being deployed to provide wireless charging solutions for
batteries of electronic devices including smart phones and wearable devices, which
require frequent recharging, and where a mechanical charging socket may wear out
in normal use. WPT is promising in many areas with different power levels, from
implantable medical devices (usually on the order of milliwatts) to electric vehicles (a
few killowatts to tens of killowatts). Although each application has specific require-
ments such as transfer distance, device size, power, and packaging, most of them rely
on one of the following fundamental technologies: microwave power transmission,
inductive coupling, and resonant coupling.

Microwave power transmission uses directed microwave beams to send energy
from transmitting antenna to a receiving antenna. The technology requires accu-
rate alignment and clear line-of-sight and was primarily developed for solar power
satellite applications with very high power level, very long distance, and very large
investment [1]. It was not typically considered suitable for low power consumer
electronics devices charging until recently [2].

In short distance WPT applications, inductive and resonant coupling are two
dominating technologies. Inductive method utilizes the inductive coupling between
transmitting and receiving coils to transfer power. The efficiency of such a system
depends strongly on the coupling coefficient of transmitting and receiving coils. To
achieve efficient power transfer, the two coils need to be positioned such that most
of the magnetic flux generated by the transmitting coil goes through the receiving
coil. Thus inductive coupling-based WPT has a limited power transfer range of a
few centimeters and requires precise alignment between transmitting and receiving
coils [3-5].

Resonant coupling occurs when the transmitting and receiving coils are tuned to
the same resonant frequency. With resonant coupling, the effective transfer distance
of a WPT system can be greatly extended [6—12]. Although resonant coupling-based
WPT has a long history [6, 7], the application has been very limited. In 2007, Kurs et
al. demonstrated that WPT based on resonant coupling can be used to transfer 60 W
power over a distance of up to 2 m [8]. This work has since inspired many researchers
around the world toward the understanding, analysis, improvement, and application
of WPT based on resonant coupling technology (see, for example, Refs. [9-12]).

Using resonance, the system can work efficiently even when the coupling coeffi-
cient between transmitting and receiving coils is very small (generally <0.2, while
in the case of inductive coupling, the coupling coefficient is typically >0.9). The
efficiency # of a resonant coupling-based WPT system depends on two important
factors: the quality factor Q of resonant coils, and the coupling coefficient k between
transmitting and receiving coils. Higher O, which means smaller loss rate in the
energy exchange, and higher &k, which means higher coupling rate, can both lead to
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higher efficiency # [8]. Since the coupling coefficient is directly related to the dis-
tance and alignment between transmitting and receiving coils, being able to operate
at lower k essentially enables the system to operate at larger distance and in the case
of coil misalignment. WPT to a single [8] or multiple [13] receiving devices have
been demonstrated at “mid-range” distance, which is several times the characteristic
size of the transmitting coil. However, the efficiency still drops rapidly as distance
is increasing. It is also desirable to achieve the highest possible efficiency at a given
distance for WPT technologies to compete with wired solutions. Since the power
receiving devices need to be close to the transmitting device, the mobility is very
limited.

In this chapter, we report research on metamaterials for wireless power applica-
tions, and show the potential of metamaterials to improve the range and flexibility
of WPT systems. In particular, power transfer efficiency improvement using meta-
materials, and WPT to mobile devices using array of resonators will be introduced.
With a metamaterial slab, the coupling between transmitting and receiving coils can
be enhanced, and the efficiency can be subsequently improved [14—19]. In the next
section, we will give a brief introduction to metamaterials, their applications to WPT,
and areview of recent theoretical and experimental work in this area. With an array of
resonators, the range of power transfer can be greatly extended, and dynamic power
transfer to mobile devices can be achieved [20-22]. In Sect.2.3, we will give an
introduction to this technology and report experimental development on WPT with
arrays of coupled resonators.

2.2 Metamaterials for WPT

Metamaterials are a class of artificially engineered materials which can achieve
unique properties that cannot be obtained with natural materials. Metamaterials are
typically made from periodic arrangement of structures with unit cell size much
smaller than the wavelength at the operating frequency. The properties in response
to electromagnetic waves are derived from those engineered structures, instead of
the base materials used to build the structures. In the last decade, unique wave phe-
nomena such as negative refractive index and evanescent wave enhancement have
been predicted and realized in metamaterials [27-29]. Since the first experimental
demonstration of negative index of refraction [28], metamaterials have been shown
to be powerful and flexible in achieving desirable electromagnetic properties from
radio frequencies to optical frequencies. Numerous applications based on metamate-
rials have been developed, such as superlens imaging devices [30], invisible cloaking
devices [31], and novel antennas [32].
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2.2.1 Metamaterials and Superlens

The building blocks of metamaterials are engineered structures, typically much
smaller in size than the working wavelength, so that metamaterials can be treated as
effective media. The electromagnetic properties of a metamaterial are obtained from
these building blocks, rather than the composition materials. Macroscopic parame-
ters, such as relative permittivity ¢, relative permeability x, and chirality x can be
used to describe the electromagnetic properties of metamaterials. More importantly,
we can design for a special set of effective parameters by playing with the shape,
geometry, and size of the artificial structures, as these bulk material electromagnetic
parameters are determined by those structures in metamaterials. Extraordinary elec-
tromagnetic properties, such as negative index of refraction n, which are not readily
available in natural materials, have been discovered in metamaterials. Metamaterials
have become a powerful tool leading to numerous new discoveries. In 2000, Pendry
studied theoretically the wave propagation properties in a negative-index material,
and showed that a negative n can be achieved having both & and x negative in a meta-
material [27]. Negative refraction occurs at the interface between a regular medium
of positive n and a negative n metamaterial.

Moreover, while evanescent components decrease exponentially in air or other
dielectric media, they can propagate and even be enhanced in a n < 0 material.
Pendry showed that with a flat slab of metamaterial having the property of relative
permittivity and permeability parameters ¢ = —1 and x = —1, both the far-field
propagating waves and the near-field evanescent waves of an object can be restored.
This is how the so-called “super lens” is constructed with theoretically unlimited
resolution [27]. Although in reality the ideal condition of ¢ = —1 and ¢ = —1 does
not exist, metamaterials designed with physical parameters and low material losses
can still achieve imaging resolutions beyond the diffraction limit.

The applications of the unique properties of metamaterials, especially evanescent
wave amplification, are not limited to imaging devices. For resonant coupling-based
WPT, the power is exchanged between resonators via coupling of near-field evanes-
cent waves [8]. At resonance, electromagnetic fields are confined mostly inside the
resonators, and the electric and magnetic fields exchange energy periodically. Out-
side the resonators, the electromagnetic fields decay evanescently and do not carry
away energy, unless coupled to the tail of the evanescent wave of a second resonator.
Itis thus interesting to see if metamaterials can be applied to WPT systems to improve
the coupling, and eventually the power transfer efficiency.

2.2.2 Metamaterials and WPT

The adoption of a “super-lens” for near-field WPT was proposed in Ref. [14]. A
metamaterial slab of ¢ = —1 and ¢ = —1 was placed between transmitting and
receiving coils in order to study the effect to the near-field coupling. It was shown

fan.ye@stonybrook.edu



2 Wireless Power Transfer Based on Metamaterials 35

that the metamaterial slab can couple to the near-field evanescent waves, so the
effective distance between resonators was reduced, and the coupling coefficient was
enhanced. With numerical simulations of a WPT system, it was shown that the
power transfer efficiency of the system could also be improved significantly if such
a metamaterial slab is used. In Ref. [19], numerical simulations confirmed that the
inductive coupling between coils can be enhanced by a metamaterial slab acting as
a “super-lens.”

In order to build a “super-lens” metamaterial with negative index for a desired
frequency, itis required thatboth e < Oand ¢ < 0. Two sets of artificial structures are
typically needed for the metamaterial to achieve such properties, which is relatively
complicated in both design and fabrication. Fortunately, the requirements can be
simplified for WPT systems, where the wavelength at the operating frequency is on
the order of meters and is much larger than the coil size. Indeed, when we are in
the deep subwavelength limit, electric and magnetic field decouple, and only one
parameter of ¢ and u needs to be negative to make a “super lens” [27]. Depending on
if the near-field is dominated by electric field or magnetic field, only ¢ < Qor u < 0
is required. In a WPT system, power is transferred via the coupling of near-field
magnetic field, thus a 4 < 0 metamaterial is sufficient to achieve the same effect of
efficiency improvement [16].

To demonstrate the idea, a four-coil WPT system [8] was modeled and simulated,
as shown in Fig. 2.1. Power is injected through the nonresonant loop antenna on the
far left side, which is coupled to a nearby resonant coil. The resonant coil is coupled
to the receiving side with another coil of the same resonant frequency, which is then
inductively coupled to a nonresonant loop antenna at the far right, which is connected
to a resistive load. Figure 2.1a shows the simulated magnetic field distribution of the
system. The field intensity is strongest at the resonant coil on the left side, due
to the excitation of resonant mode. The magnetic field is coupled to the second
resonant coil on the right side, but with weaker intensity, due to the large distance in
between. In Fig. 2.1b, a metamaterial slab with 4 = —1 4 0.05{ and ¢ = 1 is placed
in between the two resonant coils, and the field distribution is shown at the same
scale as Fig. 2.1a. While the field intensity at the transmitting coil is the same, the
field is seen to be enhanced at the metamaterial slab, and the field intensity at the
right receiving resonant coil is increased. It indicates that the metamaterial slab can
couple to the near-field evanescent waves, such that the effective distance between
resonators is reduced, and the coupling is enhanced.

In Ref. [15], theoretical studies were performed based on an analytical model
of the coupling between two coils and a homogeneous metamaterial slab. The coils
were simplified as point magnetic dipoles, and the metamaterial slab was assumed
to be infinitely large. The coupling between two coils was represented by the mutual
inductance Lj;, and the power transfer was characterized by a simplified circuit
model. It was found that the power transfer efficiency from one dipole to the other
is proportional to | Ly;|>. The mutual inductance was calculated taking the ratio of
the magnetic flux through the second coil generated by the first current carrying
coil and the current magnitude of the first coil. That magnetic flux was calculated by
solving the field in the system generated by the first coil. A large slab of metamaterial
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Fig. 2.1 Simulated
magnetic field distribution of
coupled resonators a without
and b with a metamaterial
slab. The metamaterial slab
has a relative permittivity of
—1 and a relative
permeability of —1. The
system is excited by a port on
the nonresonant loop antenna
on the left side, and power is
transferred to a resistive load
connected to the loop
antenna on the right side

was embedded in the space between the two magnetic dipoles, with the effective ¢
and ux assumed to be homogeneous and uniaxial. The presence of the metamaterial
modified the field in the system, thus changed the mutual inductance between coils,
as well as the self inductance of the coils. With a metamaterial slab acting as a
“super lens,” the mutual inductance can be increased significantly depending on the
effective parameters of the metamaterial. Consequently the power transfer efficiency
can be improved by the metamaterial. It was shown that, with a realistic magnetic
loss tangent 0.1 of the metamaterial slab, the power transfer efficiency with the slab
can be an order of magnitude greater than efficiency without the slab.
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2.2.3 Experimental Realization

Previous numerical and analytical studies showed that power transfer efficiency can
be improved with metamaterials, through mutual coupling enhancement between
coils. However, approximations were used in these studies. In the analytical calcula-
tion [15], the coils were assumed to be ideal magnetic dipoles, and the metamaterial
slab was considered to be infinitely large and homogeneous. In real systems, the
inductance and capacitance of coils are distributed and cannot be treated as magnetic
dipoles due to the physical size of coils; the size of metamaterial is finite and the
homogeneous parameters are not precise. In the numerical simulation [14], although
real coils and finite-sized metamaterial slab were used, the metamaterial parame-
ters were still approximated. It is therefore important to verify the findings with
experimental measurements.

In Refs. [16] and [17], experiments on WPT with metamaterial have been done.
The metamaterial slab is the essential component for the system. As stated pre-
viously, power is transferred via the coupling of near-field magnetic field. Thus a
“single-negative” metamaterial with ¢ < 0 and ¢ > 0, or a magnetic metamaterial
was designed.

Magnetic response of physically realizable metamaterials, including secondary
effects such as heating and harmonic generation, is an important branch of meta-
material research. Previously, magnetic metamaterials have found applications in
areas including new antennas [32] and magnetic resonance imaging systems [33].
However, most of applications of metamaterial before WPT are for information
processing, where the required power level is very low, typically on the order of
milliwatts. In a WPT system, depending on target applications, the required power
level can be anywhere from a few watts to a few killowatts. Power handling is a major
challenge to the metamaterial design. While loss in metamaterial is less sensitive in
information processing, it is critical in WPT systems, where the efficiency needs to
be as high as possible in order to compete with wired power delivery. For a typical
metamaterial, the ratio of operating wavelength to unit cell size 4/a is 10 or less.
However, for WPT, the whole system is usually much smaller than the wavelength,
producing a 1/a ratio greater than 100. The required fabrication process needs to
be simple and low cost for commercial viability. In summary, the metamaterial for
WPT needs to be low loss, low cost, compact, and capable of handling high power.

As shown in the inset of Fig. 2.2a, the building block of the metamaterial are
two-sided square spirals. The structure is designed to achieve the compact size and
low-loss requirements. The 3-turn spirals are printed on Rogers RO4003C circuit
boards, with the two sides connected by vias. With a size 6.5 mm by 6.5 mm, the
structure gives strong response to external magnetic field around resonant frequency
of 24 MHz. The strong response comes from the resonance of the structure, which can
be effectively considered as an LC resonator, where the inductance comes from the
multi-turn metal wires, and the capacitance comes mainly from the “plate capacitor”
formed by the two sides of metal structure on the printed circuit board. The effective
inductance and capacitance are much larger than conventional split-ring resonators of
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Fig. 2.2 a The fabricated 3d metamaterial, with the unit cell structure shown in the inset. b A
picture of the planar metamaterial, with inset showing the details. ¢ is the spacing between two
planes

the same size, so much lower resonant frequency is achieved. In terms of wavelength
to unit cell ratio 1 /a, the double-sided spiral design is about 170, while conventional
split-ring resonator is around 10.

A p-negative metamaterial can be constructed by assembling these spirals in
cubic lattice [16], as shown in Fig. 2.2a. Above the resonant frequency, the effective
4 (relative magnetic permeability) of the metamaterial is negative. At our working
frequency of 27.12 MHz, this metamaterial has an effective u very close to —1.0 as
well as a relatively simple fabrication, low loss, and compact size.

Metamaterial with a different negative effective x4 can also achieve evanescent
wave enhancement. However, when the absolute value of negative u is larger, the
frequency gets closer to the resonant frequency of the composing spirals, causing
increased Ohmic loss in metallic structures and dielectric loss in the substrate of the
metamaterial and less power transfer efficiency improvement.

Other components of a WPT system were also designed and fabricated. This
system is intended to work at the ISM band with center frequency of 27.12 MHz.
As shown in Fig. 2.3a, two planar coils built with copper wire spirals are used as
resonators. Two nonresonant loop antennas are inductively coupled to the resonant
coils. RF power is fed to the system by connecting to the loop antenna on the right
side. Power is transferred to the left-side resonator and picked up by the second loop
antenna, and delivered to a load (an incandescent light bulb).

Experiments were performed to measure the power transfer efficiency of the WPT
system at low power [16]. The overall efficiency of the system was measured by an
Agilent N5230A vector network analyzer. The two loop antennas were connected
to the two ports of the network analyzer, and S-parameters between the two ports
were measured. For each measurement, the distances between loop antennas and
associated coil resonators were tuned so that the system can be properly matched to
the 50 Q ports of the network analyzer for optimal power transfer [12, 13]. When a
metamaterial slab is added in the system, the optimal condition needs minor adjust-
ment. The distances between loop antennas and associated coil resonators need to be
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Fig. 2.3 WPT experiment to
a 40 W light bulb of system
a without metamaterials,

b with the 3D metamaterial
slab, and ¢ with the
anisotropic metamaterial
slab. The separation distance
is 50 cm for all cases
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Fig. 2.4 The measured
power transfer efficiency of
different system
configurations: a original
system without
metamaterials, maximum
efficiency is 17 %, b with a
3D metamaterial slab,
maximum efficiency is 35 %,
and ¢ with an anisotropic
metamaterial slab, maximum
efficiency is 47 %

Efficiency (%)

Frequency (MHz)

readjusted so that the optimal matching for power transfer is achieved. The reflection
parameters S;; and Sy, around resonance are both small (around —20 dB), and the
change due to the introduction of metamaterial is negligible. Thus the power transfer
efficiency of the system can be estimated by |S,;|>. At a distance of 50 cm between
two resonant coils, the efficiency without a metamaterial is 17 %, and is increased to
35 % with the metamaterial slab in the system [16], as shown in Fig. 2.4.

In Ref. [17], the metamaterial slab for WPT was further simplified. Instead of
stacking the two-side square spirals in three dimensions, only two flat panels of spi-
rals were used to construct an anisotropic metamaterial, as shown in Fig. 2.2b. The
simplification is made because the magnetic field in the WPT system is mainly in
the direction along the axis of the spirals. It is sufficient to use a metamaterial having
negative magnetic response in this direction, instead of an isotropic metamaterial.
The two surfaces are separated by a distance + = 2 cm, optimized to achieve high-
est power transfer efficiency of the system. With the same method, the efficiency
is measured with the anisotropic metamaterial in the WPT system. As shown in
Fig. 2.4, the efficiency is increased to 47 % at maximum, comparing to peak effi-
ciency of 17 % without the metamaterial. The achieved efficiency is even higher than
the case of isotropic metamaterial, as the loss is lower in the planar metamaterial with
unnecessary structures removed. In the anisotropic metamaterial, evanescent wave
enhancement is achieved via the excitation of surface waves on the two surfaces.
Before WPT, anisotropic metamaterials have been used for near-field imaging [35].

Experiments at higher power level have also been done to the WPT system [16,
17]. Figure 2.3 shows the experimental demonstration of wireless power transfer to
a 40 W light bulb. The RF power is provided by a high-frequency transceiver with
power amplifier through the input loop antenna. Similar as in the efficiency measure-
ment, the distances between loop antennas and associated resonators are adjusted for
optimal matching each time. When a metamaterial slab is inserted in the system, the
matching process is repeated to minimize the affect of mismatch. The brightness of
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light bulb can thus reflect the amount of power transferred. Figure 2.3a shows the
system without metamaterial, where the light bulb barely glows. Figure 2.3b shows
the system with the anisotropic metamaterial, and the light bulb is much brighter.
This indicates that the efficiency is indeed improved significantly by the metamater-
ial. The experiment also shows that the metamaterial is capable of handling the high
power level.

Later on, the idea on metamaterials for enhanced WPT has been verified by
several other studies. In Ref. [23], a “super-lens” metamaterial slab was fabricated
for a WPT system, and shown to be capable of increasing the range of power transfer,
as well as the power transfer efficiency compared with lensless system. In Ref. [24],
improved power transfer efficiency was demonstrated for a short-range telemetry
system with a compact metamaterial. The efficiency improvement was achieved
with the metamaterial slab placed in close proximity to transmitting or receiving
coils. In Ref. [25], the misalignment between transmitting and receiving coils was
studied, and it was shown that a metamterial slab can be applied to mitigate the
effect of misalignment and improve the power transfer efficiency. In Ref. [26], a
compact metamaterial with adjustable operating frequency between 10 and 30 MHz
was designed and fabricated. The metamaterial was applied to a two-coil WPT system
and shown to be able to improve the power transfer with less waveform distortion.

2.3 Array of Resonators for Mobile Power Transfer

In a resonant coupling-based WPT system, the basic configuration is to have a pair of
resonant coils. Wireless power is transferred between the coil pair through coupling
of evanescent waves. The resonant coil can be excited through inductive coupling
to (as shown in Fig. 2.5a), or directly collected to an excitation source. Although
some flexibility in range can be realized, the region of efficient power transfer is still
limited to the physical size of the coils. For devices that travel with distance much
larger than the physical size of the transmitting coil, the technology is not sufficient
to provide wireless power continuously. Examples include the wireless charging for
battery-powered vehicles on the road, wireless power for elevators, or wireless power
for industrial robots that can travel a long distance. In this section, we introduce a
feasible solution to the problem, and show that by utilizing the coupling of an array of
resonators, mobile WPT to multiple mobile devices is achievable [20-22]. With this
technology, mobile WPT to electric vehicles on road can be realized. By embedding
a power transmitting array of resonators under surface of road or track, power can be
picked up wirelessly and continuously by vehicles with pre-installed power receivers
traveling on the road.
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(a) (b)
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Fig. 2.5 a WPT system with one resonant coil as transmitter and one resonant coil as receiver. b
WPT system with an array of resonant coils as transmitter and one resonant coil as receiver

2.3.1 Array of Coupled Resonators

An array of coupled resonators can be formed by multiple resonators with same
or similar resonant frequencies when each resonator is resonantly coupled to its
neighboring resonators. Figure 2.5b shows a simple example of an array in linear
shape, which is composed of multiple coils aligned in a straight line. Of course, the
resonator design and the shape of the array can both take different forms [20]. For
example, the resonators can be arranged in more complex routes with bends and
curves. The key is that, when one resonator in the array is excited by an external
source, power can be resonantly coupled to its neighboring resonators, then to the
next neighbors, then to all resonators in the array. As shown in Fig. 2.5b, power
can be distributed in the array by inductively coupling a loop antenna to the first
resonator in the array. When a resonant receiver is close to the array and is coupled
to any resonator or resonators in the array, power can be transferred to it. The power
is distributed and transferred in the system via resonant coupling, thus no electrical
connections between resonators are required. The receiver can also be kept a distance
away from the array. Two features of the system can be observed. First, the effective
power transfer range is greatly extended, as the receiver can now be anywhere along
the array, which can be much larger than the physical size of one resonator. Second,
the receiver can be attached to a mobile device and travels along the array freely. It
is even possible to allow multiple receivers to be powered by the system at the same
time, as long as each receiver is coupled to the array.

2.3.2 Numerical Simulations and Circuit Analysis

A system similar to the one shown in Fig. 2.5b is modeled and simulated in COMSOL.
In the model, the resonators are square spirals of width 20 cm, designed to have a
resonant frequency around 25 MHz. A linear array is formed by 10 resonators side-
by-side. A loop antenna is aligned to the first resonator in the array and inductively
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Fig. 2.6 Simulated (a)
magnetic field distribution of
a WPT system with an array
of 10 resonators as
transmitter: a No receiver,
and b with receiver
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couples the energy to the system. With these settings, the magnetic field distribution
of the system is calculated and plotted in Fig. 2.6a. A strong field is excited by the
nonresonant loop antenna, and localized around resonators in the array. Now we place
another resonant coil and a nonresonant loop antenna as receiver and align them with
the 10th resonator of the array. As shown in Fig. 2.6b, even though the receiver is
very far from the transmitting antenna, a strong field is still seen at the receiver due to
resonant coupling between the resonant receiver and the last resonators in the array.
Thus efficient WPT can be achieved over a long distance.

As shown in Fig. 2.6, the field is not uniformly distributed along the array. The
coupled mode of the resonator system forms a standing wave on the array, with
the phase difference between neighboring resonators depending on the operating
frequency. It is therefore important to evaluate the power transfer performance of the
system when the receiver is at different positions.

As numerical simulations are time consuming, a transmission line model based on
circuit analysis and analytical calculations has been developed to quickly evaluate the
performance of the array-based system [21]. In the model, each resonator is treated
as a tank circuit; capacitive coupling between resonators is neglected and inductive
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Fig. 2.7 Circuit model for the nonresonant drive coil, resonant coil in the array and receiver, and
nonresonant load coil

coupling is quantified by mutual inductances; nonresonant coils, including the drive
and load coil, are also modeled as simple RL circuits, as shown in Fig. 2.7.

The inductance, capacitance, resistance and resonant frequency for resonant coils,
the inductance and resistance for nonresonant coils, as well as the mutual inductance
between coils are calculated analytically based on the geometry and relative positions
of coils. For simplicity, we consider all resonant coils in the array and the resonant
receiving coil as identical, thus having the same inductance, capacitance, and resis-
tance values. Similarly, the two nonresonant coils for transmitter and receiver are
also identical. Also, we assume the mutual inductance between coils depends only
on their separation distance, not on their position in the array system. Thus all nearest
neighboring couplings in the array is the same. Finally, we assume that the mutual
coupling is reciprocal. With these in mind, we can reduce the circuit elements in
the system to those listed in Table 2.1. Referring to Fig. 2.5, the resonant receiving
coil and nonresonant load coil moves together linearly along the array of N resonant
coils, and the position is marked as x relative to the first coil in the array.

The coupled circuits can be represented by a system of equations derived by
Kirchhoff’s voltage and current laws. The self-impedances for each resonant coil
and nonresonant coil are, respectively

Zi=R + j(oL, — ) (2.1)
wCy

Z.=R.+ joL. (2.2)

For nonresonant drive coil, we have

N
Vs = Li(Ze + Rs) + D joMa(m) Ly + joMa, ()] + joMa ()1, (2.3)

m=1
For each resonator in the array, we have an equation of the following form:

N
0="1LZ + joMyOla+ D joMyt,m)l,+ joM.(t,x)I + joMy (i, x)

m=1,m#t

2.4)

fan.ye@stonybrook.edu



2 Wireless Power Transfer Based on Metamaterials 45

Table 2.1 Symbols and their meanings in the circuit analysis

Symbol Meaning

R;, C;, L; Resistance, capacitance, and inductance of a resonant coil

R., L. Resistance and inductance of a nonresonant coil

Vs, Rs Voltage source voltage, and resistance

Ry Load resistance on the load coil

My (m, n) Mutual inductance between coils m and n of the array

My, (m) Mutual inductance between drive coil and resonant coil m of the array
My, Mutual inductance between the receiver coil and load coil

M, (m, x) Mutual inductance between the receiver coil and resonant coil m of the

array when the receiver is at position x

My, (m, x) Mutual inductance between the load coil and coil m of the array when the
receiver is at position x

My, (x) Mutual inductance between the receiver coil and the drive coil when the
receiver coil is at position x

Myr (x) Mutual inductance between the load coil and the drive coil when the
receiver coil is at position x

LimrL Current in the drive coil, m-th resonant coil in the array, resonant receiving
coil, and the nonresonant load coil

For the resonant receiving coil, we have

N
0=5LZ + joMyIL + joMy () + D joM.(m, x)I, (2.5)

m=1
And for the nonresonant load coil, we have

N
0=1I.(Ze+ Ri) + joMu () 1y + joMp 1, + D joMuy(m,x)L,  (2.6)

m=1

By solving the system of equations, the current in each coil, the transmitted power

P

P = %ER(VS - I}), the received power at load TR

efficiency # = P/ P;, can all be obtained.

For an array with 10 resonators, the power transfer efficiency is calculated as a
function of receiver position as well as excitation frequency, and plotted in Fig. 2.8.
For a fixed excitation frequency, as the receiver moves from one end to the other
end, there are highs and lows in efficiency, and different pattern is seen at different
frequencies. This is due to the nonuniform field pattern of coupled modes in the array,
and different coupled modes of the array are excited at different frequencies. On the
other hand, at a fixed receiver position, very different efficiencies can be obtained
depending on the excitation frequency.

as well as the power transfer
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Fig. 2.8 Power transfer
efficiency (given by circuit
analysis) from a 10-resonator
array to a receiver, as
function of receiver position
in unit of lattice size of the
array, and the transmitter
frequency
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Fig. 2.9 Simulated power
transfer efficiency to two
individual receivers and the
combined efficiency, as
functions of receiver position
in unit of lattice size of the
array. Operating frequency is
fixed

Efficiency (%)

Receiver Position

In order to improve power transfer performance, the fluctuation in efficiency as a
receiver is moving along the array needs to be reduced. In a WPT system with a single
resonant transmitter, it has been discovered that the more receivers in the system, the
higher the overall efficiency can be achieved [13]. Similarly, the more receivers we
have in the array-based system, the higher the efficiency can be obtained. Moreover,
the overall efficiency can be more stable compared with a single-receiver case.

Consider the 10-resonator array system in previous simulations, we now use two
resonant receivers that are moving simultaneously along the array, with a lateral
distance of 10 cm. In this case, the power at each output port is calculated. The ratio
of this output power to the input power is taken as the efficiency to each receiver.
The overall efficiency is the sum of the two. They are plotted in Fig. 2.9 as functions
of lateral position of the first receiver on the array in unit of the lattice size of the
array. Although each receiver has significant fluctuation on the efficiency at different
positions, the overall efficiency is much more stable.
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Fig. 2.10 Simulated power
transfer efficiency to one
receiver as function of
receiver position in unit of
lattice size of the array,
operating at a fixed
frequency (blue) and
optimized frequency for each
position (red)
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In case of a single receiver, the efficiency fluctuation can be reduced by adjusting
the transmitting frequency depending on the position of the receiver. As shown in
Fig. 2.8, different efficiencies can be achieved at the same position by changing
the frequency. If the frequency is used such that highest efficiency is achieved at
each position, the power transfer is optimized for the receiver. Figure 2.10 shows an
example of simulated efficiency with a fixed frequency, and optimized frequency for
each position, for the same 10-resonator array system used in previous simulations.

To achieve the optimization in real system, a data link can be set up between
receiver and transmitter. A monitor can be used on the receiver to detect and send
the power transfer status information via the data link back to the transmitter, and
the transmitter can then adjust the transmitting frequency depending on the feed-
back [22].

2.3.3 Experiment Demonstration

To demonstrate the flexibility of the array base WPT, we did an experiment with
a toy train set running on an oval-shaped track, and built and array of resonators
to follow the track and provide power to the train running above. The oval-shaped
track has a dimension of 183 cm by 140 cm, and total length of 5.25 m. Planar
spirals on circuit board are used for resonator designs in this study for their simple
yet reliable fabrication process. For such planar spiral structures, a semi-analytical
model has been developed by Ellstein et al. [36] to quickly obtain their resonant
frequencies. Two types of resonators are designed for the straight and curved tracks,
respectively. As shown in Fig. 2.11, both types are planar 5-turn spirals printed
on 0.5 mm Rogers 4350 circuit board, with copper thickness 35 wm, copper strip
width 2 mm, spacing between neighboring copper strips 1 mm. The square-shaped
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Fig. 2.11 Design (left) and
simulated magnetic field
distribution at resonance
(right) of planar resonators
for the array experiment

resonator has an outer dimension of 15 cm by 15 cm; the trapezoid-shaped resonator
has a height of 12.9 cm and side lengths of 15.4 and 18.8 cm. A total of six square-
shaped resonators and 24 trapezoid-shaped resonators are used to fill up the oval-
shaped track. Square and trapezoid shapes are used in order to have higher coupling
coefficient between neighboring resonators by minimizing the distance between the
conductors of adjacent resonators. Low-loss substrate is used to reduce power loss
in the system, and the resonators are designed and fabricated with standard printed
circuit technology for simple and accurate control of the parameters. Both resonators
have self-resonant frequency around 25 MHz. The magnetic field distribution of the
resonators is also shown in Fig. 2.11, indicating strong field localization due to the
high-Q resonances.

Once the resonators are fabricated, they are placed underneath the oval track, with
RF power provided to the array via a square antenna inductively coupled to one of
the resonators in the array. To receive power, a resonant coil and a nonresonant loop
antenna is placed underneath the coal tender of the train set, about 5 cm above the
array. The batteries in the coal tender are removed and replaced by circuits for RF to
DC conversion. The converted DC power, typically at a voltage varying between 30
and 170V, is routed to a 40 W light bulb and to a wide-input switching power supply,
which produces +35 V for the locomotive’s electric motor. A 2 Farad supercapacitor
provides a small amount of load leveling.

Figure 2.12 shows the components of the demonstration system. A Kenwood
TS-480 transceiver is modified and used as RF power supply [Fig. 2.12a], which
is capable of putting out 200 W power with frequency between 3 and 30 MHz. A
nonresonant square loop antenna [Fig. 2.12b] is connected to the RF power supply and
provides power to the array system via inductive coupling. An additional test receiver
consisting of a square resonant coil, inductively coupled to a loop antenna, which
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Fig. 2.12 Components of WPT experiment with array of resonators: a RF power transmitter;
b square antenna to inductively couple power from the RF transmitter to the system; ¢ a wireless
power receiver composed of a resonant coil, a loop antenna and a 40 W light bulb; d a wireless
power receiver with a resonant coil and a loop antenna to pick up RF power, a rectifier and regulator
to convert RF power to DC, and a motor for the toy train set and a 40 W light bulb as load

- Receivers

e el ¢ 4
> — e _'-’
Fig. 2.13 WPT experiment with array of resonators. The system is used to provide power wireless
power to two sets of receivers, one of which is the toy train set moving along the track

R

is then connected to a 40 W light bulb, is used for power receiving experiment and
indicating the transferred power level [Fig. 2.12c]. Figure 2.12d shows the modified
train set. The array of resonators under the track is visible in the picture.

The above components were assembled and the WPT system was tested. As
shown in Fig. 2.13, the square antenna connected to the RF power supply is coupled
to one resonator in the array inductively. With an 80 W power output from the RF
power supply, the train set is able to run continuously along the oval track with the
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wireless power supply. In addition, the light bulb on the train and the one with a
separate receiver are both lit up with wireless power. While the train is traveling
along the track, the brightness of the light bulb on the train changes, indicating that
the power transferred to the receiver varies. As discussed before, this is a result
of resonant coupling in the array. A Bird 4410 wattmeter was used to measure the
received power. The fluctuation is significant: the efficiency at peak is about 85 %
while efficiency at low is about 15 %.

We observed that at many frequencies, the system does not maintain sufficient
voltage to operate the locomotive motor at all points in the loop. This is due both to
the node and antinode effect as seen in Fig. 2.8, and also because the loop is closed,
so energy circulating clockwise and energy circulating counterclockwise interferes
both constructively and destructively. Manually changing the frequency shifts the
resonant nodes and antinodes and allows adequate power delivery at all points on
the loop. Our hypothesis is that this frequency change can be automated, and yield
an improved overall energy delivery.

We then implemented a telemetry system on the train that measured the actual
voltage on the high-voltage capacitors at approximately 5 Hz and relayed the value
inreal time to a host Linux laptop via Bluetooth. We then operated the train set at 100
W nominal power from 23 to 25 MHz (the useful resonance band of our test system)
and logged the instantaneous power delivered. The experimental protocol was to
test several different automatic frequency tuning strategies and compare them versus
fixed-frequency systems. Our tuning strategies were allowed freedom within the
same 23-25 MHz band as the fixed-frequency standards, and changed frequencies in
steps of either 50 or 100 kHz, either automatically or with feedback via the telemetry
system.

As a result, every mode of active tuning operated the train on a continuous loop
without failure. There was never a need to manually move the train forward, unlike
the case of fixed-frequency testing Ref. [22].

As discussed before, the fluctuation can be reduced with other approaches. A
variable capacitor can be used in a receiving coil so that the resonance, and the
effective impedance can be tuned electronically. This will change the field distribution
on the array, and thus the power coupled to the receiver. When two resonant receivers
are used and the received power is combined after rectification, the overall efficiency
can be improved with much less fluctuation at different locations on the track.

It is worth to mention that the numerical and experimental study presented in
this session were intended for general demonstration. The resonators in this study
were not fully optimized. This can be a very flexible and powerful wireless power
delivery solution. The resonators in the array does not have to be identical; they can
be shaped to allow a curved or even forked track that may have loops or stub ends.
With a particular application in mind, the design, size, and other parameters of the
resonator array can be further optimized for better wireless power delivery.
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2.4 Conclusion

In summary, we presented metamaterial-based technologies to improve near-field
WPT in range, efficiency, and flexibility in this chapter. Two principal concepts
and their implementations were discussed. First, using a properly designed metama-
terial slab between two coils, the coupling between coils can be enhanced and the
power transfer efficiency can be improved. Studies showed that significant efficiency
improvement can still be achieved with reasonable material loss in metamaterials. In
experiment, a metamaterial slab has been designed for a WPT system operating at 27
MHz, and the power transfer efficiency when the metamaterial slab is used is almost
three times as high as the system without the slab. Second, resonant coupling-based
WPT can be extended using an array of coupled resonators. The range of efficient
power transfer is significantly increased using multiple coupled resonators in the
array system. While conventional WPT technologies are mostly feasible only for
static devices, the array-based system can be used to transfer power dynamically to
mobile or loosely located devices as well. The array-based system has been stud-
ied analytically and numerically; experiment has been done to build an array of
30 resonant coils coupled by a single feeding antenna, and provide wireless power
continuously to a train on the move. With the development of these technologies,
the capability of near-field coupling-based WPT can be largely expanded, which
potentially leads to new application areas.
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Chapter 3

Optimal Array Beamforming for Microwave
Power Transmission in Complex
Environment

Ce Zhang, Bingnan Wang, Akira Ishimaru and Yasuo Kuga

Abstract Wireless power transfer (WPT) is a popular research field in recent years
and can be categorized into three approaches: inductive coupling, laser beaming,
and microwave power transmission (MPT). MPT system operates at the microwave
frequency and transfers the energy over more than a few wavelengths. It has its unique
advantages of supplying power to non-accessible and mobile receivers. The overall
efficiency, which is the ratio between available DC power at the receiver and supplied
DC power at the transmitter, depends on both circuit design and wave propagation.
As a comprehensive theory of MPT system is not available, this chapter starts with
the study of MPT system from the perspectives of mathematical formulation and the
experiment in the indoor environment, in Sect. 3.1. The preliminary study leads to the
conclusion that highly directional wireless transmitter is very useful in the MPT sys-
tem for achieving high transmission efficiency. For this reason, phased array antennas
with beamforming functionality are usually used to direct the electromagnetic wave
toward mobile receivers, and adaptive array algorithms are implemented to enable
wireless power focusing in the complex environment. Section3.3 presents a novel
beamforming algorithm, which is proven to give the optimal transmission efficiency
and applies to the arbitrarily positioned unequal array based on our problem formu-
lation. To verify this algorithm, Sect. 3.4 validates it with numerical electromagnetic
simulation in different cases. The numerical comparison in these examples shows that
this algorithm gives higher transmission efficiency over other optimal beamforming
algorithms discussed in Sect. 3.2.
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3.1 Microwave Power Transmission System

Microwave power transmission (MPT) is a promising technology for its capability
of supplying energy to receivers over a long range, so it is also called long distance
wireless power transmission in [9]. MPT has a variety of applications such as pow-
ering ubiquitous sensor nodes at low power level [19], and transferring energy to
electrical vehicle [13, 15], unmanned aerial vehicles (UAV) and high altitude plat-
forms (HAPs) at high power level [5, 12]. In addition, MPT has also been proposed
and implemented in the very high-power transmission from the space to earth, which
is called “Solar Power Satellite” (SPSs) [10].

The estimation of MPT system efficiency with high accuracy is a challenging
task, as there is no theory available for accurately modeling the electromagnetic
wave radiation and reception. We start this section with the general formulation
of the MPT, which clarifies the efficiencies of different building blocks in MPT
system. Then, we study the transmission efficiency from the different perspectives.
If the gain of the transmit and receive antenna is known, the quick estimation of
transmission efficiency is easy but its accuracy is highly limited. If the channel
transfer matrix between the transmit and receive array and impedance matrix of
transmit array can be measured with the built-in hardware in the RF system, a more
accurate and dynamic transmission efficiency can be found with our proposed model
in this section. Following the theoretical study, an experiment has been carried out in
the lab environment with clutters, such as equipment and furniture. The measurement
data is analyzed with the help of simulation data and gives us an insight into the power
loss contribution of the MPT system. The experiment shows that the propagation loss
contributes to the most significant percentage of system loss, given the highly efficient
wireless power transmitter and receiver.

3.1.1 Problem Formulation

In the MPT system, the DC power is modulated with RF carrier and radiated from
transmitting antenna onto “rectenna”, which collects and converts the impinging
power of microwave to available DC power. As shown in [9], five efficiencies are
defined respectively to evaluate the efficiency of these five building blocks (Fig.3.1).
The overall efficiency (end-to-end efficiency) is the ratio between available DC power
at receiver and supplied DC power at the transmitter, which is the product of these
five efficiency values from each building block.

Antenna is a transducer to bridge circuit theory and field theory. Since the
excitation weight of antenna array is normally controlled by circuit elements and
transmission efficiencies are evaluated at the circuit level, the powers are expressed
in terms of voltage and current vectors. The definitions of power are first clarified in
this section so that we can clearly set an optimization goal.
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Fig. 3.1 Microwave power transmission system: Ej to Es are power transfer efficiencies

In antenna array system, each array elements is not independent and the radiated
fields interfere to form the radiation pattern. In this way, in the far field, the array is
treated as a single antenna and propagated in a spherical coordinate with the array at
the origin. The total radiated power (P,,4) can be expressed in terms of the current
fed to each port (I) and mutual impedance matrix (Z). The real part of Z corresponds
to the radiated energy while the imaginary part corresponds to the reactive energy
stored in near field region.

1 1
Py = EV”I = EVh’sn{z,;l}v 3.1

The total power (Pg) can also be computed by taking the integral over the
enclosing sphere with the antenna at the center. Moreover, the power focused at the
angular region ¥ given by receive aperture (Py) is also defined for the beamform-
ing optimization. These expressions can be similarly simplified into the product of
vectors [14].

Po = / W,dS (3.2)
Q

Py =/WndS (3.3)
4

where W, is Poynting flux density.

By energy conservation, the radiated power (P,,;) is equal to the power enclosed
by the sphere (Pg), and is related to the input power by reflection coefficiency (")
of antenna ports: P,y = (1 — |I"|?)P;,. Normally the antenna impedance is matched
to the port impedance so the reflection coefficiency is approximately equal to O (in
this condition, P,,; = P;,).

The incident power with matched load is summed up at the receiver side, as the
incident field induces RF currents at each port of receive antenna. The transmission
efficiency (E3) in Fig. 3.1, which connects the transmit and receive array, is therefore
optimized in power beamforming.

Pinc
Es & (3.4)
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In array synthesis theory, the beam collection efficiency (BCE) is usually used
to evaluate the ability to shape the total power (Pg) toward the targeted angular
region (Py) [14]. The overall efficiency is defined as the ratio between the total
available RF power (Py ) and the total input power at transmit array (Pj, s ), which
includes the efficiency of transmit antenna (E,), transmission efficiency (E3) and
receive antenna (Ejy).

P P
BCEA2 Y _ ¥ (3.5)
PQ Prad
POM
N2 EEE; = —* (3.6)

in

Since BCE is proportional to the transmission efficiency (E3), BCE is usually
the optimization goal instead of the transmission efficiency for the simplicity of
mathematical formulation with array factor (AF). However, in the scenario with
multipath and high-absorbing or reflection obstacles, the AF and BCE are not valid
for optimization as the line-of-sight (LOS) is not available.

3.1.2 Transmission Efficiency Based on Antenna Parameters

The electromagnetic field radiated from the antenna can be described as plane wave
propagation in the far field, where the power of radiation decays as the square of the
distance. In most of the wireless applications, the antenna operates in the region of far
field and the transmission efficiency is computed in the way of link budget calculation
with the help of the well-known Friis transmission equation. The complete version
of Friis transmission equation is usually expressed as (3.7) in terms of antenna gain.

Prx /1 A ~ ok
P= G,XG,-X(H)Z(I — T4 = | TP ey - ™ (3.7)

where G, denotes the gain of the transmit antenna and G, denotes the gain of the
receive antenna. R is the distance between the transmit antenna and the receive
antenna. |/;| and |7;| are the reflection coefficient of the transmit and the receive
antenna, respectively. d, denotes the polarization vector of the receive antenna while
a, denotes the incident electric field vector or the polarization vector of the transmit
antenna in LOS propagation. The term |d; - d,"|? represents the polarization conver-
sion loss in converting the incident wave into RF power available at the antenna port.
The antenna gain is proportional to the effective aperture size of antenna,

4 4
G = ?Aeﬁf = F”QPAP/’W (38)

where A, is the effective aperture size and the A, is the effective physical size. 74,
is the aperture efficiency of the antenna. The aperture efficiency relates the physical
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aperture to the effective aperture area and can be treated as constant for a given array
element geometry.
E o Aeﬁ‘,terﬁ”,rx (i)z
Py 2 R
Aphy,zxAphy,rx (z)z
c? R

Nfar =
3.9

= Hap,exHap,rx

After rearranging the Friis transmission equation (Eq. (3.7)), a more intuitive
expression can be expressed in terms of physical size and operation frequency in
(3.9), assuming no polarization loss and negligible mismatch loss. This expression
gives the design guideline of the phased array antenna. Given the range of propagation
and the limitation of the array size, the higher frequency of operation leads to higher
transmission efficiency. This conclusion contradicts our normal intuition in link bud-
get calculation of wireless communication, that the lower frequency gives lower path
loss. The reason for this contradictory conclusion is that, given the fixed physical
size of an array antenna, the number of antenna elements increased as with the
decrease of wavelength instead of using the single antenna as in wireless communi-
cation. Besides, for the use of consumer electronics, the receiver of wireless power
is mobile and has to be as small as possible so the demand of smaller size receive
array can be compensated by the larger size of transmit array from the observation
of this equation.

However, the Friis equation is defined in the region of the far field that is given
by R > 2%2, where D is the dimension of array aperture. It implies that, in most
cases, the array antenna operates in the Fresnel near field region and incident wave
is spherical wave instead of plane wave, if we attempt to achieve the higher trans-
mission efficiency by increasing the frequency of operation and the larger size of
transmit array. Another expression for estimating the transmission efficiency in the
intermediate near field region is given in [1, 20]. This expression is more accurate
when the aperture size of transmit array is very large and more comparisons can be
found in the book [20].

Prx

R 3.10
P.. e (3.10)

Nnear =

where 7 = 7y, is equal to the Friis equation.

3.1.3 Transmission Efficiency Based on Channel Transfer
Function

This subsection presents a general model in terms of the channel transfer equation
and mutual impedance matrix. The microstrip patch antenna is taken as an example
in our formulation and simulation, which is the most popular planar antenna because
it is relatively inexpensive to manufacture and integrate with printed circuit design.
InFig. 3.3, the input voltage at the port of iy, patch antenna is denoted by V;, , and the
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voltage at the radiating slot of this patch is the transmitted wave V,, = (1 — I},) Vip.p,
where I, = (Zs — Zo)/(Za + Z).

From the model in [2], the electric field, at any point r, given by the ny, patch
antenna of transmit array at r,, is expressed in terms of the locations, dimensions
of patch and the voltage at radiating slots as Fig.3.2. The microstrip antenna is a
rectangular patch with width of W and length of L and the substrate thickness is &
(Fig.3.3).

Radiating Patch
Radiating Slot 1 Radiating Slot

1 '—":7(

AT TN

[ ], .11

- — — — — >

Radiati diati
adiating e - e - Radiating
Slot Slot

— e o — e =

s e i = | —

—_—

o — — —
—]

LI B N

'y

Resonant length
Half wavelength

Fig. 3.2 Radiation of the patch antenna in TM 19 mode: blue arrow is electric field and red arrow
is current flow

Antenna \ A N
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; m 1 |n 2 |n 3
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=in ez

T

m
Zx=RatjXs Fee.dlme Z= Za iVL“J iVL,Z i VL,3

Receiver VL,m

Fig. 3.3 Transmit and receive patch antenna array: Ej,. , is the incident electric field onto the
receive antenna elements; Vj, , is the input voltage at the port of ny, transmit antenna; Z, is the
impedance of transmit/receive antenna; Vy , is the available voltage at the load of receive antenna;
7y, is the load impedance of the receive antenna

fan.ye@stonybrook.edu



3 Optimal Array Beamforming for Microwave ... 61

—jViko We kR
E(r.r,) = 2 —F (. 9) (3.11)

E(r, rn) =xV,G(R)F(0, ¢) (3.12)
where R = |r — 1|, k = (—jkoW)/m and G = e 7R /R,

6 and ¢ are the spherical angles corresponding to the location r,. In the directivity
pattern F (6, ¢), the origin of spherical angles for different patch elements should be
the geometric center of the corresponding patch. However, since we have the far field
approximation 0 = --- = @y =0 and ¢ = - - - = ¢y = ¢, the values of 0 and ¢
corresponding to every transmit element can be approximated by the angle from the
phase center of array to the observation point.

The directivity pattern F (6, ¢) has two orthogonal components Fy and F.

F(O,$) = 0Fy + $F,
F@, ¢) = [¢A>cos9sin¢> — éc0s¢]cos(khcos9)
sin(@sin@singﬁ)

koW - R
L= sinfsing

(3.13)
koL
cos(%sin@coyﬁ)

The electric field in Eq. (3.12) can be constructed coherently in space to cancel
out the power flow in undesirable direction. Since the electric field is governed by
the law of linear superposition, the incident electric field at the my, receive patch
antenna (r,,) is denoted by the sum of electric fields due to input voltage at all M
transmit elements.

N
Eine(r,) = D xVuG(Iry — v, )F(O, ¢) (3.14)
n=1

By introducing the vector effective length L g (6,,, ¢) [16], the induced voltage at
the my;, receive element is simply the dot product between incident field and effective
length.

Vm = Einc (rm) . Leﬂ (ema ¢m)
N o (3.15)
~ D kVaG (It — 1) FO, 4) - Leg (6, ¢)]

n=1

It is noted that, in the far field approximation, the angles 6,, and ¢,, can be
referred to the geometric center of receive array and the effective length of all the
receive elements are approximately equal from the equal incident angles # and ¢ .
In addition, since there is no widely accepted theory to calculate the exact efficiency
of power absorption at receive antennas [17], the effect of scattering or reradiation
is not discussed in this chapter and its effect is simply included into the polariza-
tion mismatch of incident field and the impedance mismatch at the load impedance.
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Hence, the transfer function from the input port to output load, which is actually the
S parameters in numerical simulations, can be formulated as follows.

Vout,m
Hyn = —|V[,L/-:()forj7&n
Vin,n

= k(1 — [)G(|twm — Tn]) (3.16)

Zy
[F(Gm ¢n) : Leﬂ(emy (;bm)] Z() + ZA

At transmitter side, (1 — I},) denotes the reflection at the input port of transmit
antenna. At receiver side, [F(6y, ¢,) - Ley (0, ¢n)] is the polarization factor while
Zy/(Zy + Z4) is mismatch factor [16].

G (|r,, — r,|) is the Green’s function, which represents the wave propagation from
the transmit element to the receive element. In free space, it can be simply taken as
its simplest form G = e~JhoR /R while, in complex medium, this function has to be
modified to a different expression of Green’s function accordingly [7].

The total RF power deliverable to the load can be added up over all the receive
elements incoherently.

M
P I
L

m=1

M N
1 . (3.17)
- Vin nHmn Vin nHmn '
7 > > Vi) VinnHonn)

m=1 n=1

= %V,-HHHHVﬁ
L
The total input power can also be computed at the circuit level in terms of mutual
impedance matrix in (3.1) and reflection coefficient P;, = P,.q/(1 — |I"|?). Hence,
the overall RF transmission efficiency, which includes the efficiencies due to the
transmit antenna, the receive antenna, and the wave propagation in the medium, is
computed as follows (7 = E,E3Ey).

Pou _ (1—|I']*) V,HH"VY
T Pw ZL VaWZ OV
_ _V,HH"V

V. RZ, IV

(3.18)

3.1.4 Experiment Study of Indoor MPT

Since the accuracy of the aforementioned models is to be validated, a wireless power
transmission experiment is carried out in our lab environment with two array placed
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face-to-face with each other. To obtain the insight into the MPT in such a scenario,
the complete MPT system is built with the detailed analysis of link budget.

Firstly, the indoor experiment is carried out with two standard gain horn antennas
with the realized gain of 14 dB and the measured S,; (deembeded to the plane of
antenna port) is tabulated as follows when the two antennas are facing with each
other accurately. Moreover, it it noted that the dimension of the horn antenna is
approximately D = 0.2m so the far field condition is R > 2702 ~ 1.54m while the

near field conditionis R > 0.62@ ~ (.24 m. This implies that the system operates
in the Fresnel near field region, where the radiation pattern or spatial distribution of
electromagnetic field varies significantly with the distance.

From the Table 3.1, it is found that the far field equation gives a closer estimation
of transmission efficiency while the estimation error of near field equation is much
larger. The reason for this is that the receiver is closer to the far field boundary than
near field boundary. The general rule of determining which equation is stated in [20]
as that the near field efficiency is more accurate when the value of 7 is larger than 1.

Next, the prototype of MPT system including both transmitter and receiver is also
built to study the contribution of real system losses. As shown in Fig. 3.4, the full
system includes the signal generator, power divider, transmit and receive antenna

array, RF rectifier with load resistor, and high power amplifier.

Table 3.1 Measurement with horn antenna versus distance. The Sy reflects the power ratio at the
network analyzer so the cable loss is extracted to deembed the reference to the antenna ports. The
path loss is computed from Friis equation with unity antenna gain assuming the transmission with
isotropic radiator

Distance (m) 0.6 1.2 1.8 24 3
Deembeded S; (dB) —22 -27 —-30 31 —-32
Path loss (dB) -50 =55 —58 -59 —60
Near field equation (3.10) (dB) -30 —42 —49 —54 —58
Far field equation (3.9) (dB) —15 21 25 —27 —-29

1P [ RX

Array = % L] Array

Feeding L1 Rectifier

L1 ode || 3
A
Signal D |
Generator PAT30dB)

Fig. 3.4 Experimental configuration of the full MPT system
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The transmit and receive antenna array are the same series-fed microstrip antenna
array, which has 14 elements connected in series governed by the Chebyshev distri-
bution of width tapering and operates in the resonant mode. In the other dimension,
10 input ports are connected in parallel with the spacing of half free space wave-
length. At the transmitter side, the 10 parallel input ports are fed with a 10-way
broadband power divider, which is made up of the cascaded two-way Wilkinson
power dividers and three-way dividers. Therefore, the 10 ports of power divider are
weighted rather than equally distributed. This feeding network can reduce the side-
lobe level (SLL) to some extent while achieving broadband power combining at the
cost of increased insertion loss. The antenna array and the power divider are fab-
ricated on two separate FR-4 printed circuit board (PCB). The antenna array gives
the simulated realized gain of 25 dB, and the broadband power divider gives the
measured —6.96 dB insertion loss of power division. Therefore, the total array with
the power divider at the transmitter gives realized gain of approximately 19 dB. The
power amplifier is a broadband high power amplifier by Mini-Circuits with typical
power added efficiency (PAE) of 30 % at 5.8 GHz and can output up to 1 W RF signal
without distortion.

At the receiver side, the RF rectifier array is implemented with the single stage
charge pump topology and converts the RF signal to DC power. The diode in the
rectifier is the HSMS-286x surface mount Schottky detector diode by Avago Tech-
nology, which gives the low series resistance of 6 Q. The single rectifier unit achieves
up to 73 % conversion efficiency with this low loss diode. The rectifier array employs
the hybrid of series and parallel power combining at DC, and is optimized to 20—
40 % conversion efficiency with the DC load of 150 Q and the input signal of 0 dBm
sinusoidal wave at 5.8 GHz, which is the case in our measurement. It is noted that the
efficiency of rectifier varies with the input power level, input signal frequency, the
way of DC power combining and DC load present to the rectifier, so the conversion
efficiency keeps changing with the experimental condition.

The full system measurement is carried out with the separation distance of 3m
between the transmitter and receiver. To find out the contribution of the system loss,
each component of the whole system must be measured one by one and, when the
signal generator outputs the RF power of 0 dBm, the link budget can be estimated
as in Fig.3.5. To analyze the the reason for a low efficiency, the total system losses
are dissected in the view of a pie chart as shown in Fig.3.6.

From the analysis of system losses, it can be found that, because the total DC
power at the transmitter is almost equal to the DC power consumption of power
amplifier, the upper limit of power loss is set by the PAE of power amplifier (PA)
and the amount of this loss is fixed. Though the second and third largest power loss
is contributed by the feeding network and RF cable as Fig. 3.6, these losses can be
effectively reduced using the spatial power combining technique.

However, in spite of the high efficiency circuit design, the radiation loss will
dominate the system loss and is hard to suppress. The degradation of efficiency is
more serious when the LOS propagation is not available. When the LOS channel is
blocked in the experiment, the loss of the fixed beam array increases by more than
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Signal
. |:> Cable |:> PA E> Cable |:> PD |:> Cable

0dBm -2.05dB +30dB -2.15dB -6.96dB .2.27dB
-2.05dBm 27.95dBm 25.8dBm 18.84dBm
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e _ RX <:| 3 meter <:| X
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5.58dBm 6.57dBm -18.43dBm 41.57dBm
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Power level

Fig. 3.5 The link budget of prototype system. The PAE of power amplifier is taken as 30 % as
given by the device specification while the conversion efficiency of rectifier array is taken as 40 %.
The distance between transmitter and receiver it taken as 3 m. The path loss excluding antenna gain
is estimated using the measurement in Table 3.1 and the radiation into wave propagation medium
is labeled as radiation loss

Fig. 3.6 Contribution of Radiation Loss Available DC
system losses: the measured A ) 1.42% Power 0.05%
output DC power is ntenna (Tx and i
consistent with the estimated Rx) 0.54%
link budget in Fig.3.5. The

total DC to DC transmission Rectifier
efficiency is computed as 0.08%
0.068 %

20 dB according to our experiment. The only possible solution to high transmis-
sion efficiency is adaptive beamforming array. Techniques for adaptive array will be
discussed in the following Sect. 3.2.

3.2 Review of Optimal Beamforming Techniques

The antenna beamforming is achieved through the coherent operation of antenna
elements so the excitation weight of each element determines the performance of
beamforming.
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3.2.1 Array Factor Optimization

In traditional beamforming based on AF synthesis, the antenna elements are assumed
to be have the same radiation pattern and accurately positioned. The steering vector
v, = [e*@ )] is used to yield the AF F(u, v) = 3 0_ w,e* ) where (u,v)
identifying the angular region. Since the power of AF is proportional to the spatial
distribution of the radiated power, BCE is expressed in terms of power of AF and a
closed form expression of BCE is derived for the planar array case by Oliveri et al.
[14].
f ZQ’ZI W ek @ tvya) y
v w7 Aw
BCE = N , —=—
f Zn:l Wnelk(llx,,+\/}”) wlBw
Q

(3.19)

where B, = 47 sinc(ky/(m — x2)2 + O — yp)?) and A, = 4z ugvy
sinc(k(xXm — xu))sinc(k(ym — yn))

This approximation greatly reduces the computation time at the cost of accuracy.
However, for other structures and spacings of array, the closed form expression is not
available and the numerical integral of powers has to be performed, which may take
a long time to approach an optimal solution. In reality, the radiation pattern of array
element is never the same due to mutual coupling, edge effect and manufacturing
process. More importantly, this technique is not valid for power optimization if the
array is not regular shape with known position [14].

3.2.2 Retrodirective Array/Phase Conjugate Array

Retrodirective Array is the array to reflect the incident plane wave toward the source
direction without any prior information on the source location. The retrodirective
array works in the following way: the receive array/interrogate antenna out a prob-
ing signal and then transmit array retransmits the amplified signal toward the receiver
by taking phase conjugate of the observed probing signal. Since the phase conju-
gating functionality can be implemented at RF frequency with hardware, its popu-
larity arises from the automatic beam steering without any computational algorithm
(i.e., digital signal processing hardware). Although this technique is also adaptive to
the propagation channel, it only works for a fixed frequency. The array calibration
becomes problematic, depending on the hardware design.
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3.2.3 Adaptive Array Digital Beamforming

Digital beamforming is more powerful and flexible than conventional phased array
at the expense of hardware complexity and cost. However, if the estimation of chan-
nel characteristics is enabled by the additional receive antennas, the adaptive signal
processing results in a more powerful beamforming transmitter and flexible beam-
forming formulation regardless of array shape and position. Digital beamforming
based on the channel estimation is also an important technique to enhance the signal-
to-interference ratio (SIR), signal-to-noise ratio (SNR), and the intersymbol inter-
ference (ISI) in the in MISO or MIMO communication.

The time reversal (TR) technique has been studied extensively in wireless com-
munication by many researchers [11], as this scheme can improve SNR greatly in
multipath and rich scattering environment. The receivers send a probing signal to
transmitter for channel estimation and the transmitters convolve the time-reversed
channel impulse response i(—f) with the transmitted signal s(7). The received signal
will be equal to the convolution between the transmitted signal s(¢) and the autocorre-
lation of the channel impulse response. Equation (3.20) indicates that the energy will
be spatially focused at the target receiver in any environment. When the receiver has
multiple antennas, this TR beamforming technique is not valid for energy focusing.

y(@) = s(t) * h(—t) * h(t) = s(¢) * R(?) (3.20)

The eigen-beamforming is an optimal scheme for maximizing the average SNR [24]
in the narrowband MIMO. Nevertheless, the optimization of SNR happens at the
output of matched filter instead of the summed power at the receiver. Besides, it is
noted that the maximization is implemented with the coding scheme, which results
in the spectrum spread. For this reason, this technique is not applicable for adaptive
beamforming in MPT, which requires the continuous wave transmission.

E{h® CHChs}
SNR= ————F——— 3.21
E{h"CHnn# Ch} (3-21)

where h is the matrix of channel impulse response in time domain and C is the coding
scheme of eigen-beamforming. n is the Gaussian noise and s is the baseband signal
carrying information.

Furthermore, the time reversal scheme is analyzed using the model of Green’s
function in the frequency domain [6, 8], as the time-reversed signal is equivalent to
the complex conjugate in frequency domain. The papers [6, 8] demonstrate that the
communication efficiency can be improved with the proposed beamforming scheme
in theory and in the experiment, respectively. To our knowledge, the specific appli-
cation of adaptive beamforming for WPT has not been reported yet.
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3.3 Time Reversal Eigenmode Beamforming

The classic array synthesis technique is developed based on the model of AF with
the assumption of equal element pattern. As is widely known by antenna designer,
the mutual coupling leads to the unequal pattern, especially for the edge element.
For the array with unequal element and arbitrary location, the AF is no longer valid
and the adaptive array processing has to be employed for the array synthesis using
the knowledge of probing channel characteristics. However, the previous studies of
adaptive beamforming are developed for improving the signal-to-noise (SNR) ratio
or channel capacity based on MIMO wireless communication and no discussions
on how to devise an adaptive algorithm for MPT. This section presents a modified
algorithm for MPT based on the time reversal signal processing techniques. Besides,
it will also be proved as a new optimal array synthesis method without the prior
knowledge of element spacing and positions.

3.3.1 Pseudo Transmission Efficiency

To implement the adaptive optimization of transmission efficiency, we propose the
pseudo transmission efficiency (PTE) as an alternative optimization goal. PTE is the
ratio between the total RF power available at the receive array and incoherent sum
of the input power over all transmit elements.

The incoherent sum of radiated power takes the sum of input power at each
radiator independently and is only physical for special case that the mutual impedance
matrix is diagonal matrix (Pgn,in 7 Pin). However, the incoherent power is used in
communication society for the evaluation of power in wireless communication by
neglecting the mutual coupling effect. Similarly, the incoherent sum of radiated power
is related to input power (P raa = (1 — [T 1*)Pyum.in)-

viv 1
Psum rad = = —VHER di Z_l \Y% 3.22
na = o = 5 VI Mdiag(Z;) (3:22)
Py,
PTE 2 ! (3.23)

sum,in

PTE is not a physical efficiency, but the difference between PTE and # (Eq. (3.18))
is negligible if the real part of mutual coupling impedance terms are sufficiently
small. When the adjacent antenna elements are weakly coupled to each other, the
transmit channels are uncorrelated with each other. The correlation between transmit
channels are expected to be low in both MPT and MIMO communication. While the
envelope correlation coefficient (ECC) is an indicator of the MIMO antenna design,
the independency of MPT array is reflected by the ratio between the radiated power
and the coupled power dissipation in the following Eq. (3.24). It is noted that this
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correlation power factor is related to the complex excitations of the array elements
and the power ratio R increases as with the improved isolation between adjacent
elements.

SV iRyl

R(Vin) é
S D ViR vy

(3.24)

To verify this assumption quantitatively, a simple 2 x 2 rectangular array is simu-
lated in Ansys HFSS and the exported Y parameter is used to compute the correlation
power factor with several complex excitation combinations. These five excitation
vectors have the uniform magnitude but random linear phase progression. Figure 3.7
shows that the exact value of correlation power factor is dependent on the excitation
vector but the average increases with the array element spacing, which is equivalent
to the isolation between two elements. The improvement of mutual coupling can also
be implemented by the techniques of enhancing ECC in MIMO antenna design.

In Fig. 3.8, the error between incoherent power sum (Pgy, ;») and physical input
power (P;,) is defined as Error £ | (Psum,in — Pin)/Psum.in| and the error is plotted for
different excitations as in Fig. 3.7. The average of the five excitations shows that the
average error is well below 5 % when the array spacing is greater than the half free
space wavelength. In summary, the plots in Figs.3.7 and 3.8 quantitatively justify
why the PTE gives a good estimation of transmission efficiency for weakly coupled
array.

Correlation Power Factor (R)
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Fig. 3.7 Correlation power factor (R): the average correlation power factor increases as with the
increase of element spacing
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Fig. 3.8 Error percentage of incoherent sum: the average error decreases as with the increase of
element spacing

3.3.2 Transmission Efficiency Optimization

Since the correlated power is sufficiently low in most array setup, this chapter will
discuss the optimization of PTE instead of either # or BCE. If the PTE is rearranged,
Eq. (3.23) can be simplified as in (3.25).

Pout _ (1 - |F|2) VinHHHV{Z

PTE =
Psum,in Z. Wz ViV
____V,HH"V! (3.25)
Viudtidiag(Z,)~'} Vi, '
V., HH V!
A

From Eqgs. (3.18) and (3.25), it is clear that the ultimate goal of achieving optimal
transmission efficiency is to solve the eigenvalue problem R;PV;, = AVy,, where
P = H”H and R; = R{Z}. Vi, is the input voltage, which also corresponds to the
eigenvector of this problem. This is a Rayleigh Quotient and the eigenvalues of RzP
give the possible range of the transmission efficiency #. From Min—-Max Theorem, it
is known that the dominant eigenvector (the eigenvector corresponding to the largest
eigenvalue) maximizes the transmission efficiency #.

Vi, VVAVH
Vin,apt = arg[max

Vin W—l}vg] (3.26)
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However, the mutual impedance matrix can only be estimated from measurements
but the measurement is difficult if the number of array elements are very large so
finding the matrices in this eigenvalue problem is a difficult task.

vV, HA? Vv
Vin,opt =arg [max —_— (327)

H
Vo VyVH

Therefore, as discussed above, we may think of optimizing the PTE as an alter-
native goal because it can be computed from the signal levels observed at the input
ports. This method is validated in Fig. 3.8 as the error between 7 and PTE is expected
to be negligibly small for the array with large spacing. In this way, another eigenvalue
problem is formulated PV;, = AV;,. The Min-Max Theorem is also applicable for
this as Eq. (3.27). In most cases, the maximization of PTE yields the maximal values
of transmission efficiencies. Hence, the next challenge is how to devise an algorithm
to approach this optimal eigenvector excitation.

3.3.3 Time Reversal Eigenmode Beamforming

Time reversal signal processing technique is derived from the research on acoustic
focusing effect with time reversal mirror (TRM) by Fink [3, 4]. This principle focuses
the energy thanks to the reciprocity of wave equation: the TR (using a negative time)
of the wave functions’s solution is also a solution to this equation as long as the
media is slowly varying, reciprocal, and linear. When the TRM emits the plane wave
toward a passive scatterer and observes the scattered signal, the emitted energy by
TRM can be focused to this scatterer by retransmit a time reversed copy of observed
signal. If the process is iterated, the energy become more and more focused on
this passive target. This technique has been developed into applications including
wireless communication and radar imaging in cluttered and complex medium with
computational iterative process [7, 8, 18, 22].

If the channel transfer function between transmit and receive antenna can be
measured in real time, the iterated time reveral process can be performed with a
simple eigen decomposition process as discussed in [7]. Thus, the proposed method
requires the probing of channel transfer matrix and digital beamforming architecture.
Basically, the RF hardware of MPT system is similar to the massive MIMO commu-
nication as in Fig. 3.9 [21]. In such a power transmission system, the communication
module is integrated with the power delivery module and used to probe the channel
characteristics as MIMO communication. Given a transmit array of N elements and
a receive array of M elements, the process of the proposed technique is stated as
follows.

fan.ye@stonybrook.edu



72 C. Zhang et al.

Fig. 3.9 Time reversal
eigenmode beamforming

system
Wireless Wireless
Power Power
Transmitter Receiver
. hMN .
M transmitter antenna N receive antenna

e Measurement of transfer matrix H (M-by-N)

The probing signal is an impulse waveform s, (¢) spanning over the power transmis-
sion band and sent from each receive array elements one-by-one. The observed
signal is recorded simultaneously at all the transmit elements and the recorded
transient signal y,,(¢) is transformed to frequency domain Y,,(w) through Fourier
Transform. Then, the recorded signal is normalized to the probing signal as
(@) = Y (@) /Sy (). by (o) is defined as the channel transfer function in fre-
quency domain between the ny, element of transmit array and my, element of
receive array.
e Construction of transfer power matrix P (N-by-N)

The transfer functions A, at the frequency of w are rearranged into the matrix
format as H(w).

hi hiz hiz ..o iy
hat hap hys ... hay

H(w) = (3.28)

S
The transfer matrix is used for the computation of the transfer power matrix (P(w)).
P(») = H(w)"H(w) (3.29)
e Calculation of dominant eigenvectors (corresponding to largest eigenvalue)
The eigenvector of the transfer power matrix can be found through the numerical
eigenvalue decomposition of measured data. As discussed before, the eigenvector

that corresponding to the largest eigenvalue leads to the maximization of PTE and
will be used for beamforming.
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PVi,1 = A1 Vin1 (3.30)
e Power delivery according to dominant eigenvector

Each element in the eigenvector V; corresponds to the complex excitation of one
antenna element. Since, in most cases, the single tone signal is used for wireless
power transmission, the sinusoidal wave at the frequency of w is weighted with
the dominant eigenvector as follows.

ym(t) = g_l{vlm(a))} = |v1m(a))|sin(a)t + Zvlm(a))) (331)

The proposed scheme is implemented with the digital beamforming architecture
so the synchronized transmitters synthesize the desired transmit signal y,, () with
analog-to-digital convertor (ADC) and feed into each transmit elements for power
beamforming. It is noted that, in the real scenario of MPT, the available frequency of
power transmission spans over a bandwidth of hundreds of megahertz while only a
single carrier frequency is needed. In order to maximize the transmission efficiency,
the eigenvalues of transfer power matrix over the available bandwidth can be com-
pared to find at which frequency the power transmission has lowest propagation loss
for the given environment.

The TR eigenmode technique has a drawback that is the susceptibility to inter-
fering source. When there are multiple receivers requesting power transmission,
the transmitter has to characterize the propagation channel corresponding to these
receivers one-by-one and determine which frequencies are allocated to these receivers
based on the frequency dependent eigenvalues corresponding to the receivers. After
having determined the complex excitations, the simultaneous power transmission
can be implemented by superimposing two signals at the baseband. For example, the
my, transmitter directly synthesize the signal which simultaneous power transmis-
sion to two receives as y,, () = |v%m(w1)|sin(a)1t + Lv}m(a)l) + |v%m (w2)]|sin(wyt +
Zv? (w2)). In this way, the transmitter generates dual beams at two different fre-
quencies pointing toward two receivers.

3.4 Numerical Examples

The paper [14] reports that the BCE can be up to 99 % by evaluating the power of
AF. However, as discussed in Sect.3.2 the efficiency derived from AF is not valid
when the element pattern is not equal. To compare the effectiveness of different
beamforming technique, the numerical simulation in different experiment setup is
carried out in Ansys HFSS. The experimental verification of transmission efficiency
and channel transfer function is extremely challenging and costly for large scale
array beamforming. In this chapter, the electromagnetic simulation is carried out in
HFSS-IE, which is a new module based on Method of Moment-Integral Equation
(MoM-IE) and designed for electrically large simulations.
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Fig. 3.10 Simulation in
HFSS-IE. The rectangular [ -
patch array antennas are used ‘ + Receiver 1
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As shown in Fig. 3.10, the microstrip rectangular patch antenna is chosen for the
investigation as a representative of directive antenna rather than isotropic radiator. In
HFESS, each antenna is placed on the planar Duroid 5870 substrate so each element
has an image due to ground plane. Its radiation pattern of each antenna is modeled
in the previous formulation. The field distribution on the virtual spherical air box is
shown in Fig.3.13 to illustrate the power distribution in space. The amplitude and
phase of excitation is modified in the postprocessing function of HFSS according to
the calculation of our proposed formulation.

Due to the intensive computation cost and limitation of computer memory, the
6-by-6 microstrip array is examined to make comparison with our theoretical model
and the power transfer frequency is taken at 5.8 GHz in HFSS simulation. In the
postprocessing, the excitations at each port can be specified with both amplitude
and phase and the resultant beam pattern is observed in far field. The followings are
several examples to show the advantages of the proposed scheme with the aid of
comparison table and figures.

3.4.1 Arbitrary Array Beamforming in Free Space

In the first example, the beamforming techniques are evaluated in free space in terms
of several transmission efficiencies (#, #near» Hor and PTE) and spatial distribution
of electric field. Four beamforming techniques are chosen for investigation: uniform
excitation, phase conjugate (same as retrodirective array), the proposed method, and
AF synthesis technique described in [14].

In the HFSS simulation setup, the transmit array is arbitrarily positioned 6-by-
6 antenna array as in Fig.3.11, the inset of which shows the resultant arbitrary
array for beamforming. The random spacing is generated by the normal distribution
function of Matlab with the mean of 0.651. The receive array is 3-by-3 rectangular
array with the spacing of 0.654¢ in both x and y direction. The receiver is located
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Fig.3.11 Spacing distribution of randomly positioned antenna array: the mean of element spacings
is 0.654¢

at a distance 0.5m from the center of transmit array and takes the angular area of
0.1 x 0.1 receive aperture, which is defined as — arcsin(0.1/2) < 6 < arcsin(0.1/2)
and — arcsin(0.1/2) < ¢ < arcsin(0.1/2)) in spherical coordinate. It is noted that,
in this case, the receive array is located in the Fresnel near field region because the
distance between receiver and transmitter is between the far field (2%2 ~ 2.18m) and

near field boundary (0.62\/0;3 ~ 0.31 m). As the exact position of arbitrary array is
not available, the mean spacing is taken for the formulation of AF. Therefore, the
degradation of beamforming is expected due to the random phase error.

To compute the beamforming efficiency, the power density can be integrated over
angular regions () to obtain the power focused into the target area. It is noted that,
when we compute the spatial power flow, the transmit antenna is simulated without
the receive antenna with finite element method (FEM) only and enclosed with a upper
hemisphere of radius 0.5 m. Then the BCE (Eq. (3.5)) is computed to evaluate ability
of shaping power beam into angular regions of 0.1 x 0.1 receive aperture. Besides,
the received power and transmitted power are computed from mutual impedance
matrix and S parameters are used to evaluate the transmission efficiency (Eq. (3.6)).
For comparison, the incoherent sum of transmitted power is obtained from simulation
and used for the computation of PTE as Eq. (3.6).

FEM simulation solves the far field antenna pattern with different complex exci-
tations as in Fig.3.12. The max antenna gains can be read from radiation pattern
as 165.82, 177.16, 193.35, and 193.41 (in linear scale) for the techniques of phase
conjugate array, TR eigenmode, uniform excitation, and AF synthesis, respectively.
These four beamforming techniques gives the effective aperture for the calculation
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Fig. 3.12 Far field radiation pattern of transmit array with different beamforming techniques: max
array gain in linear scale can be read from radiation pattern as 165.82, 177.16, 193.3, and 193.41
for the techniques of phase conjugate array, TR eigenmode, uniform excitation, and AF synthesis,
respectively

in Egs. (3.9) and (3.10). The AF synthesis technique and uniform excitation give
much higher gain and narrower beamwidth. From the models based on antenna
parameters, it implies that these two techniques give higher transmission efficiency
with the specific equations. However, the HFSS-IE simulation shows a contradictory
results. The AF synthesis and uniform excitation result in the significant leakage of
the real power flow (Fig.3.13) if the spatial electric field distribution is plotted on
the enclosing hemisphere. The phase conjugate and TR eigenmode techniques have
lower far field gain but focuses most of power into the region of receive aperture.
For this reason. Table 3.2 shows that the model-based estimation (either #,,¢q, OT #7)
overestimates the efficiency if it is compared with the simulated efficiency. The dis-
crepancy is attributed to the wide main beam at the cost of lower gain so that the
adaptive beamforming directs more integrated power into the targeted area.

Futhermore, Table3.2 shows that either phase conjugate array or time reveral
eigenmode technique leads to higher transmission efficiency # especially in the case
that the position of antenna elements is not available. It also verifies that the assump-
tion of negligible correlated power dissipation is valid in adaptive beamforming and
shows their advantages over the classic array synthesis.
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Fig. 3.13 Spatial power distribution from different beamforming methods: significant amount of

power leakage appears for the AF synthesis and uniform excitations. The enclosing sphere shows
the spatial distribution of the real power flow in the region of Frensnel near field region

Table 3.2 Comparison of different optimization techniques for MPT in free space

Beamforming method | BCE PTE (%) | n (%) Nnear (%) | Hpar (%) | Gain
(0.1 x (linear)
0.1) (%)

Uniform 21.37 34.18 18.50 50.64 70.59 193.41

Phase conjugate 33.05 45.82 25.14 45.47 60.65 177.16

TR eigenmode 33.22 45.86 25.22 4541 70.59 165.82

AF synthesis 22.64 36.58 18.91 50.63 60.52 193.35
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3.4.2 Arbitrary Array Beam Steering

The previous section demonstrates the potential of maximizing transmission effi-
ciency when the receive array at the scan angle of 0°. At this scan angle, the transmit
array gives the largest gain and the consequent transmission efficiency over any other
beam pointing angles. In our analytical model, although the propagation channel is
irrelevant with the location of scan angle, the synthesized beam by adaptive tech-
nique has the beam pointing error in some cases as discussed by [23]. Therefore, it
is worthy of studying the impact of steering the beam away from the center.

In this subsection, the positions of transmit array elements are the same as last
section while the receive array is rotated along the x axis to create different receiving
angles. Figure 3.14 shows the beam steering toward the receive array based on the
time reveral eigenmode technique. The main beam is steered to the angular region
without the grating lobe where the receiver is until the scan angle is greater than
30°. The limited scan angle is due to array spacing of 0.651y. According to the
array theory, the maximum scan angle can be computed from the array spacing
as Oq = arcsin(d/Ay — 1) = arsin(0.538) = 32.57°. It is noted that, for the scan
angle of 45%, most of power flows toward to the direction of receive array with
the significant grating lobe at the symmetric location. However, when the scan angle
moves further to 60°, the main beam cannot be steered to the direction of receiver any
more. In fact, this phenomenon is attributed to the scan blindness due to surface wave
and can be mitigated by the proper antenna elements design with cavity backing and
so on. The beam scanning pattern given by the adaptive array technique also presents
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Fig.3.14 Antenna pattern over different scan angles: grating lobe becomes large for the scan angle

of @ = 45° and 60°; for the scan angle of 60°, the main beam cannot be steered to the direction of
receive aperture
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Transmission Efficiency vs Scan Angle
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Fig. 3.15 Transmission efficiency over different scan angles. The near field and far field models
overestimate the transmission efficiency while the PTE has much better accuracy

the degradation of array gain, which is called the scan loss. The simulated gains at
the angle of 0°, 15°, and 30°, are 165.8, 157.3, and 140.6, respectively. The gain
degradation is close to the scan loss equation cos(8) (6 is scan angle).

From the aforementioned analysis, it can be found that the beam scanning leads to
the drop of array gain, which is also predicated by the model of AF. As a consequence,
Fig.3.15 shows that the transmission efficiency also drops as with the increase of
scan angle. Given a fixed channel transfer matrix, the TR eigenmode technique gives
a maximization of PTE and the consequent transmission efficiency #. However, the
maximum value of 7 is limited by the array setup and propagation medium, no matter
what complex excitation vector is. The limitation of array beam scanning is discussed
using the model of Plane wave impulse response Element Pattern in [23].

3.4.3 Arbitrary Array Beamforming in Multipath
Environment

In this subsection, an obscured propagation channel is studied to demonstrate the
advantages of TR eigenmode technique in the multipath environment. In this numer-
ical example, a PEC (perfect electric conducting) spherical obstacle is inserted
(Fig.3.16) with a diameter equal to the diagonal length of receive aperture. This
example has also been formulated and discussed for the application of wireless com-
munication in [6, 8].

The PTE and transmission efficiency are tabulated as Table 3.3 for four different
techniques. In this case, if the array synthesis and uniform excitation techniques are
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Fig. 3.16 Wireless power transfer behind PEC spherical obstacle. No LOS propagation path is
available

Table 3.3 Comparison of different optimization techniques for MPT behind PEC spherical obstacle

Beamforming Uniform (%) Phase conjugate | TR eigenmode AF synthesis (%)
method (%) (%)

n 2.23 5.22 5.85 2.44

PTE 3.12 5.96 6.39 3.33

not well-defined and shown for the purpose of comparison. Because the receiver is
located in the region shadowed by the obstacle and no direct beam can be formed
toward the receiver, the shaping of the main beam toward any direction leads to a
large amount of backward scattering. Nevertheless, the advantage of phase conjugate
and TR eigenmode stands out in the comparison table. These two techniques give
several times greater efficiencies (both # and BCE) over the other two techniques.
Given the same norm of input power, the eigenmode method has approximately 10 %
higher efficiencies over the phase conjugate method (Table 3.3). It can be expected
the improvements in efficiency from TR-Eigenmode method will be even more sig-
nificant as with the increase of propagation channel due to multipath environment.
In Fig.3.17a, b, the far field pattern from TR eigenmode and phase conjugate
technique is computed with the results from FEM in HFSS. The reason why TR
eigenmode technique is better than phase conjugate technique is shown apparently
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Fig. 3.17 Array beamforming with the presence of spherical obstacle: a radiation pattern from
phase conjugate, b radiation pattern from time reveral eigennmode. A significant main lobe exists
in (a) and results in the propagation loss

in Fig.3.17. Instead of one main beam in traditional beamforming technique, two
beams are generated by the eigenvector excitations.The dual-beam maximizes the
diffracted wave toward receiver while it minimizes the reflection by the obstacle.
The phase conjugate technique, on the other hand, still maintains a main beam in
the direction of LOS, apart from two side beams. Therefore, a portion of power is
reflected back due to the existence of main beam. In Fig. 3.16, the induced surface
current in MoM-IE method gives an implication of how the two side beam makes
use of diffractions.

In short, the TR eigenmode method is the best adaptive array synthesis technique
for MPT in the channel with multipath.

3.5 Conclusion

In this chapter, the wireless power transmission system is formulated in terms of
the circuit theory and the field theory. The clarification of definitions on powers and
efficiencies implies the challenges of estimating the transmission efficiency. For this
reason, the classic model of transmission efficiency based on antenna parameter is
reviewed while another transmission equation is presented in terms of the channel
transfer function and mutual impedance matrix. Then, the experimental study of
transmission efficiency is carried out in an indoor environment, which is a rich scat-
tering and multipath environment. The quantitative study of transmission efficiency
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in experiment shows that the adaptive array beamforming is demanded to improve
the MPT in a complex environment.

Furthermore, the exact transmission efficiency is approximated with pseudo trans-
mission equation (PTE) as the coupled power dissipation is sufficiently small if the
array spacing is greater than half wavelength. Based on this approximation, an opti-
mal method is derived from time reversal signal processing technique. As the iterative
TR process achieves spatial focusing effect through the automatic probing the chan-
nel characteristics, this property enlightens us with its application in the wireless
power transmission. Then the iterative process is implemented computationally with
eigen decomposition process since the channel transfer matrix can be measured and
processed. Based on this principle, the time reveral eigenmode technique is proposed
and validated with numerical examples. The MoM-Integral Equation was employed
to demonstrate the advantages of the proposed techniques due to the prohibitive cost
of large phased array. From the simulation results, it has been shown that the pro-
posed scheme gives an optimal transmission efficiency for an array with unequal
element pattern and arbitrary position. Moreover, the simulation also shows that this
method is applicable for the receivers located in either far field or near field region
while conventional array synthesis assumes the far field propagation. Most impor-
tantly, we have shown that the TR eigenmode technique can improve the transmission
efficiency in the complex environment.
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Chapter 4
Far-Field Wireless Power Transfer
for IoT Sensors

Hubregt J. Visser, Hans W. Pflug and Shady Keyrouz

Abstract For employing large IoT wireless sensor networks, powering the sensors
by cabling or primary batteries is not feasible. Using radiated fields seems to be
a possible alternative. However, the expected power densities from ambient radio
frequency (RF) sources (Global System for Mobile communication (GSM), digital
television (DTV), WiFi) are too small for a practical use. Using dedicated transmit-
ters in a wireless power transfer setup, using the (power-restricted) license-free ISM
frequency bands will increase the levels by an order of magnitude. Then through a
careful co-design of the rectifier, receive antenna and the power management, the
powering of low-power, duty-cycled wireless IoT sensors becomes feasible. The
models employed for the rectifier are outlined. Then working from the core (the rec-
tifier) toward both extremeties (the antenna and the power management circuit), the
design procedure for a rectifying antenna or rectena is outlined. Future perspectives
for increasing the rectenna’s efficiency and the amount of power being received are
outlined, using transient arrays and multisine signals.
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4.1 Introduction

In the “Internet of Things” (IoT) [1], devices and vehicles are connected using elec-
tronic sensors and the internet. The IoT opens up the possibility for creating so-called
Smart Buildings. Smart Buildings are the buildings able to react to the environment
and/or human activities in an adaptive way.

In its most basic form, a large network of sensors would monitor the presence of
people and the lighting and heating conditions throughout a building. The gathered
information can then be used to fine-tune the buildings heating and lighting, e.g.,
switching off heating and lighting in areas where nobody is present. When properly
employed, this will result in a huge reduction in energy consumption. At present,
40 % of the energy consumed is used for heating, ventilation, and air conditioning
(HVAC), and 30 % is used for lighting [2].

However, employing a large network of miniature wireless sensors poses a pow-
ering challenge. The use of cabling excludes retrofit solutions. But even for new
buildings, the cost of cabling is too high. Cabling an average office unit or a four bed
house is estimated at €7,000-11,000 ($9,000-15,000) [3]. Although using batter-
ies may severely reduce these cabling costs, the maintenance issues associated with
using primary batteries in a large wireless sensor network—i.e., locating batteries
to be replaced, replacing these batteries and disposing of the old ones—will not be
tolerated by the market.

An alternative way of powering may be looked for in the energy harvesting tech-
nology. Energy harvesting is the process by which energy is derived from (uninten-
tional) external sources. Known energy harvesting sources are movement, piezoelec-
tricity, temperature gradients, and light, see Fig.4.1.

1831 Faraday dynamo WWII Philips dyno torch Medern dyno torch

Piezoelectricity E‘ |:> ;&?-: |:> S

@
4890 Cuxfe discoiey of RPGT fuse ; Enocean wireless switch
| piezoelectricity i i
oy —
Temperature I |:> -fﬁ I::> =
1821 Seebeck experiment 1948 USSR oil lamp powered radio 1977 Voyager 2 Radiolsotope
i Thermaoelectric Generator
Light E ) % >
LA [ ¢
1839 Becquerel experiment 1954 Bell Labs PV i Modern PV

Fig. 4.1 Sources and history of energy harvesting
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The potential energy harvesting sources as shown in Fig.4.1 are not the most
promising ones for Smart Building applications. Neither movement and vibration nor
large temperature gradients will be present. Light will not be always and everywhere
available. Then, what remains is the use of radio waves for wireless power transfer
(WPT).

As will be discussed in more detail in the remainder, the power densities of ambient
RF signals will, in general, be too low for practical applications. Therefore, dedicated
RF sources need to be brought into the system. This will change the wireless energy
harvesting concept into the special case of wireless power transfer (WPT).!

In WPT we distinguish two techniques: near-contact WPT and far-field WPT.

4.1.1 Near-Contact WPT

Near-contact WPT is mostly employed in inductive WPT systems, wherein a trans-
mitting and a receiving coil are brought in each others vicinity. The coils are lined up
coaxially so that the receiving coil encompasses most of the magnetic flux generated
by the transmit coil. When the axial distance between both coils is less than the
smallest coil diameter, and the transmit and receive coil are well-aligned, a power
transfer efficiency well above 90 % may be achieved [4]. The introduction of reso-
nant coupling, in which the coils are made resonant through the use of capacitors
[71, allows the transmitter and receiver coils to be separated a few times the smallest
coil diameter. Also the coaxial lining up requirements can be relaxed a bit.

4.1.2 Far-Field WPT

In far-field WPT, use is made of radiating fields [5, 6]. A transmit antenna excites
propagating electromagnetic waves in free space. At a substantial distance (i.e., in
the far-field region of the transmit antenna), a receive antenna intercepts a part of the
transmitted radiowaves and a connected rectifier converts this part into usable DC
power. The combination of rectifier and antenna is known as rectenna, a contraction
of rectifier and antenna.

4.2 Far-Field WPT Basics

The core of any far-field WPT system is the rectenna, see Fig. 4.2. Before discussing
the details of the rectenna, we need to look at the system as a whole. We need to
establish the limits on what is physically possible concerning the obtainable DC
power levels.

IStrictly speaking, the correct term should be Wireless Energy Transfer. However, since WPT is by
now a generally accepted term, we will stick to the use of WPT.
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Ambient or dedicated source RF Energy management (Rectenna)

Fig.4.2 Far-field wireless power transfer. An ambient or dedicated (intentional) source is connected
to a transmit antenna that radiates in free space. The antenna of the rectenna intercepts a part of the
radiated signal and the connected rectifier converts it into usable DC power

4.2.1 Power Density

If the power accepted by the transmit antenna from the source is Py and if the antenna
would be a lossless, uniform radiator, the power density S at a distance r from the
transmit antenna would follow from the spherical spreading of the radiated power:

Pr

4z r?’

4.1)

Uniform radiators do not exist. A real-life antenna will radiate more than a uniform
radiator in certain directions and less in other directions. The amount an antenna can
radiate more than a (hypothetical) uniform radiator is expressed in the gain G of
the antenna. If we assume that the transmit antenna is positioned in such a way that
the maximum radiation is in the direction of the rectenna (the receiver), the power
density becomes

§_ PrGr

= 4.2)

where G is the gain of the transmit antenna. With this equation we can find limits on
the power density at a distance r for the situation where a dedicated source is being
used (WPT) and compare this situation with the situation where we take energy from
unintentional sources (the ambient).

4.2.2 Wireless Power Transfer

The product of Py and G is known as the Effective Isotropic Radiated Power (EIRP),
which is subject to legal restrictions in the license-free frequency bands for industry,
science, and medicine (ISM) [8].2 In Fig.4.3, the power density as a function of
distance from the source is shown for two EIRP limits.

2That means that using a highly directive transmit antenna (large G7) needs to be compensated by
lowering the power injected into the antenna (decreasing Pr).
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Fig. 4.3 Power density (in Wm™2) as a function of distance from the source (in m) for an Effective
Isotropic Radiated Power level of 0.5 W (solid line) and 4 W (dashed line). Inset Power density for
the range 4-6 m

The figure clearly shows the rapid decay of the power density with distance from
the source (inversely proportional to the distance squared). At distances around 5m
from the source, we may expect to be able to realize RF power densities in the order
of 0.01 Wm™2 (1 wW cm™2). It is interesting to compare this value with the value we
may expect when we harvest RF energy from the ambient.

4.2.3 RF Harvesting from the Ambient

When we want to harvest RF energy from the ambient, i.e., from non-intentional
sources, we first need to identify possible radiating sources. We will restrict our-
selves to sources radiating at ultra high frequencies (UHF, 300 MHz-1 GHz [9])
and microwave frequencies (300 MHz—300 GHz [10]). This restriction will keep the
dimensions of the receive antenna within bounds that are practical for miniature
applications.

As shown in [11], the most powerful RF sources available in the urban environ-
ment within these frequency ranges can be found for digital television (DTV, 470-
610 MHz), mobile telephony GSM900 (925-960 MHz), mobile telephony GSM 1800
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Fig. 4.4 Measured summed power density levels of GSM900 base stations as a function of the
distance to the base station. Data taken from [13]. IC = inner city, OC = outer country, IR = industrial
area, ST = small town, R = rural or countryside area. 1 = outdoors on roof, terrace or balcony, 2 =
indoors, close to windows, 1.5m or less, 3 = indoors not close to windows

(1805-1880MHz), 3G (2110-2170MHz), and WiFi (2400-2500 MHz). The fre-
quencies within the parentheses are for the base station transmit situations that
generate the highest power density levels. Also shown in [11] is that GSM900 is
providing the highest power density in a survey conducted in the vicinity of London
underground stations.

Expanding these GSM900 findings to a broader range of areas, the data gathered
within COST? action 244 bis “Biomedical Effects of Electromagnetic Fields” is
being used [12]. Figure4.4 shows summed GSM900 peak power density levels as
a function of distance to the nearest base station for different situations (indoor,
outdoor, country side, inner city, etc.)

In between 25 and 100 m from a GSM900 base station, we may expect, indoors
everywhere or outdoors on an elevated level, a power density level between 0.001 and
0.1 wWcm™2 [12]. The Figure reveals that the summed power density (integrating
over the downlink frequencies) results in power density levels between 0.01 and
0.3uWem~2 (0.1-3mWm?2), values about an order of magnitude lower than what
may be obtained by applying WPT in the ISM frequency bands with a dedicated
source within 5 m distance.

Understanding now the power density levels to expect, we can start looking at the
rectenna in more detail. We do so by first looking at the core of the rectenna, i.e., the
rectifier.

3COST = Cooperation in Science and Technology.
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4.3 Redctifier

Since we are dealing with low-power density levels, it is of paramount importance
that the power intercepted by the receive antenna is delivered completely to the
rectifier. In other words, we need a perfect, or at least very good, impedance match
between the rectifier and the antenna. To accomplish this, we need to be able to
determine the—in general complex—input impedance of the rectifier circuit.

The simplest rectifying circuit is a half-wave rectifier, consisting of one discrete
diode. Due to the frequency range chosen, we will use a Schottky diode. A Schottky
diode is known for its fast switching capability. Figure 4.5 shows the rectifying circuit
and the equivalent circuit for the packaged diode in the circuit.

In the circuits, the choke inductance parallel over the source with generator voltage
V, and internal resistance R, is positioned there to ensure a DC current path in the
circuit.

The current i, through the diode d is described by the Shockley equation [14]

i =1, (e* - 1) : (4.3)

wherein /; is the saturation current, g is the electron charge amplitude
(1.60217662 x 10° C), k is the Boltzmann constant (1.38064852 x 10~2* m?kgs~2
K=", T is the temperature in Kelvin, # is the ideality factor of the diode, and vy is
the voltage over the diode. The values for /; and n can be found in the datasheet of
the specific diode used.

For the equivalent circuit, shown on the right of Fig.4.5, the diode is expanded
with a junction capacitance C;, which is related to v4 through [15]

G

Ci(vg) = —2—. (4.4)

In the above equation, Cjq is the zero-bias differential barrier capacitance and
@ is the barrier potential of the diode. Values for both parameters can be found in
the datasheet of the diode used. R, represents the losses in the diode’s substrate and
can also be found in the diode’s datasheet. L, and C, are the packaging parasitic

o 4%
; ]
Ig G
R, d Ry 7 Ly
Ug = -—p 1.-"9 ¢ d R.s I I
C
o thud b Rf.e_ﬂ"

Fig. 4.5 Half-wave rectifier with a single (Schottky) diode. Left Basic circuit. Right Same circuit
with an equivalent circuit for the packaged diode
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inductance and capacitance, respectively, the values of which can also be found in
the datasheet.

In the equivalent circuit at the right in Fig. 4.5, we have left out the load capacitor
C. We assume a large value for this capacitor and therefore a constant output DC
voltage at steady state. The capacitor then behaves as an open circuit and may be left
out in the steady state circuit analysis.

The load resistance R;,4q has been replaced by an equivalent load resistance Ry .
The value of this equivalent load resistance is obtained through a harmonic current
analysis. This analysis will be discussed later. First, we will discuss the analysis of
the equivalent circuit.

4.3.1 Equivalent Circuit Analysis

Applying the Kirchhoff laws to the equivalent circuit in Fig. 4.5 leads to

Vg = |1)g| cos(wt), 4.5)
di
Vg = Ryig + L,,d—;’ + Ve, + Vi, (4.6)
0c, = V4 + vg,, 4.7
OR, = Rsig, = R; (ic, + id) , (4.8)
dl)d
ic,=Ci— pr 4.9)
ia =1, (et 1), (4.10)
iy = ig+ i, +ic,» (4.11)
dv
ic, = G 4.12)
v = RLqﬁig. (413)

From these equations, we obtain the following set of of coupled first-order ordinary
differential equations:

vg = (Rg + Rpef) ig +L,,‘Z +0g + R dd +Rls (AT~ 1), (414

ig =15 (" = 1) + G d:[d + c,,d;g Cp (Rg + Rpe) ix — Cpr%, (4.15)
where )

%g =iy (4.16)
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This last equation has been introduced to avoid the occurrence of second-order
derivatives. Now the remaining set of coupled first-order ordinary differential equa-
tions can be cast in a form wherein every unknown derivative is expressed in terms
of known parameters:

dog 1 . . _q_
dr = RSC/' [Ug - (Rg +RLéflf) ig — Lpix —vg — Ryl (e”/‘TDd - 1)] s (417)
dix 1 4, dog dvg . .
e [1 (ertrea 1) 4+ G2 4 8 G (Ry + Rgg) ix i | (4.18)
di
=i (4.19)

Solving this set of equations gives us the voltage over the diode v, and substituting
that value in Eq.(4.10) gives us the current i;. Then, by applying a fast Fourier
transform (FFT) we will find the diode impedance for each harmonic of the working
frequency:

Va,
Zy = —. (4.20)
Iy

In the past, we have solved this set of ordinary differential equations (ODEs) using
a time-stepping algorithm [16] for a load resistance equal to zero [16]. This choice
prevented the set of ODEs to become ‘stiff’ [17], but restricted the application of the
rectenna to low-impedance loads.

To overcome this restriction and allow the use of non-zero loads, ODE solvers for
stiff equations are being employed [18].

Having a method now to solve for the rectifier input impedance having a non-zero
load, we need to find an expression for the equivalent load resistor R4 that differs
from the actual load resistance Ry uq-

4.3.2 Harmonic Current Analysis

To get an expression for R; .z, we will start by analyzing the voltages and currents
through a diode, using a commercially available harmonic balance simulator. We
will use an Avago HSMS2850 Schottky diode [19] and apply a sinusoidal signal
at 900MHz coming from a source with an internal resistance of R, = 50 Q. The
maximum available power P;, equals —10dBm (0.1 mW). The generator voltage is
related to the maximum available power through

Py, =
SR,

4.21)
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The load resistor R;,,s equals 10 kQ and the load capacitor is 10 wF.

The generator voltage as a function of time is shown as the solid blue curve in
Fig.4.6. In the same Figure, the constant DC output voltage v;, is shown as a blue
dashed line. The current through the dode, i, is shown as a dashed red curve.

By taking the Fourier transform of the current through the diode, the amplitudes
of the diode’s current harmonics are found. The first four harmonics are displayed
in Fig.4.7.

The most important harmonics are i at zero frequency and the fundamental one
iy at 900 MHz.

The current through the diode i;(?), i.e., the red dashed curve in Fig. 4.6, may be
expressed as the following Fourier series [20]:

ig(t) = ap + Z a, cos(nwt) + Z b, sin(nwt). (4.22)

n=1 n=1

ap, the DC coefficient of the Fourier series is the average of the diode current
i4(1), where the average is most conveniently taken over one period T = J% with fy
being the operational frequency (in the shown example 900 MHz).
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1 T
apg =iy = T/ id(l)dt. (4.23)
0

The Fourier coefficients for the fundamental frequency fy = 5> are:

2 T

a; = —/ iy(t) cos(wr)dt, 4.24)
T Jo
2 T

by = —/ iq(t) sin(ewt)dt. (4.25)
T Jo

Assuming that the current through the diode i,;(¢) during conduction is a positive
cycle of a truncated cosine waveform, see also Fig.4.6, it may be shown [21, 22]
that the amplitude of the current at the fundamental frequency i, is approximately
twice the amplitude of the DC current i

iy & 2ip, (4.26)
so that
vr = Rpoaqio = RLeffigy 4.27)
and R
R = Lz”‘”’ : (4.28)

This value for the effective load resistor is being substituded in the ODEs of the
previous section. Results of the analysis, compared to measurements, will be shown
together with results for cascaded rectifiers that will be discussed next.

4.4 Cascaded Rectifiers

In general, the DC output voltage of a single Schottky diode will not be sufficient
to drive any application, see also Fig.4.6. Instead of immediately trying to find our
refuge in applying a DC-to-DC boost converter to increase the output voltage, we
might consider to cascade several diodes. This should not be seen as a means to
increase the DC voltage up to a level that appliactions can be driven directly. It could
provide a means of lowering the required dynamic range of the DC-to-DC boost
converter, thus increasing the latter’s power conversion efficiency.

A much used cascaded (Schottky) diode rectifier circuit is based on the Dickson’s
charge pump circuit [23], see Fig.4.8. The cascaded rectifier consist of n identical
Shottky diodes.

For determining the input impedance of the cascaded rectifier, we consider the
capacitors as short circuits at fy. All diodes are then connected in an antiparallel
circuit. The input impedance is then equal to the input impedance of a single diode
divided by the number of diodes.
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Fig. 4.8 Multistage, cascaded rectifier based on the Dickson’s charge pump circuit and the
equivalent circuit

Ziw = 22 (4.29)

This means that we can replace the cascaded rectifier circuit with an equivalent
circuit as shown in Fig.4.8.

To determine the equivalent load resistor R}‘eﬁc, we start by assuming that the
cascaded diode network is lossless. Then we assume that the DC output voltage vy,
consists of n identical contributions v; from all the diodes:

v = noy. (4.30)

The DC output power may also regarded as being constructed from »n added
contributions

v; v
Py = =n—_—. (431)
RLL’ﬁ RLeﬁ
Substitution of Eq. (4.30) in Eq. (4.31), followed using Eq. (4.28) leads to
Riey  Rroad
R, . = = —. 4.32
Leit n 2n ( )

So the input impedance of a cascade of n half-wave rectifiers is analyzed through
using the equivalent circuit shown in Fig. 4.8, where the input impedance is calculated
according to Eq. (4.29) where for the single diode an equivalent load resistance as
given in Eq. (4.32) is used.

As an example, Fig. 4.9 shows the calculated and measured real and imaginary part
of the input impedance for an available power level of P;,, = —20dBm (0.01 mW)
of a voltage doubler (n = 2) configuration based on the Avago HSMS2850 Schottky
diode as a function of frequency.
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Fig. 4.9 Simulated and T T T T
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In the Figure, HB stands for harmonic balance, a simulation performed with
a commercially available circuit simulation software and AE stands for analytical
equations, i.e., the solving of the ODE’s as discussed here.

For determining the output voltage, we refer to [24] from which combining
Egs. (4.2) and (4.6) leads to:

Iy (Lo
il)L — NlIn 0 (nkT g)
nkT 1+ # ff;; (g%[vg cosf—v,] _ 1) do

=0, (4.33)

from which vy, can be found through, for example, a bisection method.
In the above equation, n is the diode ideality factor and NV is the number of cascaded
diodes. I is a modified Bessel function of the first kind and order zero.

4.5 Receive Antenna

With the rectifier input impedance known, we can now choose or design the receive
antenna and impedance match the antenna to the rectifier. Concerning the receive
antenna, we are challenged with different choices.
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4.5.1 Antenna Input Impedance

The use of a ‘standard’ 50 Q antenna has the benefit that it can be employed for
different rectifiers, input power levels, and load conditions. A general impedance
matching network can be applied. Only the component values need to change for
different applications. The drawback is that the impedance matching network nec-
essary for matching this antenna to the rectifier occupies space and can become a
size-limiting factor. Using an antenna that is directly (complex conjugately) matched
to the antenna requires special antenna design skills.

4.5.2 Antenna Integration Level

Directly related to the input impedance of the antenna is the integration level. Will
we use a separate antenna—to be connected to the rectifier through a (coaxial) trans-
mission line—or will we use a printed circuit board (PCB) trace antenna or will we
use a ceramic chip antenna?

The benefits of using a separate antenna is that it is easy to realize or select a high
gain and high radiation efficiency and that antennas can be selected from a vendor’s
catalog. The drawback is that the size of the whole rectenna will become large and
this may not comply with a wish for employing small-sized wireless autonomous
IoT sensors.

The benefits of using a PCB trace antenna is that it results in a thin antenna
that is easy to produce and connects directly to the rectenna electronics. The draw-
back may be that additional PCB area is needed—added to the area needed for the
electronics—to house the antenna. Furthermore, to prevent a substantial decrease
in antenna radiation efficiency, it may be necessary to use a low-loss, microwave-
specific PCB material. This will increase the costs of the rectenna.

The use of ceramic chip antennas at first glance seems to overcome the above-
mentioned problems. These antennas are physically very small due to combining a
helix, patch, or meandered mono- or dipole antenna with a high permittivity, low-loss
ceramic material. However, the radiation efficiencies are typically in the range of 10—
50 % which is rather low for rectenna use where we have to deal with low input power
levels and cannot compensate for these low efficiency values. The input impedance,
even though specified as being 50 Q in general needs additional matching [25].
Then, special care must be taken with respect to the manufacturer’s specifications
regarding footprint, ground areas, mounting of the chip antenna and guaranteeing
the keep out area around the antenna. All in all, ceramic chip antennas may be small
by themselves but may occupy a substantial PCB area. The antenna performance in
general is mediocre. Therefore, we will not consider this antenna type for rectenna
applications.
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4.5.3 Antenna Shielding

Especially for miniaturized antennas to be integrated with the rectenna, shielding
may become an important issue. With shielding we mean the characteristic that the
antenna is not being influenced by the carrier, it is placed upon or by the electronics
of the device being powered by the rectenna. In practice, this means that the antenna
needs to be realized on a conducting ground plane. This ground plane will act as the
shielding device. However, standard shielded antennas like, e.g., the microstrip patch
antenna cannot easily be miniaturized using standard PCB or PCB-like materials. A
dedicated design for a miniature, shielded antenna is required.

4.5.4 Miniaturized Complex Conjugately Matched Antenna

From the above we may conclude that ideally, the antenna of a rectenna for a small-
sized wireless autonomous IoT sensor should be physically small, directly matched
to the rectifier and be shielded from the electronics of the device it is powering or
the material it is positioned upon. On top of that, the manufacturing costs should be
close to nothing.

Meeting nearly all these requirements is accomplished using the printed loop-like
antenna [26] as shown in Fig.4.10.

Substrate without ground plane

Fig. 4.10 Printed loop-like antenna and definition of the dimensions. The loop is filled with two
times n short-circuiting strips as shown
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The antenna is specifically designed for being used with a voltage doubling recti-
fier of the type AVAGO HSMS-2852. The input impedance of this rectifier Z,,. i, ata
frequency of 868 MHz for a load resistor of 5 kQ and an available input power level of
—20dBm can be read from Fig. 4.9 as being approximately Z..; i, ~ (12 — j175)Q.
For an input power level of —10dBm and a load resistance of 10k, the input
impedance i8 Zc.in = (7.1 — j240)Q [26]. For both situations we see that the imag-
inary part of the rectifier’s input impedance is capacitive. So, if we want to connect
an antenna directly, without having to employ an impedance matching network, the
antenna needs to be inductive. Hence, we choose for a printed loop antenna. Next,
we see that the real part of the input impedance is much lower than 50 Q. A small
resistive part of an antenna’s input impedance may be realized by employing an
antenna that is much smaller than the wavelength used [27].

So, for an antenna that is complex conjugately matched to the rectifier at 368 MHz
for an available RF input power to the rectifier of —10dBm, and the rectifier being
loaded with 10kQ,* we need an electrically (and physically) small loop antenna.
The additional short-circuiting arms shown in Fig.4.10 are introduced to lead the
current through different paths, and thus provide a means of tuning the antenna’s
input impedance to the desired value.

Figure 4.11 shows the simulated [28] peak surface current density over the antenna
surface at a frequency of 868 MHz and for dimensions as stated in the caption of the
Figure. The input impedance of the antenna is Z,, ;, = (7 4 j240)Q.

This antenna, directly connected to a voltage doubling rectifying circuit has led
to the smallest, most efficient UHF rectenna [26]. One drawback of this antenna

Fig. 4.11 Simulated peak
surface current density at
868 MHz for the antenna
shown in Fig.4.10 for the
following dimensions.
n=3,h=16mm,e¢g, =2.2,
Wi=W,=W3=E| =
E; =3mm, E3 =4mm,

W =g =g =5mm,

L, =32mm, L; = 54mm,
S1 =10mm, S =7 mm,
S3 = 8mm

4The reason that we choose for a 10kQ load is that later we will connect the rectifier to a power
management IC with voltage boost functionality. The input impedance of this IC is close to 10kQ.

fan.ye@stonybrook.edu



4 Far-Field Wireless Power Transfer for IoT Sensors 101

@ | @

(e)

(c) P [Magnitude in dB]

—351,1

51
101
=154
.20/
=251

.35/ . 1 ! : ! i H | ! ]
2 21 22 23 2.4 25 2.6 2.7 2.8 29 3
Frequency [ GHz

Fig. 4.12 Miniature shielded antenna, ground plane radiation. a Simulated peak current density at
2.45 GHz. b Simulated radiation pattern at 2.45 GHz. ¢ Simulated reflection coefficient as a function
of frequency. d Antenna with electronics for rectenna. e Simulated peak current density for antenna
with electronics at 2.45 GHz. f Simulated radiation pattern for antenna with electronics at 2.45 GHz

however is that it needs to be positioned in free space. Positioning it flush to a
(metal) carrier will deteriorate the radiation characteristics. Other means of antenna
design are needed to create a miniature shielded antenna.

4.5.5 Miniature Shielded Antenna

One possible way to design a shielded miniature antenna is to not start with the
antenna, but with the electronics and then let the PCB ground plane—after some
fine tuning—resonate at the desired frequency. The theory of characteristic modes
(TCM) will be of great benefit in the design process [29]. The addition of a bezel
or printed loop to tune the antenna characteristics might help in miniaturizing the
antenna [30].

Figure4.12 shows a miniature 2.45 GHz 50 Q antenna meant for a rectenna and the
simulated current densities, radiation patterns and reflection coefficient as a function
of frequency. The antenna measures 2cm by 2.5cm by 1.6 mm.

The loop on top of the multilayer PCB is connected through a via with the ground
plane on the bottom of the PCB. Figure4.12a shows the peak current density at
2.45 GHz. The excitation (balanced in the small loop on the left) excites a vertically
polarized dipole mode in the ground plane and large loop. The radiation pattern is
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shown in Fig. 4.12b. Figure 4.12c shows the reflection coefficient—relative to 50 Q—
as a function of frequency. The electronic circuitry of the rectenna is meant to be
placed on the inside of the loop on the top of the PCB. To account for the PCB layout
for this electronic circuit, a metal area is added, as shown in Fig. 4.12d. Figure 4.12e, f
show the peak current density and the radiation pattern at 2.45 GHz for this structure.

The design of the antenna, especially through the connected loop on the top of the
PCB, ensures that — when the PCB is placed on a metal carrier — the current density
remains within the bounds of the rectenna’s ground plane. Therefore, the antenna
will hardly detune when placed on a (metal) carrier.

4.6 Rectenna

For a practical rectenna, we need—next to a receive antenna and a rectifying circuit—
some form of power management circuitry. This power management circuitry takes
the varying DC output voltage of the rectifier, up-converts it to store the energy in a
rechargeable battery or a capacitor and uses a buck converter to supply the loading
circuit with a lower and constant output voltage.

4.6.1 Power Management

The power management needed for the rectenna may be based on discrete solutions
originally developed for photovoltaic (PV) cells [31] or commercially available inte-
grated solutions may be applied. Although PV cells are basically current sources’
and rectennas behave more like voltage sources, for the low-power input levels we
are dealing with the difference is not really of importance.

For our low-power rectennas, we have chosen to use the Texas Instruments TI
BQ25570 Power Management IC [32]. The IC incorporates a DC-to-DC boost con-
verter that requires microwatts of power to begin operating. The boost converter
can start from an input voltage as low as 330 mV, and once started can continue
with an input voltage going down to 100 mV. The boost converter stores energy in
a rechargeable battery or a capacitor. The IC also incorporates a highly efficient,
nano-power buck converter for providing a constant voltage to the application that
needs to be powered. The IC further comprises a programmable Maximum Power
Point Tracking (MPPT) sampling network to optimize the transfer of power into the
device.

SPower management circuits therefore need an input voltage regulation to prevent collapsing.
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Fig. 4.13 Rectifier connected to a loaded power management circuit and excited by a matched
source. Energy is stored in capacitor C. the different power conversion efficiencies # are explained
in the text

4.6.2 Efficiency Evaluation

The output of a voltage doubling rectifier (based on the Avago HSMS2850 Schottky
diode) has been connected to the TI BQ25570 power management IC. The input of
the rectifier is connected—through an impedance matching network—to a 868 MHz
signal source. This source replaces the antenna and ensures a stable and repeatable
signal, necessary for evaluating the rectifier and power management circuits. The
configuration is shown in Fig.4.13.

The power management circuit is loaded with a dynamic load. This dynamic
load consists of seven resistors R;, i = 0, 1, ..., 6,° selectable by BS170 FETs that
are controlled using an Atmel ATmega2560 microcontroller on an Arduino MEGA
board [33], see Fig.4.13. The Arduino MEGA board is controlled by a PC through
a USB connection.

Using the PC, a sequence of different resistor combinations can be cycled in time,
see Fig.4.14, thus mimicking a duty-cycled IoT sensor node load.

The system consisting of rectifier, power management, energy storage (C), and
load are tested for a duty cycle that is such that the system is in energy equilibrium
[33].

Ry =750Q, R; =360Q, Ry = 180Q, R3 =91 Q, Ry =47Q, Rs =22Q, Re = 11 Q.
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Fig. 4.14 Time diagram of Pot ——
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The efficiencies evaluated are shown in Fig.4.13. In this figure, #, is the RF-to-DC
power conversion efficiency of the rectifier combined with the impedance matching
network. The overall efficiency 7, is defined as

P Olltayg

R (4.34)
Pgr

M =

where Pgr is the power generated by the signal generator and Py, is the time-
averaged output DC power dissipated in the dynamic load. The power conversion
efficiency 7 is the power conversion efficiency of the chain consisting of impedance
matching network, rectifier, and boost converter of the TI BQ25570 IC. This value

can be determined as 5 5

1 VC - VC .
_C max min , 4'35
T Py (*3)

where V¢ is the voltage over storage capacitor C, see Fig.4.13, and V¢, and V¢,
are the minimum and maximum values of this voltage, respectively. The maximum
value is determined by the IC and the minimum value is determined by the capacitor
value C and the on-time ¢,,, see Fig.4.14 [33].

With #,, y, and 7, known, the remaining power conversion efficiencies shown

in Fig.4.13 are found to be

ny = 1L (4.36)
Hr

Moo = 1 (4.37)
Nb1

These efficiencies are measured as a function of input power Pgr and are shown
in Fig.4.15.

We do observe a rather high power conversion efficiency from the IC’s boost
converter and buck converter. The power conversion efficiency of the input-matched
rectifier (optimized for Pgr = —10 dBm) is still fair but lower than the IC’s converter
efficiencies. This results in an overall efficiency of 23 % for Pgr = —10 dBm.

The time-averaged DC output power is then Py, =23 1'W. To give an impression
what this means for a practical, duty-cycled IoT wireless sensor: For a period T =
8.7 s, this yields 20mW DC power during 10 ms.
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Fig. 4.15 Efficiencies of the different sections in the rectifier plus power management setup shown
in Fig.4.13

Fig. 4.16 Rectenna (left) and the same rectenna powering a thermometer with Liquid Crystal
Display (LCD)

4.6.3 Complete Rectenna

The system consisting of an antenna, complex conjugately matched to a voltage
doubling rectifying circuit that is connected to a TI BQ25570 power management
circuit is integrated on a single PCB measuring 6¢cm x 10cm x 1.6 mm and is shown
in Fig.4.16.

The rectenna has been designed for a frequency of 915 MHz. Excited by a 3W
EIRP transmitter, it produces Py, ~ 30uW at a distance up to 5 m from the source,
which is sufficient to continuously power a Commercially Of The Shelf (COTS)
thermometer with Liquid Crystal Display (LCD), see Fig.4.16.
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Fig. 4.17 Combining pulsed
waveforms to locally .---"""'"c,.poce
increase the received power

Source 2

Source 1

4.7 Future Developments

Through a careful co-design of antenna and rectifier, considering the load of the
rectifier (power management circuit), efficient rectennas may be realized. To further
increase the efficiency, it has recently been demonstrated that an optimization of the
transmitted waveform is needed [34—36]. The use of a multisine signal will increase
the rectifier’s RF-to-DC power conversion efficiency.

An intermittent continuous wave (ICW) signal, i.e., a CW signal modulated by
a rectangular pulse train is a special form of a multisine signal [36]. Therefore,
we can not only use rectangular pulses to increase the rectenna’s efficiency, but if
we combine pulses coming from different directions, we can also create pockets of
energy in space and time and thus further increase the received power, see Fig.4.17.

As an example, we consider a linear array of thin-wire dipole antennas positioned
along the x-axis and parallel to the z-axis in a rectangular x, y, z coordinate system,
see Fig.4.18. The far electric field emitted by such a dipole antenna is given by [37]

Hoc r r  2h

E(r,t)= """ 1 (t—=)+5(t—---=

(r) 27rrsim9’s(t c)+ ' (t c c)
—Is(t—z—il[l—cosﬂ])—ls(t—z—ﬁ[l+cos19])]. (4.38)

In the above equation, u is the free space permeability, c is the free space velocity
of light, r is the distance from the antenna, / is the half-length of the antenna, and
9 is the angle between the vector to the observation point and the dipole axis, see
Fig.4.18.

We assume that the current /(¢) is a sinusoidal signal at frequency f;, moduated
by a rectangular pulse train having amplitude A, Pulse Repetition Frequency (PRF)
Jp and duty cycle D:

I;(t) = A - Dcos Qrfyt) +

N . D
A-D ; % {cos[27 (fy — nfy) 1] + cos 2z (fo +nf,) 1]} . (4.39)
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Fig. 4.18 Thin-wire dipole antenna of half-length £, positioned in the origin and along the z-axis

of a rectangular x, y, z coordinate system

Fig. 4.19 A linear array of
M + 1 antenna elements,
equidistantly positioned on
the x-axis of a rectangular
X, y, z coordinate system for
creating an electric field
maximum at
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By applying time-delays between the pulse trains transmitted by the antennas,
energy can be concentrated in time and space. The time-delays are easily calculated
from the differences in the path lengths between the dipole elements and the desired

energy maximum position, see Fig.4.19.

As an example, in Fig. 4.20 the transmitted power distribution in the x, y-plane is
shown for four time instances. The used parameters are: M =4, x, =6 m, y, = 18 m,
h=031m,fy=245GHz, ¥ =x/2, N =100, f, =10 MHz, D =0.01, d, =2 m.
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Fig. 4.20 Transmitted power distribution in the x, y-plane for a linear array of dipole antennas on
the x-axis, parallel to the z-axis. M =4,x, =6m, y, =18 m, h=0.31 m, fo = 2.45 GHz, ¥ = n/2,
N =100,f,=10MHz, D=0.01,d, =2m.a.t =ty + 10ns, b. t = 19 + 30ns, c. t = fo + 68ns, d.
t =1ty + 80ns

The Figure clearly shows how the pulses are transmitted from the five antenna
elements and add up in power after 68 ns at the position (x,,, y,,) = (bm, 18m).
Afterwards, the fields diffuse and decay, as expected.

4.8 Conclusions

For employing large IoT wireless sensor networks, powering the sensors by cabling
or primary batteries is not feasible. For networks employing large numbers of minia-
ture wireless sensors alternative power sources are needed. Energy harvesting from
sources like light, vibration, temperature gradients, or ambient RF radiation will not
always be possible, especially not for IoT sensor networks for smart houses. Far-
field wireless power transfer has shown to be a good alternative for low average
power, duty-cycled sensors. For transmitters operating in the license-free ISM fre-
quency bands, being restricted in EIRP, it is possible to obtain tens of microwatts
average DC power. To realize this, a careful co-design is needed of receive antenna,
rectifying circuit, and power management circuit into a so-called rectifying antenna
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or rectenna. To further increase the rectenna’s efficiency, future work on transmitted
waveform optimization is needed. This can be combined with transient array antenna
technology to not only increase the efficiency but also increase the transferred power
level without violating EIRP restrictions.
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Chapter 5
Wireless Power Transfer: Discrete Rectifier
Modeling and Analysis

Hans W. Pflug and Hubregt J. Visser

Abstract An accurate equivalent circuit model to predict the Power Conversion
Efficiency (PCE) of a Schottky Barrier Diode (SBD) is presented in this chapter.
By making use of good insight into the used SBD models and careful analysis of
circuit behavior, more efficient rectifier circuits have been identified. An increase
in circuit efficiency of 18-25 % is shown compared to state of the art, resulting in
20-180 % more available energy from the rectifying circuit. Also the accuracy of
simulation results has increased significantly due to the proposed model usage and
analysis technique. All the simulations in this chapter are performed in a conjugately
matched environment, which allows for an objective comparison of different Schottky
diodes and rectifier topologies. The simulation results show a near-perfect match with
measured data.

5.1 Introduction

In recent years, the Internet of Things (IoT) concept has emerged, in which physical
objects are connected to the Internet without the need for human interaction [11]. Key
in this concept is a long term, self-sustainable operation for a rapid growing amount
of devices. Energy aware devices are preferred, capable of harvesting their required
energy from ambient sources. Far-field Wireless Energy Harvesting (WEH) is one of
the most promising techniques for its ease of implementation and availability, among
other methods [8]. A logical step toward WEH is Wireless Energy Transfer (WET)—
commonly known as Wireless Power Transfer (WPT), making use of intentional
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RF transmitting energy sources. Once the consuming devices’ energy consumption
drops low enough and the WPT circuitry becomes efficient enough, IoT can switch
to WEH usage. Typical IoT applications span a wide range of fields including smart
buildings, healthcare, transportation, agriculture, and surveillance [1]. Supplying
energy to this rapid growing system is a dominant implementation barrier. WPT is
seen as a promising approach for IoT.

WPT works by rectifying a RF signal, received by an antenna, into a usable
dc component. To achieve a high Power Conversion Efficiency (PCE) of the WPT
circuitry, objective topology comparison is required. This calls for realistic circuit
models and an objective analysis technique.

Both are investigated in this work: first the diode modeling topic will be covered
in Sect.5.2, showing a significant improvement of the model that has been used
for decades. Section5.3 discusses an objective analysis technique, making use of
adaptive source power and a time trajectory technique. These two sections provide
the means for proper topology comparison, which is discussed in Sect. 5.4.

5.2 Rectifier Modeling

Schottky Barrier Diodes (SBD) are typically used as a building blocks for WPT
rectifiers as they exhibit, apart from a relative low voltage drop, a small junction
capacitance. A draw-back of the SBD is the relative large reverse leakage current [9].

The p-i-n diode (or PIN diode), shows a lower series resistance (around 0.6 €2) but
has a higher junction capacitance (around 1 pF), which makes this type less useful
for WPT rectification. The low series resistance becomes significant for efficiency
at higher input power levels (above 0 dBm) [10].

For decades, these SBDs have been used as mixers and video detectors [5]. These
applications are not significantly impacted by the reverse leakage current. This is
different for the WPT case where this leakage current corresponds to a loss of stored
energy, reducing the rectifier PCE. The PCE is a main design goal for WPT systems
[27, 30]. In this chapter a global optimization of the PCE will be investigated.

It will be shown that, under impedance matched conditions, a low saturation
current will lead to a high PCE. This is related to the fact that the reverse leakage
current is directly proportional to the diode saturation current.

This insight makes the modeling of the SBD reverse bias region important. In most
work, e.g. [9, 20], the SBD is modeled using the SPICE (Simulation Program with
Integrated Circuit Emphasis [15]) built-in p-n junction diode model, which appears
to be far from realistic for a significant range of biases. Figure5.1 provides more
insight.

Next to this, measurements reveal an inaccurate SBD current—temperature rela-
tionship in the SPICE-based diode models. Both findings resulted in a new SBD
macro model, discussed in Sect.5.2.2. Diode models used in Keysight ADS provide
additional parameters to model the nonidealities, which can not be filled in from the
diode data-sheet. They should be extracted from measurements.
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a generation-recombination current region, b diffusion current region, ¢ high-injection region,
d series resistance effect, e reverse leakage current due to generation-recombination and surface
effect. (after [24])

Both the junction diode and the Schottky barrier diode can be modeled using
an equivalent model as shown in Fig.5.2 [14, 31]. The model consists of a voltage
dependent current source, parallel to a junction and diffusion capacitance, the com-
bination being in series with a resistor R,. C; represents the charge storage in the
semiconductor junction. I; accounts for the impedance of the barrier layer itself and
is both V; and temperature dependent [4].

5.2.1 I-V Relationship

Different semiconductor physics theories exist to model the SBD current. The single
thermionic emission—diffusion theory by Crowell and Sze combines the isothermal
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Fig. 5.2 Schottky Barrier
Diode symbol and equivalent
diode model

thermionic emission theory by Bethe [25] and the isothermal diffusion theory by
Schottky [22], and describes the total current density as [24]:

Jo=Js ("™ — 1), with V; > —3V7, (5.1)

similar to the Shockley equation [23] for p-n junctions, with J; being the saturation
current density (A/m?), V; the diode junction voltage (V), n the emission coefficient,
Vr = kT /q the thermal voltage (V), g the elementary charge (1.60218 x 10~1° C),
k Boltzmann’s constant (1.38065 x 10723 J/K), and T the physical temperature (K).
In the reverse bias domain, the diode current density saturates at —J; for the ideal
SBD.

The saturation current density is described by

Jy = A% T?e 98/Vr (5.2)

with A* being the effective Richardson constant (A/m?/K?) and ¢p the Schottky
junction potential (V). A* is not dependent on temperature but on the typical semi-
conductor being used and the crystal orientation.

The SPICE p-n junction diode model makes use of a different equation to model
the reverse bias region [ 14], compared to the physical SBD relationship provided by
[24]. Both an equation defined device model and a macro model [6, 32], are compared.
The latter one—used in this work—uses two SPICE p-n junction diode models with
measurement-based parameter values and simulates ten times faster, with similar
accuracy. The former one is a user-defined equation-based nonlinear component
based on the physical SBD equations. In Keysight ADS, these components are named
Symbolically-Defined Devices (SDD).

5.2.1.1 1I-V Measurement

To validate the diode current—voltage (I-V) model, a measurement is carried out on
five Avago HSMS-2852 and five Skyworks SMS7621 diode pairs (for forward and
reverse biasing). Using multiple diodes, insight in component to component variation
is provided. The limited amount of 10 diodes for each type was chosen for practical
reasons. The manual selection of diodes, when using a temperature chamber, sets
the practical boundary for the number of diodes used. Figure5.3 shows the used
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Fig. 5.3 Test PCB with 5
Avago HSMS-2852 pairs,
used inside a climate test
cabinet to measure their I-V
characteristics. At a later
stage, the Skyworks
SMS7621 diodes where
added on the right side of the
board

test structure. For accurate current—voltage measurements, an Agilent (Keysight)
B1500A Semiconductor Device Analyzer is used together with a CTS climatic test
cabinet (series C) to control the environmental temperature. For each of the diodes,
both the forward and reverse DC I-V characteristic is measured by applying a voltage
between the anode and cathode and measuring the resulting diode current. This is
done at a temperature of —40, 0, 26.85, 40, and 80°C.

The measured SMS7621 reverse- and forward-bias currents are shown for 26.85 °C
in Figs.5.4 and 5.5.

5.2.2 Macro Model

The diode macro model consists of a reverse diode parallel to a forward diode,
see Fig.5.6. This model makes use of the SPICE p-n junction diode model, with
measurement-based parameter values. Compared to the single SPICE diode model,
this model has four extra reverse parameters for the series resistance Rj,, emission
coefficient n,, saturation current I, and temperature coefficient p;.. The reverse
diode zero-bias junction capacitance C o is set to zero as this capacitance is modeled
by the forward diode. All other parameters have the same values as in the forward
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Fig. 5.4 Skyworks SMS7621 reverse current measurement on 10 devices against reverse bias
voltage at 26.85 °C, together with mean response (dashed line)

diode model. The easy employment in different circuit simulators is an advantage of
this model, compared to the equation defined model.

5.2.2.1 Model Extraction

Different techniques can be applied to obtain a proper model, being a representation
of the real world within acceptable margins. In this work, the first Russell method
[21] (three-point I-V method) is used for the forward bias region model (Fig.5.7).

The obtained error between the modeled diode current /; model and the measured
diode current I; meas, is calculated using a Normalized Root Mean Square Error
(NRMSE). This function is defined as

12
Ej, =, Z'T“ (5.3)

with N being the number of data-points and |¢;| being the normalized error at the
i-th measured data-point. This error is defined as
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Fig. 5.6 Schematic of the (b)
diode macro model with

forward and reverse bias

elements: a macro model (a)

with forward diode D and D

reverse diode D,, b detailed j»
diode macro model o—2

D

g = Id,model - Id,meas . (54)

Id,meas

5.2.2.2 Reverse Bias Model
For the reverse bias model, the ideal p-n junction diode model does not fit the mea-

sured values. As mentioned before, a macro model is used in which the second
(reverse) diode serves the reverse bias region. The advantage of this model is the
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Fig. 5.7 Nominal (diode D3) Avago HSMS2852 forward I-V measurement at a temperature of
—40, 0, 40, and 80 °C together with the model

usage of a normal standard SPICE p-n junction diode model, only having a few odd
parameter values. Figure 5.6 shows the schematic of the reverse bias diode model.
The breakdown region is still modeled by the forward diode D. The reverse diode has
special values for the series resistance Ry, , the emission coefficient n,, the saturation
current /;,, and its temperature coefficient p;,. The reverse diode zero-bias junction
capacitance Cj is set to zero as this capacitance is modeled by the forward diode.
All other parameters have the same values as in the forward diode model.

The comparison between this model and the typical (D3) HSMS-2852 measure-
ment is shown in Figs.5.7 and 5.8. The model provides a better match compared
to the current ideal model implemented in the simulator Qucs. The reverse current
model NRSME for the nominal HSMS-2852 diode, equals E;, rey = 20.4 %.

An overview of the resulting HSMS-2852 and SMS7621 SPICE diode parameters
(including the new introduced reverse model parameters) is provided in Tables 5.1 and
5.2, together with the data-sheet values provided by the manufacturer. A comparison
between the different E;, values shows the improvement obtained by the macro
model.

fan.ye@stonybrook.edu



5 Wireless Power Transfer: Discrete Rectifier Modeling and Analysis

Reverse current (A)

1072

119

measured

Bl 0°C
103 vV 26°C
0 40°C
A4 80°C

@ -40°C

1077

1078

-

1072

Reverse voltage (V)

10°

Fig.5.8 Nominal (diode D3) Avago HSMS2852 reverse I-V measurement at a temperature of —40,
0, 26, 40, and 80 °C together with the macro model result

Table 5.1 HSMS-2852 SPICE p-n junction-based SBD macro model and data-sheet SPICE model

parameters
Parameter Minimal Nominal Maximal Data-sheet Unit
Ry 26.2 24.0 21.0 25 Q
n 1.130 1.141 1.141 1.06
I 4.96 5.57 6.55 3.00 LA
v’ 0.32 0.31 0.31 0.69 eV
Ry, 3.50 2.80 1.42 - k2
ny 31.1 30.2 30.0 -
I, 6.9 8.0 11.97 - WA
Dir 415 368 320 -
Ej, forw 4.28 4.35 5.30 77.44% %
Ej, rev 19.99 20.37 19.73 143.8% %
Diode D10 D3 D5

2Compared with nominal diode D3
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Table 5.2 SMS7621 SPICE p-n junction-based SBD macro model and data-sheet SPICE model

H.W. Pflug and H.J. Visser

parameters.
Parameter Minimal Nominal Maximal Data-sheet Unit
R 26 17 40 12 Q
n 1.055 1.068 1.081 1.05
I 51.6 55.0 121 40 nA
Y’ 0.465 0.460 0.404 0.69 eV
Ry, 3.6 42 10 - kQ
ny 48 47 48 -
Iy, 42 434 200 - nA
Dir 860 862 730 -
Eq, forw 5.26 3.88 7.16 72.48% %
Ej, rev 19.36 17.52 23.34 126.3% %
Diode D5 D6 D2

4Compared with nominal diode D6

5.2.3 Integrated Equivalent

When integrating rectifier circuits, typically diode-connected Metal-Oxide-
Semiconductor (MOS) Field-Effect Transistors (FET) are used. These devices also
have a reverse bias leakage current, which is especially significant for low-threshold
voltage and zero-threshold voltage devices. For the latter category, the leakage
current easily reaches several ©A for reverse voltages below —0.1 V [33].

5.2.4 SPICE Model

The equations and variables used for the diode model in SPICE are fixed and not
easily modified. The accuracy resulting from a SPICE simulation of a diode therefore
depends on the precise extraction of its model parameters. Looking at the difference
between real diode behavior and the SPICE diode model shows:

e The saturation current /; is constant and not a function of the reverse bias voltage,
up to the breakdown voltage.

e The series resistance R; is constant and not a function of voltage or current.
The resistance of the bulk neutral semiconductor regions of a real diode actually
increases for high-level injection.

e The R has no temperature coefficient. The temperature coefficient of the bulk
neutral semiconductor regions of a real diode is positive, producing a positive
voltage temperature coefficient at high-level injection.

e The emission coefficient n is constant and cannot model the change in slope of the
I-V characteristics between the extreme low-level and low-level injection regions.

fan.ye@stonybrook.edu



5 Wireless Power Transfer: Discrete Rectifier Modeling and Analysis

Table 5.3 Diode SPICE parameters
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Symbol Name Parameter Unit Default

I IS Saturation current A 1x 10714

Ry RS Parasitic resistance Q 0

n N Emission coefficient - 1

T4 TT Transit time S 0

Cjo CJO Zero-bias junction F 0
capacitance

b0 A\l Junction potential A" 1

m M Junction grading - 0.5
coefficient®

¥ EG Energy gapb eV 1.11

Di XTI Is temperature exponent® - 3.0

k¢ KF Flicker noise coefficient - 0

ars AF Flicker noise exponent - 1

FC FC Forward bias depletion - 0.5
capacitance coefficient

BV BV Breakdown voltage \% [e9)

IBV IBV Current at breakdown A 1x1073
voltage

To TNOM Parameter specification °C 27
temperature

4Linearly graded junction: 0.33, abrupt junction: 0.5
bSi: 1.11 eV, Ge: 0.67 eV, Schottky: 0.69 eV(Al-Si), 0.85 eV(Al-GaAs), 0.3 eV(Al-InP)
¢p-n junction: 3.0, Schottky: 2.0

e The reverse breakdown characteristics of a real diode tend to be soft; the reverse
leakage current gradually increases toward the breakdown current as the reverse
bias voltage increases. The SPICE model has a hard breakdown characteristic with
parameter IS being constant up to the breakdown point.

5.2.4.1 Diode SPICE Parameters

The SPICE p-n junction diode model parameters are listed in Table5.3. These are
typically specified by the manufacturer on a diode data-sheet.

Spice circuits have two global temperature parameters: TEMP and TNOM, which
can both be altered. They can also be swept in DC analysis by referring to them as
temp or tnom. TEMP and TNOM are given in degrees Celsius. They are internally
stored in Kelvin. TEMP is the circuit temperature and TNOM is the temperature at
which the given model parameters are valid. If TEMP differs from TNOM, model
parameters are internally recalculated to reflect the temperature dependence of the
simulated devices.
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5.24.2 Commercial Diode Examples

An overview of some commercial available Schottky barrier diodes is provided in
Table 5.4. In the last years, the Avago HSMS-2852 type has been used often in WPT
rectifiers. In this work, the Skyworks SMS7621 is identified as a better choice for
its lower saturation current and junction capacitance. The higher series resistance
(compared to e.g. the Avago HSMS-286x family) does not play a role at input power
levels below 0 dBm.

Manufacturers sell the diodes typically packaged. As these packages introduce
extra parasitic elements (e.g., bondwires for connecting the diode to the package pins
introduce inductance), a model can be made for each type of package. Suppliers often
provide these models, normally based on lumped components for easy insertion in
(time domain) simulations.

Different types of packages exist. Consumer and commercial applications require
low cost packages, which are easy to assemble. The JEDEC standard surface mount
package SOT-23 is a plastic package with tin/lead plated leads, suited for various
soldering processes and is a good low cost example. A disadvantage is the inherently
long bondwire (Lp = 1.0 nH) inside the package and the bent leads (L; = 0.5 nH
each). Figure 5.9 shows the SOT-23 package drawing and Fig.5.10 gives an idea of
a single diode SOT-23 packaging, showing the parasitic inductance elements [3].

Figure 5.11 shows the Avago supplied model for the SOT23 plastic package [2],
which model is valid up to 3 GHz and can be used both for the double diode series
configuration package as for the single diode package. The component values are
listed in Table 5.5. For the Skyworks SOT-23 diode package, the same model is used.

Schottky barrier diodes are made as n-type and p-type silicon versions, resulting
in different characteristics and are intended for different applications. Other design
considerations are also made: for example the n-type Avago HSMS-282x family of
diodes are designed for low variation in characteristics using a minimal amount of
process steps. The HSMS-285x family is of the p-type silicon, showing significant
more series resistance R; and two orders of magnitude more saturation current I
compared to the n-type HSMS-282x and also the HSMS-286x families.

SOT-23 - 29max-

01 19—
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Fig. 5.9 Plastic SOT-23 package outline
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Table 5.5 Avago SOT23 package model component values, corresponding to the model shown in
Fig.5.11

Element Description Value Unit

Ly Leadframe inductance | 0.50 nH

CL Leadframe 0 pF
capacitance

Cp Package capacitance | 0.080 pF

Cc Coupling capacitance | 0.060 pF

Lp Bondwire inductance | 1.0 nH

5.3 Circuit Analysis Techniques

For the design and optimization of electrical circuits, its key to make use of the right
models. All available methods will use circuit models, in which each component can
be represented by one or more mathematical equations. These describe, with a certain
accuracy, the electrical behavior of the circuit element. A resistor is modeled with a
linear equation using Ohm’s law Vg = I R. A capacitor is described by a differential
equation I¢ = C‘fj—‘;. A diode can be modeled using several equations, as shown in
the previous section. The main one being the Shockley ideal diode equation (5.1).
When combining these circuit elements, a system of Ordinary Differential Equa-
tions (ODEs) has to be solved, to obtain the electrical behavior. For that, the transient
analysis tool SPICE is commonly used. This provides a time-domain large-signal
solution of nonlinear differential algebraic equations. In this work, usage of SPICE
is made, resulting in discrete-time voltage and current values. These results will be
referred to as ‘simulation’ results. Figure 5.12 shows an overview of the different

DIODE

BONDWIRE\ m /

L =05nH
%, 7.

STANDARD CONFIGURATION HSMP-3820,-3821

Fig. 5.10 An Avago SOT-23 package construction showing the parasitic inductances of bondwire
and bent leads on the /left side and a corresponding first order model on the right side [3]
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1
Ly
HSMS-2862 HSMS-2852
SMS7621 005LF SMS7621 006LF
E E =

D, ﬂDZ D, ADZ
=] =] =] B =
T 2 T 2 l D, T
LBZ 3
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Fig. 5.11 Second order model of the Avago SOT-23 plastic diode package, valid up to 3 GHz, and
also used for the Skyworks SMS7621 in this work. A single diode version is also available. In that
case only diode D is mounted. The HSMS-2852 and HSMS-2862 have a different configuration
as shown in the figure left side. The equivalent circuit model represents the HSMS-2852 version.
In this work, the HSMS-2852 and SMS7621-006LF are used

tools used in this work for circuit calculations. Other software tools used next to
SPICE, will be briefly discussed below.

5.3.1 Software Tools

5.3.1.1 Python

The high-level programming language Python [26] is used to control the circuit
calculations performed using SPICE, with Qucs (Quite universal circuit simulator)
being the interfacing tool [18]. The SPICE results are post-processed using Python
as well. This post-processing results in, e.g., reflection coefficient and impedance
information.

Fig. 5.12 Overview of the

different open-source tools NumPy <> Python > SciPy
used in this work. NumPy is

a matrix and array extension ¢ ¢

to Python, SciPy is a .
scientific computing Qucs matplotlib
extension to Python and ¢

matplotlib is a plotting

library for Python SPICE
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5.3.1.2 Qucs

To interface with SPICE, the open-source electronics circuit simulator Qucs [18]
is chosen. The simulator backend, i.e., the text-mode of Qucs, is used mainly. The
operation of the simulation back-end is controlled via a text file (called netlist),
which describes the circuit to be simulated and the kind of simulation to perform. By
using Python to control this process, additional flexibility is introduced. Algorithms
creating, e.g., simulation-loops to adapt signal source power level, can easily be
implemented as will be shown later.

5.3.2 Time Trajectory Technique

A technique is introduced to analyze the time-variant behavior of nonlinear circuit
elements, like diodes. These components possess a time-varying impedance, which
has a significant impact on the behavior, especially at higher signal power levels.

This dynamic behavior is also a reason for not using a harmonic balance simula-
tion technique as that is based on a steady-state assumption. A fransient simulator is
needed for analyzing dynamic signals. In this work we only take constant envelope
signals into account. The time trajectory technique is validated for a steady-state
situation with a Keysight ADS harmonic balance simulation of a voltage doubler.

Figure5.13 provides a result of the time trajectory technique, showing a peak
detector circuit input reflection coefficient, both in a time average and in a
continuous time representation. When measured with a standard Vector Network
Anayzer (VNA), this circuit would show a very good input reflection coefficient of
—30.7 dB, corresponding to the I, point in the figure. In reality, the circuit constantly
possesses a mismatch due to its nonlinear nature. This mismatch is made visible by
the time-varying y;,(¢) curve and reveals that the input reflection coefficient is only
—10.1 dB with a mismatch loss of 0.47 dB. This means that 10 % of the energy is
not entering the circuit, although one would expect a much higher percentage from
the (single frequency) VNA measurement result.

5.3.3 Adaptive Input Power Algorithm

In WPT, we want to transfer available energy with the highest possible efficiency
from one point to another point. Therefore, on the receiving side, a maximum energy
transfer between the input (receiving antenna) and the following circuitry needs to
be accomplished. A typical rectifier circuit used has an input impedance far from
50 €2, the value used for a standard receiving antenna. For a maximum energy trans-
fer, an impedance matching network is typically inserted between the antenna and
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50j
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— Tin() e®® Ij,

Fig. 5.13 Smith-chart showing both the time-average input reflection coefficient I, and the time-
varying version y;, (t) of a peak detector using a bare Avago HSMS-2850 (i.e. without package) at
915 MHz, +10 dBm input power and matched to 50 €2.

the rectifier. The optimal matching circuit varies with the circuit input impedance,
which varies with circuit input power, operating frequency, possible bias current, and
temperature.

As the input reflection coefficient at the rectifier input I}, is dependent on the input
power level P, its determination from diode simulations is an iterative process.
An adaptive input power algorithm is implemented, obtaining a quasi conjugate
impedance matched circuit simulation with a specified circuit input power level (see
Algorithm 1 below). This enables an objective circuit comparison, as the matching
circuit is taken out of the equation. An example of its usage is shown in Fig.5.14.
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Algorithm 1: Adaptive Input Power (variables in dB or dBm)

Data: P, - specified circuit input power level
Result: P, - adapted source power level to reach P;;¢ at circuit input
with M.[n] mismatch loss

1 Pg[0] < Pino; /* Pg initiation */
2 M.[0] < 0dB; /* M, initiation */
3 toly, < 0.001 dB; /* M, tolerance */
4 n < 30; /* max iterations */
5 fori < 1tondo

6 (V, D(t) < sim-circuit(Pg[i — 1]); /* sim circuit */
7 (G, M.[I]) < (V, D(); /* calc I', M. */
8 maxam, < 16/2i; /* max M, step-size */
9 if |[M.[i] — M.[i — 1]] > maxay, then

10 if M [i]— M.[i — 1] > O then

11 | Mc[i] < Mc[i — 114 maxap,; /* limit M.+ step */
12 else

13 | Mc[i] < Mc[i — 1] — maxap,; /* limit M.— step */
14 end if

15 end if

16 if |M.[i] — M.[i — 1]| < toly, then

17 M.[n] < M.[i]; /* final M, */
18 Pg[n] < Pgli —1]; /* final Py */
19 break out of for loop;
20 end if

21 Pgli] <= Pino — Mc[i]; /* adapt P, */
22 end for

B A R
,4,\ AN ]
N A

Conjugat emismatch loss Mc (dB)

—gl \ /
~10- \/
é
_12L | | | | J
0 2 4 6 8 10

Iteration

Fig. 5.14 An example of the source power adaptation algorithm, showing simulated conjugate
mismatch loss M, against iteration number. The source power level is scaled accordingly to obtain
a quasi complex conjugate matched situation. In this case, P;;, = —10 dBm was used with a single
diode attached. Nine iterations where required to obtain a stable value (using toly;, = 0.001 dB),
after which the result is copied to the last (n = 30) iteration
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The algorithm starts with a specified circuit input power level P;,o, an initial
source power level P,[0], an initial mismatch loss M_[0], and the required tolerance
or accuracy on M., toly,. Also the maximum number of iterations » is defined.
For each iteration, the circuit is simulated with the updated source power level. The
resulting voltage and current time-domain values are translated into the time-average
circuit input reflection coefficient I3, and the time-average mismatch loss M.. The
current M, value is compared with the previous iteration value and the maximum
step-size is limited by max 4, . If the step-size is within the specified tolerance toly,
the iteration process is stopped and the resulting values are available. Otherwise the
source power level is updated with the latest M, value and a next iteration is done.

5.3.4 Steady-State Algorithm

The simulation work in this chapter is based on time-domain behavior, using Qucs’
transient simulator. When steady-state results are required, it is important to ensure
that the circuit has reached a stable state. Circuits containing capacitance and induc-
tance models always require a certain time before reaching a steady-state situation.
This duration is typically dependent on elements like the capacitance value, available
signal levels, resistance values, etc.

The steady-state algorithm is used to ensure that the circuit state is close enough
to a steady-state situation. This is implemented by varying the starting point in time
T};. The time-domain simulation produces an output voltage over a certain number of
cycles, determined by the time duration 7. The difference in the mean load voltage of
the first and last cycle in this time window is AV, . This is an indication of steady-state
level. If the value is not below a specified maximum tolerance max vy, , the starting
point of the analysis is doubled in time. The algorithm is shown in Algorithm 2
below.

Algorithm 2: Steady-state
Data: max vy, - max load voltage variation, 7, - time start, T, - time duration
Result: Ty, - steady-state time start
1 while True do
2 | T < Ty + Ty /* stop time */
3 | AVp < sim-circuit(Ty - - - T ); /* VL variation */
4 if AV, < maxay, then
5 break out of while loop;
6
7
8

end if
Ty < 2T /* increase time start */
end while

As an example of the steady-state algorithm, Table 5.6 shows the result of simu-
lations done using a single diode peak detector circuit.
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Table 5.6 Steady-state algorithm example, showing start time 7y, V;, variation AV, and conver-
sion efficiency 7., using a peak detector circuit at P;;, = —10 dBm and f. = 915 MHz

Ts: (ns) AVL (V) 1 (%)
27.3 3.00 x 1072 19.725
54.6 9.75 x 1073 47.912
109.3 1.07 x 1073 69.268
218.6 1.30 x 1079 72.419
4372 1.91 x 107° 72.461
874.3 9.54 x 1077 72.460
1748.6 1.43 x 107° 72.463

5.4 Comparing Topologies

The method used to compare different circuit topologies, makes use of the adaptive
input power algorithm. Optimizing the load resistance at the output of the rectifier
circuit, for each input power level using the time trajectory technique, ensures that
proper efficiency values are calculated.

The Greinacher dual diode voltage doubler rectifying circuit topology [7] is used
often in published work, for generating a higher output voltage compared to the
single diode topology; both shown in Fig. 5.15. Using the obtained diode models and
analysis techniques established in this work, the voltage doubler (in this work named
C04) is compared to a single diode rectifier topology (named C02). Figure 5.16 shows
the PCE versus input power results.

The comparison shows two things: first, a clear advantage of using the single
diode CO2 topology over the dual diode C04 topology. This is in line with what is
previously reported in [16], where it is recommended to use a single stage rectifying
circuit for low power levels. Second, the use of a Skyworks SMS7621 low I diode
shows a better efficiency compared to the Avago HSMS-2852 diode. Combining

Fig. 5.15 Different rectifier

topologies: Single diode

peak detector circuit (C02),

including source and load,

and Greinacher voltage V,, f
doubler (C04).

Vg/fc
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Fig. 5.16 Comparison between the single diode C02 topology (square) and the twin diode voltage
doubler Greinacher C04 topology (circle). Shown is the maximum available conversion efficiency
ne versus Py, both for the Avago HSMS-2852 (dash) and the Skyworks SMS7621 (solid) diodes,
including the SOT23 package and using the adaptive input power algorithm, with a constant envelope
input signal at 915 MHz and 26.85°C. Also shown is measured data from literature: Kanaya2013,
Kuhn2015, Pflug2015, and Visser2015, [12, 13, 17, 29] with even a four diode (triangle up) con-
figuration. The circuit in [13] uses Metelics MSS20-141 diodes (long dash). The circuits [13, 17]
are 50 2 matched at their input side, therefore showing overall efficiency 7, versus Py

the two elements results in an efficiency increase of 18-25 % for the SMS7621 C02
circuit over the C04 topology with the HSMS-2852 diodes, being equivalent to a
increase in available power of 20-180 %. The corresponding output voltages show a
factor 1.6-3.9 improvement (see Fig.5.17a). The SMS7621 doubler circuit provides
about 50 % higher output voltage for input power levels above —25 dBm, but shows
less maximum available efficiency compared to the single diode version. Also shown
in the figure is measured data from literature with conjugate matched topologies [12,
29] and 50 €2 matched circuits [13, 17]. The Metelics MSS20-141 diode in [13] is
a 3.5 LA saturation current type, similar to the HSMS-2852. The predicted HSMS-
2852 C04 PCE matches the conjugate matched measurement [29] very well. When
using the data-sheet SPICE parameters with a standard p-n junction diode model, the
PCE is predicted about 15 % too high, mainly due to inaccurate reverse bias region
modeling.
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Fig. 5.17 Comparison between the single diode C02 topology (solid) and the twin diode voltage
doubler Greinacher C04 topology (dashed). Shown is the average output voltage (a) and the used
load resistance R; (b), both for the Avago HSMS-2852 (triangle/diamond) and the Skyworks
SMS7621 (square/circle) diodes, including the SOT23 package and using the adaptive input power
algorithm, with a constant envelope input signal at 915MHz and 26.85°C

In Fig.5.17b the different optimal (for efficiency) load resistances are shown

for the different topologies. The SMS7621 diode results in a roughly one order of
magnitude larger resistance value compared to the HSMS-2852 diode.
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5.4.1 Definition of Efficiency

The rectifier RF to dc power conversion-efficiency (PCE) can be defined as

P dc
PZ‘IC[

Ne= 75— (5.5)

with P, being the RF power entering the circuit. The instantaneous power enter-
ing the circuit, can be calculated using the instantaneous voltage v;,(#) and current
ijn(t) as

Pin () = v (t) - i12(@). (5.6)

The active power P, is the power entering the circuit during one period 7 of the
input signal:

1 T
Pyr = _/ Pin (t)dt (57)
T Jo

The dc power consumed from the output of the circuit is calculated from the
average dc output voltage V; as Pyg. = VL2 /RL. A possible mismatch between source
and circuit is not taken into account in this efficiency. Another efficiency can be
defined, named the overall-efficiency, as

Pdc

Y, = — 5.8
n P, (5.8)

with P, the available source power. From circuit theory [19, 28] the maximum
available power from the source can be defined as

V. 2
= Vel (5.9)
8Re(Z,)
with V, being the source voltage.! This efficiency takes into account the mismatch
between source and circuit if present and therefore we can state

Mo < M. (5.10)

With the adaptive source power analysis, the circuit efficiency 7. is used. In the
input impedance matched case, the overall efficiency 1, makes sense to be used. As
an example, for the comparison of the ‘C04 HSMS-2852’ curve in Fig. 5.16 with the
impedance matched- and measured case curve [17], the 7n,/n, ratio varies between
the value 0.84 at —15 dBm and 0.89 at —5 dBm, going down to 0.60 at +10 dBm.
This shows that the matching network accounts for 11 % extra loss on 7., being

In [19, 28], rms values are used for voltages and currents. In this work, peak values are used.
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optimal around an input power level of —5 dBm. At lower and higher input power
levels, the lower 7, /1. values are a result of extra loss due to impedance mismatch.

Having an ideally matched rectifier circuit (perfect impedance match using a
lossless matching network), the efficiency 7, is determined by the diode series resis-
tance Ry, the diode junction capacitance C; and the diode’s characteristics like break-
down voltage BV and its junction potential ¢ [27].

The practical impedance matched rectifier circuit shows an overall efficiency 1,
with extra loss due to the nonideal matching circuit and impedance mismatch. This
loss can be reduced by using a complex conjugate impedance matched antenna,
which does not require the addition of a matching network.

Acknowledgements The authors would like to thank Shady Keyrouz of the Eindhoven University
of Technology for his contribution in the validation of the time trajectory technique.
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Chapter 6
Unconventional Waveform Design
for Wireless Power Transfer

Alirio Boaventura, Nuno Borges Carvalho and Apostolos Georgiadis

Abstract Continuous wave RF signals have been traditionally used in wireless
power transmission systems. This chapter considers RF signals with a time vary-
ing envelope and specifically multi-sine signals, and investigates the effect on the
obtained RF-dc conversion efficiency of wireless power transmission. The time-
varying envelope characteristic of such signals leads to a peak-to-average-power
ratio (PAPR) greater than 1 (0 dB) and can have a profound effect in the RF-dc
conversion efficiency performance. The chapter begins with a presentation of typical
RF-dc converter circuits and modeling of the nonlinear rectifier circuit used to con-
vert RF power in dc electrical power. A description of multi-sine signals and their
characteristics is then provided, followed by a theoretical analysis of the rectifica-
tion process of such signals. Finally, a circuit rectifier prototype is presented and
measurements of the RF-dc conversion efficiency are shown demonstrating the fact
that it is possible under certain load conditions to obtain an improved efficiency per-
formance over continuous wave signals of the same average power, which increases
with higher PAPR.

6.1 Introduction

Traditionally, WPT has been carried out using constant envelope continuous wave
(CW) signals. However, it has been shown recently that high peak-to-average-
power (PAPR) waveforms can improve the efficiency of existing rectifying circuits,
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especially atlow average power levels. This can potentially increase the reading range
of passive-backscatter systems. Curiously, the first electromagnetic signals success-
fully generated, transmitted and detected by Heinrich Hertz were damped waveforms
with nonconstant envelope [11], which were utilized for many years in wireless teleg-
raphy and also in some wireless power transfer (WPT) experiments conducted by
Tesla [17]. However, due to large spectrum occupancy, dumped waves were banned
later and were replaced with CW signals (first generated by Ernst Alexanderson in
1902 [12]) which have been adopted for power transfer since Brown’s microwave
power transmission (MPT) experiments in the 1960s. The theoretical analysis of CW
radio path shows that, unlike conventional wireless communication systems, which
are mainly limited by noise and receiver sensitivity, passive-backscatter systems
are primarily limited by the downlink power, i.e., in radio frequency identification
(RFID) systems the reader-to-transponder energy transfer. This was theoretically
predicted in [13, 16], and confirmed by practical experiments in [9], where a far
RFID listener device was used to capture the signal backscattered from a tag while
being interrogated by a closer principal RFID reader. In that experiment, the RFID
listener was able to receive and decode the uplink/backscattered signal 35 m away
from the tag, a distance well beyond the maximum attainable range of current RFID
systems (up to 10 m). This shows that the more stringent limitation on range is in fact
imposed by downlink. A closer look reveals that the downlink limitation lies on the
reduced RF—dc conversion efficiency of existing energy harvesting circuits at low
power level regime. Because Schottky diodes and CMOS devices commonly used
in rectifier circuits exhibit a nonzero turn-on voltage, a certain amount of energy
is needed to overcome the electrical barrier of the device and thereby the RF-dc
conversion efficiency at low input power levels is degraded. In order to maximize
the RF—dc conversion efficiency, circuit level optimization is conventionally carried
out. Alternatively, the RF—dc conversion efficiency can be boosted by selecting prop-
erly formatted waveforms, such as high PAPR in-phase multi-sine (MS) signals, that
are capable of efficiently surpassing the turn-on voltage of rectifying devices at low
average power levels. A survey on the use non-conventional waveforms for WPT,
including chaotic signals, intermittent CW, ultra-wideband (UWB) signals, multi-
carrier signals, harmonic signals, modulated signals and white noise is presented
in [3].

6.2 RF-dc Power Conversion Basics

Figure 6.1 depicts the block diagram of an RF-dc converter system, composed of
an RF power source, a matching circuit to allow maximum power transference, a
nonlinear rectifying device, that is the main component of the circuit, followed by
a low-pass filter and a dc load. The nonlinear device transforms the input AC sig-
nal at frequency f0 into a dc component plus fundamental and harmonic components:
Your = NL[x;,] = Y (dc) + Y (fp) + Y (2fo) + Y (3fo) + - - - + Y(nfy). Inorder to select
only the dc component, a low-pass filter is used to remove the ac components of the
rectified signal.
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Fig. 6.1 Basic blocks of an RF-dc conversion circuit

6.3 Typical RF-dc Converter Topologies

Figure 6.2 depicts the most popular harvester topologies, namely the shunt diode rec-
tifier (Fig. 6.2a), the series diode rectifier (Fig. 6.2b), and the N-stage Dickson voltage
multiplier or charge pump (Fig. 6.2d) [10]. Charge pumps are typically employed in
passive RFID tags and single diode rectifiers, especially the microwave version of
the shunt rectifier, are commonly used for EM ambient energy harvesting and MPT
applications. The voltage doubler or single-stage charge pump (dashed circuit in
Fig.6.2d), which is the cell unit of a Dickson charge pump, is composed of a pump-
ing capacitor at the input, a shunt diode, a series diode and a storage capacitor at
the output. It operates as follows: when the capacitors are uncharged and the input
signal with peak amplitude V), is in the negative cycle, the series diode is cut and the
pumping capacitor is charged with a voltage —Vp through the shunt diode; when

(a) (b)
Vrr Vrr Ve
Prr P 0 P
R ™~ be
I 1 l
C C
| C I R
1%
(c) (d) \ o P
Microstrip Butterfly stub memm T ! =
} CpN
I
Vi S Vbe 1
Pre M4 microstrip line Poc Il B )

RF
A4 CH - RL
V p2 =
¢ e £ | e
! Cs2
D ¢ ! —?p1
? Cs1 T

Voltage doubler or
single-stage charge pump

Fig.6.2 Typical energy harvesting circuit topologies. a Shunt diode rectifier. b Series diode rectifier.
¢ Shunt diode rectifier using microstrip 4/4 stubs. d N-stage Dickson voltage multiplier
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the input waveform swings to its positive cycle, the shunt diode is cut, the series
diode conducts, and the peak amplitude of the input signal, +V,,, is summed to the
pre-charged voltage, yielding a voltage of 2V), in the output storage capacitor. The
charge pump has a similar operation, being the dc output of each voltage doubler
stage used as a reference level for the next stage, such that the maximum voltage at
the output of the N-th stage is given by (2N — 1)(V,, — 2Vp), where N is the number
of stages, V p is the peak amplitude of the AC signal and VD is the voltage drop in the
diodes. Typical efficiency curves of different RF—dc converter circuits are presented
in Fig.6.3, from which two main conclusions can be drawn. First, the efficiency
depends on the selected circuit topology, and the lower the number of devices, the
higher the efficiency. This is explained because of the need for a minimum amount
of input power to switch on the rectifying devices and also due to the increase in par-
asitic losses as the number of devices increases. Nevertheless, the higher the number
of stages, the higher the collected dc voltage. For this reason, charge pumps are used
in RFID tags to boost the output dc to a level compliant with tag electronics. Second,
the efficiency depends on the available power at the input of the circuit: for low power
levels the efficiency is low because the rectifying device is not completely switched
on. As the input power increases the efficiency increases and reaches a maximum
value right before the input amplitude reaches the diode breakdown voltage. After
this point, diode reverse current starts to be significant and the efficiency starts to
drop. Losses due to higher order harmonics also increase with the increase in the
input power level.

6.4 Rectifying Device Characterization and Modeling

The Schottky diode is the key component of many rectifying circuits. Its circuit
model (Fig. 6.4) comprehends a nonlinear junction current source i;(v;), shunted by
anonlinear junction capacitance C;(v;) and a series parasitic resistance Rs. Packaged
diodes also include a parasitic package capacitance (C,) and inductance (L,).
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Fig. 6.4 Physical model of a Schottky diode

The nonlinear forward and reverse breakdown I-V characteristics (/; and I,7) of
the junction barrier can be described respectively by (6.1) [14] and (6.2) [1], and the
total diode current is given by (6.3).

W Y Vahsly
I = L — 1) = L(em —1) =I(e ™ —1) ©.1)
VitVer Va—Rsly+Vir
Iy = Ipye " = —Igye M (6.2)
Ip =1 + I, (6.3)

where I is the diode reverse saturation current, k = 1.3806488 x 10~2* m? kg s—2
K~!is the Boltzmann constant, V, = kT'/q is the thermal voltage (26 mV @ room
temperature), 7 is the junction temperature in Kelvin (room temperature = 298 K),
g = 1.60217657 x 10712 Cb is the electron charge, # is the diode ideality factor,
used to model imperfections in the junction, V; is the voltage across the junction
barrier, which is equal to an external voltage applied to the diode, Vp, minus the
voltage drop in the parasitic series resistor Rg, Vj; is the built-in junction poten-
tial, Vj, is the reverse breakdown voltage and Iy is the breakdown saturation cur-
rent. Figure 6.5 shows the typical [-V characteristic curve described by Eqgs. (6.1)—
(6.3). According to (6.1), at low forward (positive) current, the voltage drop across
the parasitic series resistance is insignificant and the diode behavior is dominated by
the nonlinear resistance of the Schottky barrier. At very high positive bias levels, the
ohmic resistance Ry dominates, and the [-V curve assumes a linear relationship. For
negative bias levels above the breakdown voltage, the exponential terms in (6.1) and
(6.2) are negligible and the total diode current (6.3) approximates a constant value
equal to —Is. Below the breakdown voltage, Eq. (6.2) governs the diode behavior.
Depending on the input power level, the zero-bias Schottky detector operates in dif-
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ferent regimes as illustrated in Fig.6.6: at very low power level (typically bellow
—20dBm, 20mV), the diode operates in the square-law region where the it pro-
duces an average dc output proportional to the average input power [19]. Above 0
dBm (>300mV), the diode enters into forward conduction in each positive cycle of
the carrier, and the peak RF voltage is held by the output smoothing capacitor (see
Fig.6.7a). In this regime, known as linear, the rectifier behaves as a peak or envelope
detector, and the output dc is proportional to the input peak amplitude minus the
voltage drop across the diode. The region between —20 and 0dBm is said to be a
transition region. At very high input power levels, the dc output compresses due to
the breakdown effect (described next).

6.5 CW Envelope Detection

The rectification of a single RF carrier in an envelope detector (linear regime) is
illustrated in Fig.6.6: in the positive cycle of the input signal v;(¢), whenever the
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Fig. 6.7 a Illustration of single-carrier rectification in a series diode detector. b Breakdown effect

total signal across the diode vp(¢) (input signal minus the generated dc output) is
larger than the diode turn-on voltage (vp(f) > V), the output capacitor is charged
through the diode and the peak RF voltage (minus the drop in the diode) is held by the
output smoothing capacitor. In the negative cycles of the input signal (vp(¢) < Vi),
the charge stored in the output capacitor bleeds thorough the load resistance. The
low-pass filter, formed of the output capacitor and load resistance, ideally filters out
all the RF components generated in the rectification process, allowing only the dc
component to reach the load.

fan.ye@stonybrook.edu



144 A. Boaventura et al.

6.5.1 Self-biasing and Breakdown Effects

Although the rectifying devices used in WPT applications are not intentionally biased
(since a local dc source is not available in battery-less applications), diode rectifiers
present a self-biasing mechanism via the dc voltage collected from the RF signal.
Initially, the output capacitor is uncharged, the diode is zero-biased and the total
signal Vp () applied to the diode is solely due to the input signal v;(t). When the
input signal satisfies the turn-on condition, the output capacitor starts charging and
the total voltage applied to the diode becomes equal to vp(t) = v;(t) + Vieyr—piass
where Vr_piqs is the self-bias voltage, which is given by the mean value of the
signal across the diode (6.4):

2

1
Vielf—bias =< up(t) >= o (ui = Vpe)dep = —Vpe (6.4)
0

where the operator <> denotes the average over time, and V¢ is the output dc voltage
produced by the rectifier. Note that the diode is biased with a voltage symmetrical to
its own generated dc.

If the turn-on condition maintains (v;(f) + Vieir—pias > Vii) and the input signal
continue to increase, then the dc output and thereby the self-bias will continue to
increase (Fig.6.7). Once the amplitude of the signal across the diode reaches the
diode threshold voltage V},, a significant amount of reverse current will start to flow
through the diode in the negative cycles of the input signal, which contributes to
decrease the average current across the diode and to degrade the RF—dc efficiency as
the input signal increases (see Fig. 6.7). From this point on, regardless of any increase
in the input signal, the generated dc voltage will be fixed to a maximum value of
approximately Vj,. /2. Therefore, the maximum dc power produced by a single diode
rectifier is limited by (6.5).

V2
Ppc_max = iR, (6.5)

6.6 High PAPR Signal Rectification

High PAPR waveforms are able to enhance the RF—dc conversion efficiency of energy
harvesting circuits, especially at low input power level. This is due to their greater
ability to overcome the built-in potential of the rectifying devices when compared
to constant envelope CWs. In order to evaluate the impact of the high PAPR feature
in an envelope detector circuit, an analytical-numerical model [based on the diode
equations (6.1)—(6.3)] is derived in [2]. The model uses a pulsed signal with a variable
amplitude and duty-cycle to mimic a general high PAPR signal. Given the input
signal amplitude and duty-cycle (which determine the signal’s PAPR) and the diode
parameters, the model was used to predict the output dc voltage, RF—dc conversion
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efficiency and efficiency gain, as functions of input average power and PAPR. The
following general conclusions concerning high PAPR signals were drawn from the
preliminary model results in [2]:

(1) At low power levels, as the PAPR increases, the RF—dc conversion efficiency
increases, which is attributed to the greater ability to overcome the built-in poten-
tial of the diode.

(2) For higher power levels, however, the increase in PAPR degrades the efficiency.
This effect is due to an increased voltage drop across the diode series resistance
and consequent resistive loss.

(3) Moreover, as the PAPR increases, the breakdown is reached earlier and the
maximum efficiency is significantly decreased. In the next experiments, the high
PAPR feature is achieved by constructively summing several sinusoidal carriers
to form a time-domain waveform with high peaks and low average power level.
The rectification of such MS signal is discussed in the next section. Although the
model presented in [2] considers a general high PAPR signal, the conclusions
drawn from that model are also valid for high PAPR MS signals.

6.7 Using Multi-sines for Wireless Power Transfer

6.7.1 MS Signal Definition

A MS signal results from the sum of several sine waves each with a given amplitude,
phase and frequency. In order to create a high PAPR signal, the sine waves must be
constructively combined in phase. In this case, the higher the number of subcarriers,
the higher the PAPR and the higher the signal bandwidth. A MS signal can be
expressed in the time-domain as

N
Sys(t) = Z Vnej[(w/n[n+(n_l)Aw)t+¢n] (6.6)

n=1

where V,,, wyin + (n — 1) Aw, and phi, are respectively the amplitude, frequency and
phase of the individual subcarriers, w,,;, is the lowest frequency component, N is the
number of subcarriers, and 4w is the frequency spacing between them. The total sig-
nal bandwidth, the maximum peak amplitude (V,carmax ), the peak and average power,
and the maximum PAPR of the MS signal are affected by the number of subcarriers,
their amplitudes, phases and frequency spacing, and are given respectively by:

B, =N —1)4w

VpeakMAX =NV,
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1

Ppeak = —N?V?
peak RL n
Py = : NV?
AV = R,
Ppeak
PAPR = P = 2N = PAPR(dB) = 10log;,(2N) (6.7)
AV

It may be convenient to design the MS with the same average power as a given CW
signal. This can be done by making V... Vy = Vey/ /(N), where Ve is the peak
amplitude of the CW signal and N is the number of subcarriers of the MS signal. The
top of Fig. 6.8 shows a 4-tone MS signal with a random phase arrangement (left) and
a4-tone MS with 0 phase arrangement overlapped with an average power-equivalent
CW (right). The respective frequency spectra are depicted on the bottom of Fig. 6.8.
Notice the higher peak amplitudes of the MS in the time-domain waveform, which
implies the spreading of the spectrum with respect to a CW with the same average
power. Note also that, although the 0 phase arrangement provides the highest PAPR,
the random phase arrangement is still overpassing the CW in terms of PAPR.

6.7.2 Multi-sine Rectification

The rectification of a high PAPR MS signal is illustrated in Fig.6.9. In comparison
with a CW signal with the same average power, the high PAPR MS signal provides
higher time-domain peaks. As a consequence, for low average power levels, the MS
can more easily overpass the device turn-on voltage and force it into a more efficient
regime than a CW with the same average power would do.

6.7.3 Memoryless Model to Describe MS RF—-dc Conversion

In the forthcoming analysis, the Schottky diode current is approximated by a mem-
oryless Taylor polynomial expansion around a quiescent bias point (Vjias, Ipias) as
done in [4]. Although simple, this model is useful to understand the general nonlinear
behavior of the rectifier under CW and MS signals, and also to assess the impact of
MS parameters such as phase arrangement. The current across the diode is given by:

N N
in(t) & D" kiup(t) = Viias)' = D ki(ui(t) = up(t) = Viias)'  (6.8)

i=0 i=0
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where vp (1) = v;(t) — v,(t), the bias point is taken as the self-bias voltage as given
by Eq.(6.4), and ko, ki, ..., ky are the coefficients of the Taylor model, which are
obtained from the successive derivatives of the diode current with respect to the diode
voltage, taken at the bias point [14]:

. Vias

Vbias 1 9p Ig e
ko = Ipigs = Is(e™ —1); .. 5ki= - —|vpmupy = — 77— 6.9
o=1p s ( ) 1119\/5"/ v = VoY (6.9)

By assuming that the output capacitor is high enough such that the steady-state
output voltage is constant [v,(¢) = V], and by taking the self-bias quiescent point
(Vhias = — Ve, it follows that,

ip(t) = Is(e " e —1)+ 1|( V)l ’()+2l( ‘;V’)z o (6.10)
I e;‘(ff }er 7% |
3V(V)3z() 4v(V)4’() '(V)’ )

For finding the output dc using the model (4.10), only the even order terms are
considered (i =0,2,4,6...), as the odd order ones do not contribute to the dc
component. Considering the first even terms up to the fourth order, and exciting the
system (6.10) with a single tone signal with frequency w,, amplitude V4 and phase

¢1.
u;(t) = Vycos(wt + ¢p) (6.11)
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the following output current is produced:

1 3
ip(t) = ko + EVAZkz + gV:k4+

1 1 1
3 Viky cosRet + 2¢1) + 3 Viky cosReoyt + 2¢1) + 3 Viky cos(dot + 4¢y)
(6.12)

Recalling the assumption of constant dc output imposed by the output low-pass
filter, the current components at RF frequencies, namely at w; and 4w, are eliminated,
and the remaining term is a pure dc component that gives the average value of the

diode current:

1 3 Vbe
Ipc ® ko + =V + =Viky = — 6.13
pC o-l-2 A2+8 ke =5 (6.13)

At low power regime (square-law), the second order term k, dominates, and the
output dc can be approximated by 1,/2 VA2k2, which provides power information since
it is proportional to the square of the input amplitude. This is the key rule for average
power measurements at low power levels. Now, in order to evaluate the system
(6.10) under MS excitation, consider an evenly spaced 4-tone MS signal (6.14) whose
individual subcarriers have amplitudes V; = V, = V3 = V4 = Vp, relative phases ¢,
¢2, ¢3 and ¢y, and evenly spaced frequencies w;, w, = w; + dw, w3 = v + 24w
and w3 = w; + 3 4w, where Aw is a constant subcarrier frequency spacing:

ui(t) = Vg cos(wit + ¢1) + Vg cos(mat + ¢2) + Vg cos(wst + ¢3) + Vi cos(wat + ¢pa)
(6.14)

Substituting (6.14) in (6.10), and after low-pass filtering, the following output dc
component is obtained:

1
Ipc(¢1, b2, P3, Pa) = ko + 5(4V32k2 + 21Viks + 3Vigks cosQeps — o — pa) + -+ -

3Viky cos(—2¢s + 1 — ¢a) + 6Vgky cos(pr — ¢y — b3 — ¢p4))
(6.15)

In order to set MS signal to be the same average power as the single-carrier, we
make Vi = V4 /+/(N), where N = 4 is the number of tones. Accordingly, (6.15) can
be rewritten as:

Inc(d1, d2, B3, ha) ~ ko + 0.5V, ks + 0.65625V, kg + - - -
0.09375V, ks cos(2ps — ¢pr — ) + - - -
0.09375V ks cos(—2¢ + b1 — ) + - -
0.1875Vky cos(¢py — ¢y — 3 — )

(6.16)
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The following conclusions can be drawn from the previous analysis:

(1) The phase-independent component in (6.16) is greater than (6.13).

(2) The phase-dependent term can be maximized by choosing an optimal phase
arrangement.

(3) Considering the same input average power for the CW and MS signals, (6.16)
provides a higher output dc level than that provided by (6.13), guaranteed that
(2) is fulfilled.

6.7.4 Waveform Optimization: MS Phase Arrangement
Optimization

In order to maximize (6.16), the arguments of all the three cosines must be simulta-
neously set to zero.

Argl = 2¢3 —¢2 —¢4
Arg2 = —2¢» + ¢ — (6.17)
Arg3 =¢1 —dr — h3 — s

As stated in [4], the most trivial phase arrangement that equals equations (6.17)
to zero and maximizes equation (6.16) is ¢; = ¢» = ¢3 = ¢4 = 0. In fact, this is a
particular case; in general, (6.16) can be maximized by imposing a constant phase
progression, as in the case of the phase-locked antenna array presented in [7]:

Qiy1 — i = A (6.18)

where 4¢ is a constant phase value. Considering (6.18) and taking the phase of the
first subcarrier (¢) as the reference (¢ = ¢ + AP; p3 = P +24P; s = 1 +
3 4¢), the zero condition for all the three arguments (6.17) can be simultaneously
satisfied:

Argl =2(¢1 +24¢) — (o1 + 49) — (¢1 +34¢4) =0
Arg2 = =2(p1 + 4¢) + ¢1 + (¢1 +24¢) =0 (6.19)
Arg3 =¢1 — (1 + 4¢) — (p1 +24¢) + (¢1 +34¢) =0

The general condition stated by (6.18) as well as the O phase condition in [4] are

consistent, as they also provide the MS signal with the maximum PAPR. Subcarriers’
amplitudes may also be optimized as in [18].
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6.8 Defining a Figure-of-Merit (FOM) to Evaluate
the Efficiency Gain

In order to evaluate the improvements obtained with the MS signals, compared to
CWs, a FOM is defined, namely the RF—dc efficiency gain (G,), which relates the
dc power collected from a single-carrier with the dc power obtained with a MS
waveform with the same average power (Prr(cw) = Prrus))-

Nus Ppcwsy/ Preus
G,(dB) = 1010g10(—) = 10 log,,(—2CWS° REOIS).

Ppccwy/Prrcw) (6.20)
v )
— 10l0g,, ( Ppcws) ) — 201log (VDC(MS)
Ppccw DC(CW)

where, cw and 7 are the efficiency of the CW and MS signal respectively, Paccw)
and Pg.us) refer to the output dc power obtained in a rectifier circuit when using
respectively a CW and a MS signal at its input. Note that the second part of (6.20)
is valid when the average input power level and the output dc load are the same for
the CW and MS signals.

6.9 Simulations

The circuit of Fig.6.10a is used in Keysight ADS simulator to evaluate the RF-
dc conversion using CW and MS signals. For this purpose, two situations were
simulated using multi-frequency Harmonic Balance (HB). In the first case, a CW
was used as the input signal, and in the second, an evenly spaced N-tone MS signals
with zero phase shift between the subcarriers was applied. The average power of the
MS signals was set to the same value as the CW average power by doing Pey =
Py + Py + -+ Puy, where Pey (in dBm) is the average power of the CW signal,
and P, P.o, . . . Pyy, are the power levels of the individual MS subcarriers. A central
frequency and tone spacing of 2.4 GHz and 1 MHz respectively was considered. For
the sake of an efficient HB simulation, the frequency mapping of Fig. 6.10b was used,
allowing to evaluate the CW and all the MS signals in a single HB run.

Figure 6.11 depicts the input and output time-domain waveforms corresponding
to a CW, a 2-tone and a 4-tone MS input signals. First, it can be observed that the
output ripple follows the envelope of the input signal and it is strongly dependent on
the time constant of the output filter. In the CW case, the output ripple is insignificant
(blue curves), as the RF signal period (Tgr = 1/fgr =~ 0.4ns)is very small compared
to the time constant of the output RC filter (z = RC = 4.7ms). On the other hand,
the 2-tone and 4-tone MS signals are affected by a considerably larger output ripple
(red and green curves). This is due to the much slower envelope of the MS signal,
whose periodicity is related to the frequency spacing between the subcarriers (7, =
1/ Aw). Therefore, the output filter has to be optimized to account for the MS envelope

fan.ye@stonybrook.edu



152 A. Boaventura et al.

Schottky diode
DC Block HSMS2850

I >~ Vope
vi(t) " L1

CWor C — R
MS signal é DC Feed § 47/150 pF T §100k0

(b) \
Pew(dBm)f-—-=-—--—-=—————————— 54— — - —cw
—— 2-Tone MS
Pew-3dBf——--------------9---f--------- — 4-Tone MS
—— 8-Tone MS
Pew-6dBf----------"-"-"~~"~"~"4-—~~"~"}- -~ -~—\-—— - -—-
Af=1MHz
Pew-9dBf ——-—-----~- T***T *********** -—- ***TffffT 7777777
i f i f=24GHz . [

Fig. 6.10 a Simple series diode rectifier used in ADS HB simulations. b Frequency mapping of
the input signals used in the HB simulations
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Fig. 6.11 Time-domain waveforms obtained in the HB simulations. a Input 2-tone MS signal
overlapped with a CW signal with the same average power, and b respective output waveform. ¢
Input 4-tone MS signal overlapped with a CW signal with the same average power, and d respective
output waveform. In b and d, the constant curve (blue) corresponds to the CW signal and the rippled
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Fig. 6.12 a Simulated dc
voltage as a function of
average input power for
several input excitation
signals. b Efficiency gain as
a function of average input
power
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frequency rather than the RF frequency. As seen in Fig.6.11b, d, by increasing the
time constant of the output filter (e.g., increasing C form 47—-150pF), it is possible
to reduce the output ripple (curve with circles). The simulated output dc voltages
and efficiency gains as given by Eq. (6.20) are depicted respectively in Fig.6.12a, b,
as a function of the input average power. A maximum gain of 5 dB is obtained for
a 8-tone MS for the series diode configuration tested here, and a similar gain was
obtained in [4] for a shunt diode simulated at 5.8 GHz.
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6.10 Measurements

A set of measurements was conducted to evaluate the efficiency gains obtained in two
RF-dc converter circuits under several MS signal excitations. For this purpose, a sin-
gle diode detector operating at 2.3 GHz (see Fig. 6.13a) and a five-stage charge pump
voltage multiplier working at 866 MHz (see Fig.6.13b) were tested. The respective
simulated and measured return losses of the circuits under test are also depicted in
Fig.6.13. In order to evaluate the performance under several excitation signals, both
rectifying circuits were first fed with a CW signal and then with a MS signal with
the same average power as the CW. This was done over a range of input power, input
signal bandwidth and MS phase arrangements. Figures6.14 and 6.15 present the
dc output voltages and efficiency gains as defined by Eq. (6.20). The measurement
results support the initial premise that MS signals can provide an efficiency gain
over CW signals. This is valid for the single diode rectifier (both series and shunt
configurations) which showed an efficiency gain up to 6 dB, as well as for the charge
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Fig. 6.13 Rectifying circuits used in the cabled measurements and respective input return loss

(simulated and measured). a Single diode detector operating at 2.3 GHz band. b Charge pump
rectifier with 866 MHz center frequency
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Fig. 6.14 a Measured dc
output voltage of the single
diode detector, as a function
of average input power.

b Efficiency gain of the
single diode detector, as a
function of average input
power. Except for the
64-tone MS, as the number
of tones and the PAPR
increase, the gain also
increases. ¢ Output dc
voltage as a function of the
input signal bandwidth. It is
also visible that there is an
optimal MS bandwidth that
produces a maximum
output dc

155

(a) 3
—&—1-lone
25 ~—— 2-lone
+— 4-tone
o 16-tone
2 —i~— Gd-lone
=
o 15
[=]
>
1
0.5
LK
-30 -25 -20 -15 -10 -5
P, (dBm)
(b) 7
- B
fa1]
25
= u__[w{_o--:-—i.q-—s .
g 4 b_.tfjv-( - h{
g‘ -4 ——r—y B
3 o -
.S :__v
% 2 a . B :
Q iz 4 i g e g
R NG e nnnil -
2
0r/
-1 i i
-30 -25 -20 -15 -10 -5 0
P, (dBm)

(¢) 11

1

S 09
(&)

S o0s

0.7

0

0.5 1 1.5 2
Input Signal Bandwidth (MHz)

fan.ye@stonybrook.edu

25



156

Fig. 6.15 a Measured dc
output voltage of the charge
pump, as a function of
average input power.

b Efficiency gain of the
charge pump, as a function
of average input power.

¢ Output dc voltage as a
function of the input signal
bandwidth
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pump circuit which exhibited a gain up to 2.75dB. These results suggested that this
scheme could potentially extend the range of passive RFID systems. This subject
was evaluated in [2, 5, 6].

6.10.1 The Impact of Input Signal Statistics

The circuits under test were also evaluated using different input amplitude statistics,
including a 16-tone MS with 0 phase, normal amplitude distribution and uniform
amplitude distribution. A similar experimental study was also done in [8]. To achieve
the given amplitude distribution, the algorithm outlined in [15] was used to synthesize
MS signals from noise signals with the desired amplitude statistics. The algorithm
returns the phases of a MS with the same amplitude statistics as the reference noise
signal. The Probability Density Functions (PDF) of the noise and MS with normal
and uniform distributions are depicted in Fig. 6.16. Figure 6.17 shows the measured
output dc voltage of the charge pump, for a CW signal, and a 16-tone MS with
0 phase arrangement, normal and uniform amplitude distributions. As can be seen
in Fig.6.17, the O phase MS provides the best performance, followed by the MS
with normal amplitude distribution. A similar result is obtained for the single diode
detector.

Fig. 6.16 Probability (a) 0.2
density functions of noise result
and synthesized MS signals. 0.15 noise |-
a Normal distribution. —
b Uniform distribution =
e 04 1
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Fig. 6.17 Measured dc 10 T T T
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6.11 Conclusion

The main conclusions can be summarized as follows:

When compared to conventional CWs, high PAPR signals are able to more effi-
ciently overpass the turn-on voltage of existing rectifying devices, especially at low
power levels, yielding an improved RF—dc conversion efficiency. High PAPR MS
signals provide higher dc power compared to a CW with the same average power
level. This results in an efficiency gain which increases with the increase in PAPR at
low average power. However, for very high PAPR values, as predicted by the model
in [2], the efficiency is significantly degraded.

The MS time-domain waveform is impacted by the phase arrangement, num-
ber of tones and their frequency domain distribution. If the subcarriers are phase-
synchronized, the higher the number of tones, the higher the PAPR and the higher
the efficiency gain at low power levels. The peak repetition rate in time-domain is
inversely proportional to the tone separation in the frequency domain, and thus, a
decrease in tone separation imposes an increase in the output ripple. On the other
hand, a very large tone separation may cause the total MS bandwidth to exceed the
input bandwidth of the circuit, resulting in an efficiency drop. Therefore, an optimal
tone separation should be selected.

Contrary to the cabled measurements conducted in this chapter, in which we have
full control over the MS parameters, in open-air experiments, we lose control over the
subcarrier phases and amplitudes, especially due to multi-path fading. Nevertheless,
measurements show that even with a random phase arrangement, the MS signal can
outperform the CW signal.

While the output filter design is not critical for CW operation (as a relatively small
output capacitor is sufficient to smoothen the output ripple), for MS operation, the
output filter design is important and should take into account the MS signal envelope.
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The output ripple follows the MS envelope, and the average output dc depends on
the time constant of the output filter.

Not less important, the use of a MS transmitter represents an increased complex-

ity and the amplification of high PAPR signals is challenging because it may occur
nonlinear distortion (amplitude clipping, spectrum regrowth) and efficiency degra-
dation. For this reason, space power combining has been proposed in [2, 7] as an
efficient way to crate and radiate high PAPR MS signals.

References

10.
11.
12.
13.
14.
15.

16.

18.

19.

Ansoft: Application note: pin diode model parameter extraction from manufacturers (1997)

. Boaventura, A.: Efficient wireless power transfer and radio-frequency identification systems.

Ph.D. thesis, University of Aveiro (2016)

Boaventura, A., Belo, D., Fernandes, R., Collado, A., Carvalho, N.B., Georgiadis, A.: Uncon-
ventional waveform design for efficient wireless power transfer. IEEE Microw. Mag. 16(3),
87-96 (2015)

Boaventura, A., Carlvaho, N.: Maximizing DC power in energy harvesting circuits using mul-
tisine excitation. In: IEEE (ed.) IEEE MTT-S International Microwave Symposium. Baltimore
(2011)

Boaventura, A., Carvalho, N.: Extending reading range of commercial RFID readers. IEEE
Trans. Microw. Theory Tech. 61(1) (2013)

Boaventura, A., Carvalho, N.: A software-defined radio RFID reader with multi-sine capabil-
ity for improved wireless power transfer. IEEE Trans. Microw. Theory Tech. (submitted for
publication, 2016)

Boaventura, A., Collado, A., Carvalho, N.B.: Spatial power combining of multi-sine signals
for wireless power transmission applications. IEEE Trans. Microw. Theory Tech. 62(4), 1022—
1030 (2014)

Collado, A., Georgiadis, A.: Optimal waveforms for efficient wireless power transmission.
IEEE Microw. Wirel. Compon. Lett. 24(5), 354-356 (2014)

De Donno, D., Ricciato, F., Tarricone, L.: Listening to tags: uplink RFID measurements with
and open-source software-defined radio tool. IEEE Trans. Instrum. Meas. 62(1), 109-118
(2013)

Dickson, J.: Voltage Multiplier Employing Clock Gated Transistor Chain (1980)

Huurdeman, A.A.: The Worldwide History of Telecommunications. Wiley, Hoboken (2003)
Network, I.G.H.: Biography of ernst f. w. alexanderson

Nikitin, P., Rao, K.: Performance limitations of passive UHF RFID systems. In: IEEE (ed.)
IEEE Antennas and Propagation International Symposium, pp. 1011-1014 (2006)

Pedro, J., Carvalho, N.: Intermodulation Distortion in Microwave and Wireless Circuits. Artech
House, Norwood (2003)

Pedro, J., Carvalho, N.: Designing band-pass multisine excitations for microwave behavioral
model identification. In: IEEE (ed.) IEEE MTT-S International Microwave Symposium (2004)
Pursula, P.: Analysis and design of UHF and millimetre wave radio frequency identification.
Ph.D. thesis, VTT Technical Research Centre of Finland (2008)

. Tesla, N.: The Transmission of Electric Energy Without Wires. The Thirteenth Anniversary

Number of the Electrical World and Engineer. McGraw-Hill, New York (1904)

Trotter Jr., M., Griffin, J., Durgin, G.: Power-optimized waveforms for improving the range
and reliability of RFID systems. In: IEEE (ed.) IEEE International Conference on RFID (2009)
USA, W.T.G.: Principles of power measurement, a primer of RF and microwave power mea-
surement (2011)

fan.ye@stonybrook.edu



Chapter 7
Regulations and Standards for Wireless
Power Transfer Systems

Christos Kalialakis, Ana Collado and Apostolos Georgiadis

Abstract A survey of the regulatory framework pertinent to Wireless Power Transfer
systems is given. Both technical (power and frequency) considerations along with
health safety radiation compliance are examined. A primer on regulatory processes
is also included to facilitate the understanding of the developments. The current
state is analyzed and ongoing regulatory activities across the globe are discussed.
Furthermore, a review of recent radiation safety studies of WPT systems is included.

7.1 Introduction

Wireless power transfer (WPT) systems are becoming increasingly important for
several applications; telecoms, automotive industries, medical electronics, sensors
[1-6]. Presently, the most attractive WPT function is wireless charging [7]. Regula-
tions and standard is an unavoidable and necessary prerequisite for any new wireless
technology. On one hand, the regulatory compliance imposes limitations on the tech-
nical characteristics of the devices but on the other hand facilitates market adoption
and mitigates consumer concerns about radiation.

The regulatory regime is in general quite complex because regulations and stan-
dards are delivered by a multitude of organization with the interdisciplinary nature
of WPT adding to the complexity. The main target audience is academics who con-
duct research in the field of WPT. Sections of the chapter also aim to professionals
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engaged in regulatory and standard work which seek a source a map of developments.
Very few studies have appeared that review regulatory and standardization develop-
ments. In [8] activities with a focus on Japan were presented. In [9] some radiation
safety compliance regulations were reviewed and in [10] a similar brief review dis-
cussion about radiation safety for emerging technologies including far-field systems
was presented. This chapter builds on our previous work on the subject [11].

In Sect. 7.2, some terminology on WPT systems including top-level descriptions is
provided. In Sect. 7.3, basic notions on regulatory process and standards are presented
in order to facilitate a deeper understanding of current developments deployed in
the next sections. The relation between standards and regulations is explained. In
Sect.7.4, the current status of WPT pertinent regulations is analysed and ongoing
regulatory activities are surveyed. Conclusions are drawn in Sect.7.5.

7.2 Wireless Power Transfer Systems

WPT systems can be classified based on the way the electromagnetic field is
exploited, i.e., coupling for near field and radiation in the far-field case.

Wireless charging systems that operate in the near field are spatially confined.
They are brought in the close vicinity (up to a few cm) of the device to be charged.
Usual frequencies of operation start from as low as 20kHz up to 13.56 MHz [1, 7].
Such systems are practically cordless chargers.

Besides the low frequency systems, WPT systems operate in GHz or RF frequency
range using the radiative far field. The system that needs to receive energy is already
placed in a fixed position and access is not easy or possible. For the purposes of this
work, WPT-NF will denote a near-field system and a far-field WPT will be denoted
explicitly as WPT-FF.

As mentioned in the introduction, the dominant WPT function is wireless battery
charging which finds applications most notably in

Electric Vehicles

Mobile Communications Devices
Implantable Medical Devices
Building Automation Sensors

A note should be made about a subclass of WPT-FF systems, called Energy
Harvesting systems. These are passive systems in the sense that they only receive
ambient energy from all the available sources [12—-19]. Because of their expected
widespread use in quite different sensor systems [2, 20] interoperability is important.
This topic is examined further in Sect.7.5. Another notable application of WPT-FF
is the Space Solar system where power is collected by satellites and then transmitted
via microwaves to earth stations [21, 22]. Medical devices always generate a huge
interest. The need to avoid batteries and power wirelessly implantable devices has
given WPT a lead as a solution [3-6].
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7.3 Basic Concepts of Regulations and Standards

Regulation is a necessary function common in any market, transparent to the con-
sumer. This function is exercised by regulatory institutions which are usually orga-
nizations created by governments. Regulation targets on supporting market devel-
opment without sacrificing the state and the consumer interests. The industry, as a
stakeholder, is frequently initiating matters at the regulatory level. Therefore, wireless
power transfer systems also need to operate within regulatory boundaries. Focusing
on WPT systems as a case of wireless technology, at least two technical parameters
must be defined. These parameters are the frequency and the power. Regulations can
also impose limitations on other device characteristics. For example, compliance
may be required on

e Electrical Power limitations (such as the European Union Low Voltage Directive
(23])

e Manufacturing considerations such as the RoHS directive [24] which prohibits the
use of lead and other materials in PCB (Printed Circuit Boards)

e Heat/Noise Limits

e Electromagnetic Compatibility and Immunity (EMC/EMI)

At this point, it is instructive to classify regulatory bodies using two main crite-
ria; first, the geographic coverage and second the technical focus. Geographically
speaking, three ranks can be recognized (Fig.7.1).

Organizations that emanate from global collaboration generate regulations which
are general. In a regional level, i.e., Europe, the regulations must be further adapted.
Nevertheless, the regulations are not legally binding before they reach the national
level. Each sovereign state decides for the adoption or not of the regulation as national
legislation. This harmonization process is not without problems which is quite
apparent in adoption of frequency bands of operation. In principle, frequencies are

) SCOPE
ITU
General IEC
CEPT
ETSI
CENELEC
Specific Fcc
Ofcom
COVERAGE
National Regional Global

Fig. 7.1 Relation of the regulations scope with the geographical area of influence
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harmonized but in practice there is quite a difference from region to region. Some-
times a technical parameter such as the transmitted power can be regulated not on
technological grounds only but also on perceived risks as in the case of human expo-
sure radiation safety limits.

Each regulatory body is responsible for specific sectors. In response to sector
activities that are regulated, three major areas can be distinguished.

e Telecommunications. The most important technical parameters that are regulated
are frequency and power. The frequency is allocated through a frequency coor-
dination process dictated by ITU procedures. In this procedure, power is usually
known by EMC/EMI considerations, radiation limits, and industry standards. In
some cases, devices are also expected to meet other equipment type approvals as
noted above.

e Electrical. This is most commonly related to EMC/EMI standards and thus includes
a larger number of devices and systems since they are not limited to radio devices
only.

e Health & Safety. The emphasis is on human radiation exposure and safety rules.

In Table 7.1 all the related organizations that are active in the WPT are shown. It
is apparent that a lot of organizations exist and the boundaries between them are not
always clear-cut. It is often that strong connections exist among them which take the
form of liaison statements or even attendance of the activities of one organization by
representatives of the other organization.

At this point, an elucidation on the difference between standardization and reg-
ulation is deemed necessary. Regulations have legal power and they are adopted by
an authority in a national context. Standards are documents that are developed and
approved by a recognized body.

Table 7.1 Regulatory bodies

Organization Geographical Sector Notes
influence

APT Regional Telecoms Asia Pacific Region

CENELEC Global Electrical

CEPT/ECC Regional Telecoms Europe

CISPR Global Electrical

ETSI Regional Telecoms Europe

FCC National Telecoms USA

ICNIRP Global Health

IEC Global Electrical

IEEE Global Telecoms/Electrical/Health Professional
Organization

ISO Global General

ITU Global Telecoms
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Standards provide for repeated use, guidelines and characteristics for systems or
devices [25]. Technical regulations, a subclass of regulations that provide technical
compliance requirements, are always standard driven, either directly or indirectly.
As such, there is quite a close collaboration among these bodies. Standards could
be broadly described as compliance and application oriented. Compliance standards
are always connected with a technical regulation. Application standards on the other
hand are design specifications that aim more toward interoperability and open techni-
cal details such as the data structure or components characteristics’ usually without
resorting to implementation. Application standards are not necessarily connected
with technical regulations but they are frequently invoked as a reference. The differ-
ence is somehow subtle resulting in the use of the terms standards and regulations
interchangeably in the open literature. It must be stressed out that regulation and
standardization are not done in the absence of industry. Industry contributes signifi-
cantly to the activities of these bodies and most often takes the initiative when new
technologies appear. In order to speed up interaction, companies that work in the
same field form representative bodies that focus on specific topics. These organiza-
tions come by the terms forum, alliance, or initiative. In the WPT-NF area (Table 7.2),
there are several international forums, the Wireless Power Consortium [26], the Air-
Fuel Alliance which advocates on Loosely Coupled WPT [27, 28] and the Open
Dots Alliance [29]. More on these industry forums are given in Sect.7.7. These
organizations are also active in application standards through the issue of design
specifications. Another forum, called ENOCEAN should also be mentioned [30]
which represents companies from the building and automation sector. There are also
established industry alliances in the area of WPT-NF, in countries where there is a
large automotive industry such as Japan, US, and Korea [31, 32] (see Table7.2).

Table 7.2 Industry-related organizations active in WPT standards development

No | Organization Notes
1. Wireless Power Consortium Qi Specification, Near-Field Technology
2. AirFuel Alliance Near-Field Technology
3. Open Dots Alliance Focused on cars
4. ENOCEAN Alliance Energy Harvesting Sensors
4. Consumer Electronics Association USA Companies
6. Underwriters Laboratories USA Testing House
7. Society of Automotive Engineers USA Professional Organization
8. ARIB—Association of Radio Industries and | Japanese Companies
Business
9. Broadband Wireless Forum Japanese Companies

10. | Wireless Power Management Consortium | Japanese Companies

11. | Telecommunications Technology Korean Companies
Association

12. | Korea Wireless Power Forum Korean Companies

fan.ye@stonybrook.edu



166 C. Kalialakis et al.

Considering the multitude of organizations, the overlap and work duplication
is highly probable. In order to cover the imperative need for efficient information
exchange, an organized and formal way of interface between most of these organi-
zations has been established; the Global Standards Collaboration (GSC). GSC takes
the form of an annual meeting with ITU hosting the repository [33] and ETSI the
web presence [34].

7.3.1 Radiation Safety Regulations

As far as radiation safety is concerned, the 1998 Guidelines by the International
Commission on Non-Ionizing Radiation Protection (ICNIRP) [35], as amended in
2010 for frequencies up to 100 kHz [36], have been globally recognized as the de
facto standard, although other guidelines are possible both internationally, i.e., [IEEE
[37] or nationally. In fact, several national legislations (Belgium, Switzerland, and
Greece being typical examples) impose more stringent limitations based on political
decisions rather than scientific data. It is worth noting ICNIRP and not the IEEE is
usually referenced in national legislations.

Specific Absorption Rate (SAR) is the most well-known metric that due to the
widespread adoption for assessing safety radiation limits of mobile telephones [38].
SAR at a given position can be evaluated using

ocE?
SAR = —%¢ (7.1)
P

where o is the tissue conductivity, p the tissue material density, E;,. the incident
electric field. In most cases SAR requires integration over a volume (1 g or 10g in
weight) which is exposed for the measurement time. In these cases, the above quan-
tities become functions of position and time. SAR is related to the tissue heating
and is applied from frequencies 100 kHz to 10 GHz. SAR on humans can be com-
puted from simulations or alternatively by phantoms that emulate human bodies [39].
However, because WPT systems and especially near-field systems operate in lower
frequencies, there are other metrics that must concurrently be used. In Table 7.3 the
frequency bands where WPT systems exist and the corresponding metrics with limit
values are noted.

Other adverse health effects are possible in frequencies from 1 kHz to 10MHz
such as nerve and muscle stimulation. Retinal phosphene is such an effect where
electromagnetic waves can induce the sensation of light in the retina without light
actually entering the eye. In this frequency band current density limits also apply
(see Table 7.3). In common frequencies, i.e., from 100 kHz to 10 MHz both SAR and
current density limits must be met.

Additional limitations apply for RF contact currents up to a frequency of 110
MHz. These should not exceed 20 mA [35, 39].
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Table 7.3 Basic ICNIRP maximum exposure limits for WPT frequency bands

Frequency band | Current density | SAR for whole SAR (head and | SAR (limbs)
(mA/m?) body (W/kg) trunk) (W/kg) (W/kg)

1-100 kHz f(Hz)/500 X X X

100 kHz-10 MHz | f (Hz)/500 0.08 2 4

10 MHz-10 GHz | X 0.08 2 4

7.3.2 Regulatory Processes for New Technologies

New technologies are continuously introduced which must be framed in a regulatory
environment. This process brings two major questions;

e can the new technology be used in existing spectrum or does it require new spec-
trum bands to be allocated on a primary or secondary basis.

e Is the interference potential great which entails frequency coordination with other
technologies in other parts of the spectrum, i.e., does it need to be recognized as
a new service.

How to answer these questions can be illustrated with the following examples:

Example When GSM-type cellular communications technology was introduced a
new frequency band allocation was needed. Furthermore, due to the long distance
nature of the system, interference potential was great leading to the fact that GSM
telephony had to be characterized as a service with exclusive usage rights in its 900
MHz band. The rights did not come without obligations. Every cellular operator had
to pay a frequency license fee which was a sizeable amount of money.

Example The fixed service corresponds to a wireless point-to-point communications
link between two set locations. The existence of a network is not a prerequisite
for a technology to be a service. A fixed service realization is the connection of a
broadcasting studio with the transmission sites can be done with a radio link. This
radio link operates on a frequency that is licensed with a small fee and it needs to be
coordinated with other radio links and other services in neighboring bands.

Example RFID technology operates in a short range and low power context, i.e.,
its interference potential is in general small in several frequency bands. RFID use
is permitted without protection from interference as an SRD (Short Range Device).
Consequently, RFID is not categorized as a service and carries no obligation for a
frequency license fee.

A notable exception in the spectrum use is the ISM (Industrial Scientific and
Medical) band. In reality ISM Bands are spread along the spectrum. These bands do
not require a license fee and thus no protection from interference can be claimed from
the regulator. For example, a Wi-Fi system can be used to create a radio link based
fixed service. ISM bands devices are mandated to follow EMC/EMI regulations that
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are region specific such as the FCC Part 15 [40] in the case of US or the EMC
Directive [41] in European Union. These points should be born in mind when the
WPT case is discussed below in Sects. 7.5-7.7.

All international regulatory (and standardization) bodies tackle new technologies
in a well-organized manner as shown in Fig.7.2. A decision is made usually in
administration (political) level and the required technical work is assigned to groups
of experts who provide feedback in documents with predefined structure so a decision
can be reached. The diagram of Fig. 7.2 can be applied to every standardization and
regulatory organization.

For instance, in ITU for radiocommunications issues, a proper decision body such
as the Radiocommunications assembly issues a formal statement called Question.
A Question can belong to one of several categories depending on its urgency and
relation with assemblies that take decisions. This Question is tackled by groups of
regulatory and industry experts who are organized in technical groups, called Study
Groups (SG) in ITU context, under the guidance of ITU staff engineers. Each Study
group divides its work in several subgroups called Working Parties that carry a
designation that denotes the SG. Thus WP1A means the first working party of SG1
that deals with spectrum engineering. The products of SG are usually two kinds of
formal documents,

e Recommendations are binding documents that form part of Radio Regulations and
are embodied in national legislations. Recommendations are formally structured
texts with the bare minimum required technical detail.

e Reports are documents that contain much more detailed technical information on a
topic. Itis usually the technical background related to a recommendation, although
stand-alone reports are feasible.

TECHNICAL
SUB-GROUP
1Y

EXPERT GROUP 1

TECHNICAL
SUB-GROUP
1.1

EXECUTIVE DECISION
BODY

TECHNICAL
SUB-GROUP
N.X

EXPERT GROUP N

TECHNICAL
SUB-GROUP
N.1

Fig. 7.2 Work allocation in a regulatory level to cope with technical issues
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In a similar way, in standardization organizations, like ETSI for example, technical
reports and standards are produced by the technical groups.

7.4 WPT Regulations in International Level

In light of the discussion in Sect. 7.3, regulations and standardization are required to
address in the WPT context the following questions;

e How WPT should be classified? As a device only or as a service? Can WPT coexist
with other technologies in the same spectrum?

e Are current radiation safety limits adequate? If yes, are standardized measurement
procedures adapted for such devices?

Currently no specific frequency band for WPT is allocated. Many WPT-NF sys-
tems operate in the ISM Bands 6.78 and 13.56 MHz. As analysed in the previous
section, these bands do not need license fee and EMC/EMI compliance is required.
Still the issue of the human safety radiation limits must be resolved. A further issue
of high KW power at 13.56 MHz is the potential compatibility problem in locations
where radio telescopes operate between 13.36 and 13.41 MHz. In the case of RFID
systems, no realistic scenario was found [42], yet this exercise might have to be
repeated for high-power WPT.

The USA regulatory authority FCC treats WPT devices as general equipment
that intentionally radiates and therefore requires compliance with Parts 15 [38] and
Part 18 [43]. Specific frequency allocation goes through ITU first, although national
specific regulations are possible in some neutral parts of the spectrum. Usually radio
regulations on a system without communication are quite different from those on a
communication system. A decision has not been made yet if WPT is a subcategory
of a communication system, although it contains a transmitting part and a receiving
part.

Energy Harvesting Systems (EHS) as receivers require Electromagnetic Immunity
compliance from a regulatory point of view. As far as interoperability is concerned,
the ENOCEAN Alliance was instrumental in the creation of the ISO/IEC standard
[44]. An interesting question is that if EHS should be allowed to operate in any band.
For example, are EHS in large numbers able to produce disruption in areas, whereas
GSM type networks have marginal coverage? Perhaps, EHS could be limited to bands
where excess energy is abundant, i.e., close to high-power transmitters or close to
microwave ovens.

Regardless of the exotic nature of the Space Solar Power application, this appli-
cation must conform to regulations which exist for space too! At the moment no
specific regulatory activities have been initiated. However, in this case additional
regulations will apply for the satellite part. Most notable is the extra requirement
of orbital position and the difficulty of getting such an approval by ITU due to the
large size of the collecting satellite. Furthermore, further restrictions apply to space
activities [45].
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As far as medical electronics are concerned, the regulatory process must include
regulatory approval by the related authority. In USA, for example where much of
this research is carried out, FDA (Food and Drug Administration) approval must be
met before market submission [46], although the RF part is not regulated by FDA.

In terms of health and safety regulations, no need is seen to put new limits. For
the moment existing procedures can be used for the assessment of radiation limits
as in the case of far field of mobile devices [47].

There is an array of significant activities in progress by many of the regulatory
and standardization bodies shown in Table 7.1. These ongoing activities are analysed
below. Apart from efforts in the international stage, two notable contributors in the
national level, Korea and Japan, are examined.

74.1 ITU

A Question was recently updated (see Sect.7.3.2 above on ITU procedures), that is,
handled by Study Group 1 and its subgroup called WP1A. The WPT Question [48]
falls in category S3, i.e., required studies which expect to facilitate the development
of radiocommunications.

The question is usually considered resolved when a Report and a Recommendation
are finalized. According to the proceedings in progress of the meetings [49], the
first major outcome is that WPT devices are classified as non-beam WPT which
corresponds to near field and beam WPT corresponding to WPT-FF. A recent ITU
report SM.2303-1 reviews frequency bands and out-of-band radiation levels for non-
beam devices [50]. Moreover, a draft recommendation is in progress with major
inputs from Korea and Japan. The recommendation is expected to be completed in
2016.

7.4.2 ETSI

WPT systems in ETSI are covered by EMC and Radio Spectrum Matters (ERM)
technical group. They are currently aiming in the revision of standard EN 300 330 [51]
to include wireless charging and an update of the 13.56 MHz RFID mask. An early
draft revision is already available [52]. The work is based on a revision of Technical
Report TR 103 059 which is in the publication stage. The revision is about the
spectrum mask requirements for narrowband but long-range and wideband but short-
range RFID systems. Furthermore, ETSI has assigned the ERM technical group TG28
to prepare material on inductive wireless charging for inclusion in EN 300 330. The
task is to clarify the type of WPT-NF systems, the technical requirements and possible
interference scenarios to existing SRD devices. The work concentrates on frequencies
below 30 MHz. The task includes the revision of the guidelines for Notified Bodies
and Test houses which carry out the EMC/EMI compliance procedures [53]. ERM
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also discussed the interference potential from wireless chargers that use power from
100 W to many kW. Some products proposed are intended to operate in recognized
ISM bands. Other products intend to operate in bands already allocated to radio
communication services. The interference potential of such equipment would need
to be assessed separately in ITU. In order to facilitate this process, the ERM is in
liaison with CEPT/TCAM and ITU [54].

7.4.3 CEPT/ECC

CEPT/ECC is involved in WPT through two technical groups; the SE (Spectrum
Engineering) and FM(Frequency management). As noted above, there is a close
collaboration between these Groups and ETSI [54-56]. The revision of ETSI EN
300 330 [48] is being carried out in consultation with CEPT technical subgroup
designated SE24 [54].

7.4.4 IEC and ISO

IEC (International Electrotechnical Commission) has initiated work through two
technical groups. IEC Technical Committee 69 [57] works on Electric vehicle WPT-
NF systems in order to produce the forthcoming standard IEC/TS 61980 “Electric
vehicle wireless power transfer (WPT-NF) systems.” The standard will be composed
of the following three parts:

e Part 1: General requirements

e Part 2: specific requirements for communication between electric road vehicle
(EV) and infrastructure with respect to wireless power transfer (WPT-NF) systems

e Part 3: specific requirements for the magnetic field power transfer systems.

At this stage, the standards are in very early draft status. The full standard is expected
to be released in 2017, although parts of the standard will be available by 2015.
Furthermore, Technical Committee TC100 [58] has launched activities with a time
horizon of 2017 on creating IEC 62827- Wireless Power Transfer - Management
which is more general and not limited to vehicles. It is composed by the following
parts:

e Part 1: Common Components
e Part 2: Multiple devices control management
e Part 3: Multiple sources control management

ISO has initiated since early 2014 activities on a new standard under the code 19363
[59]. Subcommittee TC22/SC2 “Road Vehicles-Electrically propelled Road Vehi-
cles” and in specific its working group WG 1(Vehicle operation conditions, vehicle
safety and energy storage installation) is responsible for drafting.

fan.ye@stonybrook.edu



172 C. Kalialakis et al.

A joint IEC/ISO technical committee on Information Technology Standards
(JTC 1) has included information technology issues that are related to wireless power
transfer such as wireless communication support, interoperability with NFC (Near-
Field Communications), convergence with RFID and security for WPT [60]. The
creation of the ISO/IEC standard on interoperability is also noted [44].

7.4.5 CISPR

The International Special Committee on Radio Interference (CSIPR) works under
the auspices of IEC but is operating separately from the other IEC Technical com-
mittees. CISPR is working to develop emission limits below 30 MHz for wireless
power transfer. The primary effort is occurring in its Subcommittee B, CIS-B [61]
which deals with interference relating to industrial, scientific and medical radiofre-
quency apparatus, to other heavy industrial equipment, to overhead power lines.
Similar requirements will be applied to multimedia equipment once the limits and
test methods are well founded.

7.4.6 CENELEC

European standardization body CENELEC has been initiated to follow up work on the
IEC work. Technical committee CLC/TC 69X [62] is working on a European standard
in accordance with the IEC forthcoming standard described above in Sect. 7.4.4. The
standard will carry the same code number as the IEC work, i.e., EN.61980-1:2013.
Part 1 is in the voting stage.

7.5 Selected National Level WPT Regulations

7.5.1 Activities in Japan

In Japan the WPT activities have attracted a lot of interest by both communica-
tions and automotive industries [8, 63]. The activities were initiated by the Ministry
of Internal affairs and Communication which formed a working group on WPT
in June 2013 [63] to establish specific regulatory procedures. The communication
industry efforts are led by BWF. The working group WPT-WG has developed guide-
lines for the use of wireless power transmission technologies which have reached
ver,2.0 [64]. The guidelines concern ISM band systems. An interesting feature of
these guidelines are safety measures for heating which occur due to induction. The
use of the international standard IEC- 60335-1, “Household and similar electrical
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appliances-Safety-Part 1 General requirements” is suggested. The absence of a near-
field SAR measurement method below 30 MHz is noted too.

The BWF through a technical working group WPT/WG has commenced stan-
dardization activities through a subgroup called the Standard Development Group
(SDG). The intention is that the developed standard will be submitted to the Asso-
ciation of Radio Industries and Businesses (ARIB) Standards Assembly. Note that
ARIB participates in the GSC [34].

A related industry body Japan Electronics and Information Technology Industries
Association (JEITA) has formed a group called The Wireless Feeding Project Group.
JEITA is participating in the work of IEC/TC100 which was discussed above in
Sect.7.4.4.

As far as the automotive industry is concerned, the Japan Automobile Research
Institute (JARI) has also assigned a technical team to work on the subject, namely the
Inductive Wireless Charging Subworking Group (SWG). Its work is supplemented by
the Society of Automotive Engineers of Japan (JSAE) through its Wireless Charging
System Technical Committee [8]. The JARI/SWG is the national voting member
in the corresponding IEC and ISO standards (i.e., JPT61980 in IEC TC69 and ISO
19363 in ISO TC22).

7.5.2 Activities in Korea

In Korea, the activities are led by the Telecommunications Technology Association
(TTA) [65]. Three technical subgroups have been established;

e Project Group 709 (PG709) established in March 2011 and has already produced
a series of national standards in 2011 and 2012 (see Table 7.4). The work is based
on cellular and low-power WPT

e Project Group (PG309) works on EMI/EMC

e Project Group (PG422) concentrates on high-power, especially electric vehicles.

The need for coordination has been solved by a liaison team among the three groups
[66]. A particular note should be made about the standard TTAE.KO-06.0303 which
deals with the practical issue of control signaling.

It must also be noted that TTA is very active in the GSC [66] and ITU level [49].
Moreover, considering the interest by Japan as analysed in Sect.7.5.1, a regional
collaboration group was formed with Korea. China also joined the collaboration
which has been named CJK (China Japan Korea) and has started to become an active
player in ITU level [49].
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Table 7.4 Recent Korean standards on wireless power transfer

No Std number Title
1. TTAR-06.0112 Evaluation methodology on candidate technologies for
wireless power transfer
2. TTAR-06.0109 Requirements for wireless power transfer (Technical
Report)
3. TTAR-06.0108 Use case for wireless power transfer (Technical Report)
4. TTAR-06.0107 Service scenario for wireless power transfer (Technical
Report)
5. TTAR-06.0113 Definition on efficiency of wireless power transfer for
Mobile devices
6. TTAE.KO-06.0304 Interface definition for highly resonant wireless power
transfer
TTAE.KO-06.0303 Control protocol of wireless power transfer
TTAK.KO-10.0571 Guideline for functional receiver components of wireless
power transfer system via coupled magnetic resonances
9. TTAK.KO-10.0590 System control sequence of resonant wireless power
transmission
10. TTAK.KO-10.0632 Evaluation method of ultrasonic receiver efficiency for

wireless power transmission

7.5.3 Activities in USA

The Society of Automotive Engineers has initiated standardization work through a
task force called J2954 on wireless charging for vehicles [67]. Furthermore UL is
working on safety aspects [68]. Procedures for Electric Vehicle Wireless Charging
procedures, under UL 2750 have been developed [69]. It should also be noted that
IEEE Industry Standards Technology Organization had the initiative of founding
the Wireless Power Consortium program [70]. IEEE Standards has commenced pre-
standardization activities on Electric Vehicle Wireless Power Transfer with a focus
on in-motion wireless charging [71, 72].

7.6 Selected Radiation Safety Studies in WPT

The prevailing opinion is that current radiation safety limits standards are in general
adequate. However, there is a need to further and better understand in a cellular
and molecular level the mechanisms of interaction with the electromagnetic fields
on humans [73]. The anticipated deeper understanding does not necessarily imply a
change on the current standards.
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SAR calculations based on phantoms should be carefully chosen since height does
affect substantially absorption through human body resonances [74]. The phantom
models are potentially different for each gender. This agrees also with the directive of
the European Commission in the framework of the Horizon 2020 [75] that encourages
gender analysis in R&D activities. With the WPT still not mature, it seems that
specific standardized procedures for measuring WPT [76-80] are required. In any
case, considering the capability of kW operation in close range to humans, radiation
hazard safety should be integrated in the engineering design process for better results
[9]. In the open literature, several cases have been demonstrated that WPT systems
do not violate the radiation limits when humans are located in some distance on
the order of cm from the charging device [81-93]. In [94] a magnetic field value
that exceeded the maximum field strength was found locally. It is to be noted that in
comparison, the RF dosimetry studies in the RF region are vast in number comparing
to such studies for frequency up to 10 MHz [76].

In Table 7.5, a list of exposure studies in WPT-NF and WPT-FF systems that have
been recently published are given. Both computational studies and experimental
approaches are mentioned. For easier identification the first author of the study and
the reference number is used. A very interesting application of these studies is the
optimization of the WPT frequency range with respect to compliance with exposure
safety guidelines. In [81] it was shown that the optimal range is for operation between
1 and 2.5 MHz. For the kHz region, in [88] it was shown that a frequency of 450 kHz
is optimal. Safety studies can be also quite important in determining experimentally
the power rating that results in exposure beyond the limits. The harmonics is another
parameter that can cause concerns. In [95] the presence of harmonics decreased the
allowable transmitting power by almost 40 %.

A surprising omission from all the studies is the estimation of uncertainty. Uncer-
tainty is even more important in the case of outdoor measurements where more
uncontrollable conditions may appear compared to a laboratory. In general a radia-
tion limits conformity study should include uncertainty assessments [39]. Probably,
the reason is that in general the exposure is orders of magnitude away from the limit
alleviating in partly the need for an uncertainty budget.

7.7 Industry Initiatives and De Facto Application
Standards

There are some industry initiatives which are analysed in this section. These industry
alliances provide certifications of conformance to certain proposed technologies.
These certifications are acting as de facto application standards.
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Table 7.5 Recent exposure studies in WPT systems
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No System Frequency |Power (W) | Simulation | Experiment | References
(MHz)

1. Magnetic 0.1 5 Yes Yes Chen [81]
resonant

2. Magnetic 8-15 200 Yes No Misuno [82]
resonant

3. Magnetic 1.8,5.78 1 Yes No Hong [83]
resonant

4. Magnetic 0.085 3300, 20000 | Yes No Ombach
resonant [84]

5. Magnetic 5 10,000 Yes No Yuan [85]
resonant

6. Evanescent |2440 11.2 Yes Yes Noda [86]
coupling

7. Magnetic 6.74 1 Yes No Mun [87]
resonant

8. Loosely 0.468, 6.78 | Variable Yes NO Nadakuduti
coupled [88]

9. Magnetic 10 1 Yes No Park [89]
resonant

10. Magnetic 0.020 153 Yes Yes Cruciani
resonant [90]

11. Magnetic 0.1-10 Variable Yes No Chen [91]
resonant

12. Magnetic 10 1 Yes No Sunohara
resonant [92]

13. Magnetic 0.030 3000 Yes No Ding [74]
resonant

14. Magnetic 0.140 1 Yes No Sunohara
resonant [93]

15. Magnetic 0.150 Variable Yes No Song [96]
resonant

16. Magnetic 10 Variable Yes No Hirata [97]
resonant

7.7.1 Airfuel Alliance

The Airfuel alliance was formed with the merger of Alliance for Wireless Power
(AW4P) and Power Matters Alliance (PMA). The intended application domain cov-
ers consumer, industrial, medical, and military applications. Furthermore, it aims at
coping with different power requirements such as simultaneous charging of a lap-
top and smartphone. The Alliance classifies the devices according to power ratings
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possibilities in five Classes. Airfuel focuses on 6.78 MHz that belongs to the first ISM
band and is a WPT-NF technology that utilizes inductive, resonant, and Uncoupled.

7.7.2 Wireless Power Consortium

Qiis acertification pushed forward by the Wireless Power Consortium (see Table 7.2).
It is also focusing on a near-field approach utilizing resonant induction. The consor-
tium has issued a detailed set of specifications [98].

7.7.3 Open Dots Alliance

Another interesting alliance on WPT matters is the Open Dots Alliance [29] mainly
initiated by the car industry. It is called “Open” because the specifications and com-
pliance information is available to the public. It is called “Dots” because products
employing the standard use a distinctive pattern of contact “dots” to transfer power.
The Alliance claims transfer of up to 160 Watts. The major difference of this technol-
ogy is that it is a wire-free approach but conductive. The contact requirement limits
this technology to cordless charging [99].

7.8 Conclusions

A review of regulations and standards related to WPT systems has been presented.
WPT devices are still not classified as a separate category with many of them oper-
ating in ISM bands. There is a considerable amount of ongoing work in all related
international organizations, the majority of which focuses on the near-field WPT and
corresponding EMC/EMI issues. Important efforts are also noted in Korea, Japan
and USA, and in some cases national standards in the case of near-field devices
have been prepared that guide international efforts. Radiation safety studies indicate
conformity to the general limits and could be used as a supplementary tool to select
some frequencies over other available frequencies. As many technological solutions
appear for WPT systems, the need for more radiation safety studies becomes greater.

In terms of regulations, WPT in the near field can be dealt as a new device
that should conform to EMC/EMI standards. Usually EMC/EMI difficulties occur
when the transmission power is getting higher and higher. Furthermore, radiation
safety regulations impose additional power limits. WPT in the far field must be
additionally coordinated in frequency with other systems and could be classified
according to range as a short range device or a completely new application such as
cellular telephony. It is to be noted that ITU has recognized the necessity to treat
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WPT devices that operate in the near field differently than the ones which operate in
the far field.
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Chapter 8
Trade-Offs in Wireless Powered

Communications

Panagiotis D. Diamantoulakis and George K. Karagiannidis

Abstract We investigate trade-offs that are created in wireless powered communi-
cation networks. To this end, we take into account throughput maximization, energy
efficiency, and fairness and we present and discuss the solution of several optimization
problems, considering different scenarios for the network consistence, the adopted
protocol, and the energy arrival knowledge. We show that all optimization problems
can be solved using convex optimization, and, thus the provided solutions can be
efficiently used in practical implementations.

8.1 Introduction

Untethered communication equipments are limited by the finite battery capacity,
since devices operate for a finite duration, only as long as the battery lasts [29]. In
this context, energy harvesting (EH), which refers to harnessing energy from the
environment or other energy sources and converting to electrical energy, is regarded
as a disruptive technological paradigm to prolong the lifetime of energy-constrained
wireless networks. Apart from offering a promising solution for energy sustainability
of wireless nodes in communication networks [9], EH also reduces considerably the
operational expenses [29].

Among the energy harvesting techniques, simultaneous wireless information and
power transfer (SWIPT) is the most challenging, as it presupposes the efficient design
of systems in order to support SWIPT [13, 31]. In this framework, nodes use the
power by the received signal to charge their batteries [24], or to transmit the informa-
tion to a base station (BS) [15]. However, in practice, nodes cannot harvest energy
and receive/transmit information simultaneously [15, 17, 20, 36]. In order to over-
come this difficulty, two strategies have been proposed, i.e., power-splitting and

P.D. Diamantoulakis (X)) - G.K. Karagiannidis
Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
e-mail: padiaman@auth.gr

G.K. Karagiannidis
e-mail: geokarag@auth.gr

© Springer International Publishing AG 2016 185
S. Nikoletseas et al. (eds.), Wireless Power Transfer Algorithms,

Technologies and Applications in Ad Hoc Communication Networks,

DOI 10.1007/978-3-319-46810-5_8

fan.ye@stonybrook.edu



186 P.D. Diamantoulakis and G.K. Karagiannidis

time-sharing [17, 39]. The idea of SWIPT has been reported in various case studies,
such as one source destination pair [24], multiple-input multiple-output (MIMO)
communications systems [19, 30, 33, 34, 40], orthogonal frequency division mul-
tiple access (OFDMA) [26], cooperative networks [6, 10, 16], and cognitive radio
networks [18, 23].

Among the proposed SWIPT applications, this chapter focuses on the joint design
of downlink energy transfer and uplink information transfer in multiuser commu-
nications systems, which has been initially investigated in [15, 21]. Taking into
account the time-sharing technique, the authors in [15] have proposed a novel proto-
col referred to as harvest-then-transmit, where the users first harvest energy, and then
they transmit their independent messages to the BS by using the harvested energy.

8.1.1 Motivation

The harvest-then-transmit protocol infers several interesting trade-offs that have con-
siderably attracted the research interest [4, 14, 15, 35, 39]. First, there is a nontrivial
trade-off between the time dedicated for energy harvesting and that for information
transmission [15, 19]. A solution to this trade-off depends on both the available
channel state information and the knowledge of the energy arrival rate. To this end,
three cases have been considered in the literature:

e The deterministic case, where the energy harvesting rate is known in advance [35].

e The stochastic case, where the energy harvesting rate is unknown and only its
statistical properties are available [35].

e The multiple timeslots approach, where in each timeslot the BS has perfect knowl-
edge of the instantaneous fading gains and the energy arrival rate [14].

Beyond this trade-off, in the multiple users scenario, there is a trade-off between
performance and decoding complexity, which depends on the utilized multiple access
scheme [7, 8, 33]. More specifically, two well-known multiple access schemes have
been explored in the context of wireless powered communications networks, namely
time division multiple access (TDMA) and non-orthogonal multiple access (NOMA)
[11, 12, 28]. NOMA is substantially different from the traditional orthogonal multi-
ple access schemes (i.e., time/frequency/code), since its basic principle is to achieve
multiple access by exploiting the power domain [11, 22]. For this reason, the decoder
needs to implement a joint processing technique, such as successive interference can-
celation (SIC), which increases the decoding complexity. However, when utilized in
wireless powered communication networks, NOMA proves to increase the minimum
throughput and fairness, since the throughput region is different compared to that of
TDMA. Note that the implementation of NOMA in the uplink is not a burden for
the users, since the encoding complexity at the users’ side is not affected, while their
synchronization is usually simpler than the case of TDMA.
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Moreover, there is an interesting trade-off between performance and fairness. In
general, when the sum-throughput is maximized, fairness is considerably reduced,
due to the “double near-far” problem. This phenomenon appears when a user far
from the BS receives a smaller amount of wireless energy than a nearer user, while
it needs to transmit with more power [15]. In this case, in order to achieve fairness
the following three schemes can be used [15]:

e The weighted sum-throughput maximization, which aims to maximize the scaled
sum of the users throughputs.

e The rate profile, which aims to maximize the sum-throughput under the constraint
that each user’s throughput is proportional to the sum-throughput. In this method,
a predetermined proportionality parameter is utilized, which ensures a minimum
level of fairness.

e The common throughput maximization, which guarantees equal throughput allo-
cations to all users and simultaneously maximizes their sum-throughput.

Note that the level of fairness of each scheme has a direct impact on the achieved
sum-throughput.

Finally, although most of the research focuses on throughput maximization and
fairness improvement, there is also an interesting trade-off between throughput and
energy efficiency, which was studied in [32]. Because of the rapidly rising energy
costs and the tremendous carbon footprints of existing systems, energy efficiency
(EE) is gradually accepted as an important design criterion for future communica-
tion systems. Moreover, in wireless powered communication networks, significant
amount of energy may be consumed during energy harvesting, in order to combat
the channel attenuation, which makes the consideration of EE even more interesting
[25, 32].

8.1.2 Contribution

This chapter provides useful insights into the main trade-offs that have been explored
in the literature, in the context of wireless powered communications. Besides, an
interesting dependence between throughput, fairness, complexity, and energy effi-
ciency is revealed. Extended simulations illustrate that

e The increase of the energy arrival rate reduces the portion of time that is allocated
to energy harvesting.

e Stochastic knowledge of the energy rate arrival only slightly reduces the throughput
compared to the deterministic case.

e NOMA can be efficiently used to increase fairness.

e Sophisticated optimization methods can be also used to improve fairness, at the
expense of sum-throughput.

e The maximization of the sum-throughput reduces considerably the achieved
energy efficiency.
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8.2 System Model

‘We consider the uplink in a wireless network, consisting of N EH users, one BS, and
one power beacon (PB). We assume that PB supplies wireless energy to the users and
does not participate in the information transmission. However, it is assumed that the
PB is empowered with the functionality of a communication entity, and is capable of
performing tasks such as channel estimation [37, 38]. We also assume that all nodes
are equipped with a single antenna, while they share the same frequency band.

The communication is divided into timeslots of unitary duration unitary. Here-
inafter, the notation (-)[{] and (-),, will be used to denote the value of the variable (-)
during the i-th timeslot and for the n-th user, respectively. Besides, .#” will denote
the set of all users, while (-)* will be utilized to denote optimality. Note that when
the provided analysis focuses to a single timeslot, [i], and a single user n, (-)[i] and
(+),, will be omitted, respectively.

We assume that users cannot receive and transmit simultaneously. For this purpose,
the harvest-the-transmit protocol is employed and there are the following two distinct
phases during a timeslot:

e Phase I: The users harvest energy in order to charge their batteries. The duration
of this phase is denoted by T'[i].

e Phase 2: The remaining amount of time, i.e., 1 — T'[i] is assigned to the users, in
order to transmit their messages.

8.2.1 Phasel

The energy received by the n-th user is denoted by Y,[i]. The harvested energy, Y,
is
Y, li] = nY,lil, (8.1)

where 7 is the efficiency of the energy harvester. Assuming that users harvest energy
solely from the signals transmitted by the a dedicated PB, the received energy is
given by 3

Yy = yalilPoT[i], (8.2)

where 7,[i] = |h,[i1>L,[i], with f,[i], |h,[i1]?, and L[i] being the channel coeffi-
cient, the channel power gain, and the path loss factor from the PB to the n-th user,
respectively. Also, Py denotes the power transmitted by the PB during the first phase.
At the special case that the users harvest energy solely from the signals transmitted
by the BS, i.e., when the BS has the power beacon functionality during the first
phase, 7,, ﬁ,,[i] and Zn [/] can be replaced by y,,, h,[i] and L,[i], where h,[i] and
L,[i] denote the channel coefficient and the path loss factor from the BS to the n-th
user, respectively. It is assumed that the channel conditions remain constant during
a timeslot, and their exact values are known by the coordinator of the network, e.g.,
the BS.
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8.2.2 Phase 2

Assuming channel reciprocity, the channel coefficient and the path loss factor from
the n-th user to the BS are given by &, and L,,, respectively, while N is used to denote
the power of the additive white gaussian noise (AWGN). Moreover, let R, [i] denote
the achievable throughput of the n-th user during the i-th timeslot, P,[i] the power
of the signal that is transmitted by the n-th user, and 7, [i] the time that is allocated to
the n-th user, in order to transmit its information. Since we have assumed that users
cannot receive and transmit simultaneously, it must hold that

T,[i] <1 -TIil]. (8.3)

Finally, it is considered that wireless power transfer is the sole energy source and,
unless otherwise stated, all nodes consume energy only for transmission.

8.3 Trade-Off Between Information Transmission
and Energy Transfer

This section focuses on the trade-off between the time that is allocated to energy
transfer and information transmission. More specifically, it is shown that the achieved
throughput is strongly affected by the time that is allocated to each phase, while for
simplicity, a single user is considered. The achievable throughput in each timeslot is
given by [35]

Py
R=rtlog, 1+ —/). (8.4)
No

Since given T, R is an increasing function of 7, it can be written as

R=(1-T)log, (1 P—V) (8.5
= —)ng(—i-NO- )

8.3.1 Single Timeslot Approach

In this subsection, we focus on a single timeslot, i.e., we assume that in each timeslot
the user only uses the energy that was harvested during the first phase. Taking into
account that R is an increasing function with respect to P, it can be replaced by %
Thus, the achievable throughput in each timeslot is given by [35]

R=0-T)I 1 XT 8.6
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Fig. 8.1 Throughput versus the time allocated to energy harvesting

where
Yy

= NoT 8.7)

Figure 8.1 shows the throughput given in (8.6) for X = 10 and X = 20 versus the
time allocated to energy harvesting. It is observed that the throughput is zero when
T =0, as well as when T = 1. Also, it is illustrated that the achievable throughput
has one global maximum, i.e., it first increases when T < T*, while it decreases
when T > T*. This can be explained as follows. With small 7', the amount of energy
harvested by the user is small. As the user harvests more energy withincreasing 7', i.e.,
more energy is available for the information transmission, the throughput increases
with T [15]. However, as T becomes larger than 7* the throughput is decreased due
to the reduction in the time allocated to information transmission. Also, it is observed
that when X = 10, T* = 0.4177, while when X = 20, T* = 0.3645. Thus, it can
be concluded that when X increases the optimal time allocated to energy harvesting
decreases. This is because when the user has enough energy to transmit, its sensitivity
to the resource of time dedicated to information transmission increases [7, 8].

8.3.1.1 Deterministic Energy Arrival

Assuming that X can be perfectly estimated, the achievable throughput maximization
problem can be written as [35]
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max R
T (8.8)
C:0<T<1.
It can easily be proved that R is strictly concave with respect to 7 in (0, 1), VX,
since it holds that [35]

d*R —Xx?

ﬁﬁ__m@xy-n«x—nT+n2<o

(8.9)

Thus, the optimal value for T in (0, 1) that maximizes R is unique and can be

obtained through
dR

— =0. 8.10
dT (8.10)

After some mathematical manipulations, the optimal value can be expressed as [35]

X—1-w (X

e

Tx-nw ()

*

8.11)

where (-)* denotes a solution value and W (x) returns the principal branch of the
Lambert W function, also called omega function or product logarithm. This function
is defined as the set of solutions of the equation x = W (x)e" ™) [5]. Note that W (x)
can be easily evaluated since it is a built-in function in most of the well-known
mathematical software packages as MATLAB, Mathematica, etc [9].

8.3.1.2 Energy Harvesting Source with Stochastic Energy Arrival

When the energy harvesting rate is nondeterministic, the appropriate metric to opti-
mize is the long- term expectation of the achievable throughput, which is denoted by
R. Next, it is assumed that X follows a Gamma distribution, i.e., X ~ I"(k, z), where
k, z > 0O refer to the shape parameter, because Gamma distribution can model accu-
rately the energy harvesting rate [21]. Note that the channel condition between the
user and the BS, described by y , is assumed to be invariable within each timeslot, thus
y is considered as constant coefficient of energy harvesting rate. The corresponding
maximization problem of the expected achievable throughput is given by

max R
T

(8.12)
C:0<T<1.

Considering the signal-to-noise ratio (SNR), there are two asymptotic cases:

e Low SNR Approximation: Under a low SNR condition, i.e., when L. < 1, R is
given by [35]
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. T
R= @E[X]. (8.13)

Apparently, in this case, R is maximized when 7 — 1. ~
e High SNR Approximation: Assuming a high SNR condition, R can be expressed

as [35] - .

where y (-) denotes the digamma function, defined by

d
v = I (k). (8.15)

The second derivative of R can be expressed as

PR ! (8.16)
ar?— W\ 170 -1T)+ %) '

4R

d1? N
lem in (8.12) is concave and has a unique solution. Finally, by setting j—? = 0and
after some mathematic manipulations, the value of T which corresponds to the

solution of (8.12), for the high SNR approximation, is given by [35]

Apparently, it holds that < 0,for0 < T < 1 and, thus, the optimization prob-

~ 1
= —M. 8.17
W(zev®-1) +1 ®.17)

Note that the derived solution is suboptimal, i.e., it does not necessarily maximize
the throughput in (8.6).

8.3.1.3 Comparison Between the Deterministic and the Stochastic Case

Next, the stochastic and the deterministic case are compared in terms of time dedi-
cated to energy harvesting and average throughout versus the parameter k, assuming
that k = z. Note that lower value of k implies lower average X. For reference, the
throughput when T = 0.5, i.e., the half-half case, is also depicted.

As itis shown in Fig. 8.2 the solution of the optimization problem in (8.12), which
corresponds to the stochastic case, usually leads to the selection of lower value of
T than the optimal one that is selected when the optimization problem in (8.8) is
solved. Therefore, as it can be observed in Fig. 8.3, the deterministic case slightly
outperforms the stochastic case for all values of k. This is reasonable, since in the
former one the optimal save-ratio can be exactly derived, in contrast to the second
one, where only the expected optimal choice can be made.
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On the other hand, both the deterministic and stochastic cases outperform the half-
half, which validates that both schemes can efficiently use the level of knowledge of
the energy harvesting rate in order to maximize the throughput [35].

8.3.2 Multiple Timeslots Approach

Letus consider M — oo timeslots. For simplicity, it is assumed that the user harvests
energy solely from the signals transmitted by the BS, i.e., during the first phase the
BS has the PB functionality. The average throughput can be written as [14, 27]

1 T (8.18)

1 _
Ru =~ ;(1 — T[i]) log, (1 +

where poli] = P]fi,—lo” and g[i] =y [i1%.

Next, a scheme for jointly optimal allocation of pg[i] and T'[i] is discussed, which
aims to the maximization of the average throughput. This scheme is feasible if, in
each timeslot i, the BS has perfect CSI. The corresponding optimization problem

can be written as
max Ry,
T,p

st. C:0<Tli] <1, (8.19)
C:0< po[i] < Prax,

Cs: & M polilT[i] < Pues

where P and Py are the (normalized by the AWGN power) maximum and average
available BS transit power, respectively, with T and p being the vectors with elements
T[i], Vi and pl[i], Vi.

The optimization problem in (8.19) can be easily be transformed to a convex one
by utilizing the change of variables ¢[i] = po[i]T[i]. The transformed problem is
given by [14]

max R,
T
s.t. (_:1 :0 < T[l] < 1, (820)
Cy: 0 < eli] < PonaxT[i],

Cs: o 2 elil < Paygs

where ¢ is the vector with elements &[], Vi. In the above, R, is given by

M
_ 1 -
M=M§%M (8.21)
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where

ng[ils[i]) . (8.22)

Rip[i] = (1 — T[i]) log, (1 + 1-T0]

The convexity of (8.20) can be easily proved since its objective function is the
summation of concave functions and all the constraints are linear. Note that the
terms, R[], are concave because the eigenvalues, ¢;[i], j = {1., 2}, of their Hessian
matrices, #[i], are both nonpositive. These are given by ¢[i] = 0 and

glilPn*(elil? + (T1i] — 1)%)
(1 + glilnelil — TLHED2(T[i] — 1) In(2)

hali]l = <0. (8.23)

Thus, J#°[i] is negative semi-definite for all ;.
The Lagrangian of the transformed problem is given by [14]

M M
LA, u,T,&) = Ry — ;mi] (eli] = Puar TIi1) — A(% > elil— Pavg),

i=1

(8.24)

where the nonnegative Lagrange multipliers (LMs) u[i] and 4, and are associated
with the right side of the constraints C, and C, respectively. Note that the constraint
C; and the left side of the constraint C, will be absorbed in the Karush—Kuhn—Tucker
(KKT) conditions. Using the KKT conditions, p;[i] is given by [14]

. Pmax: ’78[1] > /17
il = 8.25
Polil ’ 0, otherwise, ( )

where T'[i]* is the root of the following equation [14]

w) AP = 1811] P (8.26)

log (1 M T T T+ 78l Pra T L]

Finally, constant 4 is estimated by an iterative algorithm such as bisection method.

8.4 Trade-Off Between Decoding Complexity
and Performance

Next, we assume multiple users, while we focus on a single epoch, and we consider
two multiple access schemes, namely TDMA and NOMA. After maximizing the
sum-throughput, we further compare the considered schemes in terms of performance
and fairness.
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8.4.1 TDMA Protocol

In this subsection, we assume that the users transmit their independent information
to the BS by TDMA. Considering the amount of time that is allocated to each user
[15],

N
> t<1-T. (8.27)
n=1

8.4.1.1 User Throughput

Taking into account (8.6), the achievable throughput of the n-th user can be written

as [15]
n Pl’l T n
R, = 1,l0g, (1 + & ) — 1, log, (1 + M) . (8.28)
Ny Tn
8.4.1.2 Sum-Throughput Maximization
The sum-throughput of all users is given by [15]
N
Ram = Z Ry, (8.29)

and the corresponding sum-throughput maximization problem can be formulated as
[15]

max R,

T,t
C:T+YN 0, <1, (8.30)
C,:T >0,

C,:1,>0,Vne N

The eigenvalues of the Hessian matrix of R, denoted by ¢;, i € {1, 2} are given by
¢ = 0and
&Pyt + T2

¢)2 T Tn (Tn + &n 7/,00T)2 1I1(2)

0, (8.31)

i.e., they are both nonpositive. Thus, R, is jointly concave with respect to T and
7,, since its Hessian matrix has nonpositive eigenvalues and, thus, it is negative
semi-definite. Therefore, since Ry, is the summation of concave functions, i.e.,
R,, it is also concave [2]. Besides, all the constraints are linear. Consequently,
the optimization problem in (8.30) can be also solved by using conve optimization
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techniques. Next, this problem is solved using dual decomposition. For this reason,
the Lagrangian of (8.30) is needed which is given by

N
L(/l,r,T)=Rsum—/I(T+Zrn—1), (8.32)
i=1

where 4 is the LM that corresponds to the constraint C; and t the vector with elements
7.

Using the KKT conditions, the optimal time allocated to EH and information
transmission by the n-th is given by [15]

7F—1

* y— (8.33)
" o= P8 (8.34)
"OA+z -1 '
where z* is the unique solution of the following equation:
zln(z) —z—A+1=0 (8.35)

and A =np Y g

8.4.2 NOMA Protocol

In this subsection, we assume that the users transmit their independent information to
the BS utilizing NOMA [7, 8]. NOMA is substantially different compared to TDMA,
since the power domain is used to achieve multiple access, while SIC is carried out
at the BS [1, 11, 33].

8.4.2.1 User Throughput

Next, the user throughput is defined assuming that the users’ messages are decoded
in an increasing order of their indices. It is worth pointing out that different decoding
order does affect individual rates, and this will be discussed in the next subsection.
Therefore, for decoding the first user’s message (n = 1), interference is created due
to all other users n = 2, ..., N, while on the second user’s message, interference is
created due to users n = 3, ..., N, and so on. Then, the throughput of the n-th user,
1 <n<(N-1),isgiven by [1, 7]

fan.ye@stonybrook.edu



198 P.D. Diamantoulakis and G.K. Karagiannidis

Pngn
R,=(1—-T)log,{ | + —5
2 j=n1(Pjgj) + No

1pTgn (8.36)
=(1-T)log, [1+ ——=—|,
npT 21 8i
17t
while the throughput of the N-th user is
T
Ry = (1 —T)log, (1 n ’71’) gTN) . (8.37)

8.4.2.2 Sum-Throughput Maximization

Interestingly, the decoding order does not affect the system throughput in NOMA
uplink, and any arbitrary decoding order can be assumed to define the system through-
put. Thus, taking into account (8.36) and (8.37) the system throughput achieved by
NOMA is [7, 8]

N—1 N 1—-T N 1-T
(1-1) (logz(angi+T)—logz(np > gi+T))+

n=1 i=n i=n+1
1-T 1-T A
(1—=T)|log, npgn + —— ) —logy | — = -=T)log{ 1+ =]
T
(8.38)

The corresponding optimization problem, which aims at maximizing the system
throughput, can be written as

max Rym
T

(8.39)
C:0<T <1
Similarly to (8.9), it can easily be proved that Ry, is strictly concave with respect
to T in (0, 1). Thus, the optimal value for 7 in (0, 1) that maximizes Ry, is unique
and can be obtained through
dRsum

=0. 8.40
dT ( )

After some mathematical manipulations, it can be easily shown that 7* is given by
(8.33).
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8.4.3 Comparison Between TDMA and NOMA in Terms of
Fairness

In order to compare TDMA and NOMA, we assume two users which are located at
different distances from the BS. It is assumed that the path loss is given by L, =
10‘3dn‘ 2 [15], where d,, is the distance between the n-th user and the BS. We further
assume that dy = 5 m, d» = 10 m, and Ny = —114 dBm. All statistical results are
averaged over 10° random realizations. The main focus of the simulation results is
the comparison of the two schemes in terms of fairness.

In Fig. 8.4 the average minimum throughput achieved by both TDMA and NOMA
is illustrated. For reference, the normalized sum-throughput (i.e., the sum-throughput
divided by the number of users, Rj;‘“ ) is also depicted. It is evident that both NOMA
and TDMA achieve the same normalized sum-throughput, however, the application
of NOMA results in a notable increase of the minimum throughput for the whole
range of Py. Thus is because the throughput region achieved by NOMA is different
from conventional rate region achieved by TDMA [7, 8].

Also, in order to fairly compare the two schemes in Fig. 8.5, we use the Jain’s
fairness index, which is given by [1]

(S0 R)

J=n (8.41)
N 2
N Zn:l Rn
7 H T H T T
. —=&— Normalized sum-throughput
E 6 -{--|{—®— Minimum-throughput (NOMA) s
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Fig. 8.4 Comparison of NOMA and TDMA in terms of minimum throughput
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Fig. 8.5 Jain’s fairness index comparison

Note that J is bounded between 0 and 1, with unitary value indicating equal users
throughputs. It is evident from Fig. 8.5 that NOMA provides more fairness compared
to TDMA. Consequently, taking into account that NOMA increases the decoding
complexity, there is a clear trade-off between fairness and decoding complexity.
However, it should be noted that the implementation of NOMA in the uplink is
not a burden for the users, since the encoding complexity at the users’ side is not
affected, while their synchronization is usually simpler than the case of TDMA. Thus,
employing NOMA is an efficient possible solution in order to increase fairness in
wireless powered communication networks.

8.5 Trade-Off Between Fairness and Performance

In this section, we focus on methods that can be used to increase the fairness among
users when TDMA is used. Note that similar methods can be also adopted in the
case of NOMA, which, however, is out of the scope of this chapter. The interested
readers are referred to [7, 8] for further information.

8.5.1 Weighted Sum-Throughput

In order to consider fairness, the weighted sum-throughput can be used and maxi-
mized, which is given by
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N
Ry = Z a,R,. (8.42)
n=I

In the above, higher d,, implies higher a,, however the exact values of @, depend
on the specific application. The formulation and the solution of the corresponding
optimization problem is similar to the one in (8.30). An alternative to the maximiza-
tion of the weighted sum-throughput is the rate-profile method, which will be further
discussed in the following subsection.

8.5.2 Rate-Profile Method

In order to realize the rate-profile method, the rate-profile vector needs to be intro-
duced, which is denoted by b = {by, b,, .., by} and defined as

R,

b, =
! Rsum

, (8.43)

where R, denotes the required throughput of the n-th user and is given by (8.28).
Note that the vector b is specified by the specific application. For example, if b, > b,
it means that the n-th user requires higher rate than the m-th user.

The corresponding fairness aware optimization problem can be written as

m?x min(f—l‘, 1;—22, s %)
N
Ci:T+2, =l (8.44)
C2 T > 0,

C:1,>0,Vne 4.

The objective function of the optimization problem in (8.44) is not a purely ana-
lytical expression. For this purpose, (8.44) is transformed into its epigraph form by
utilizing the auxiliary variable R. Therefore, it can now be written as [15]

max R
T,t
C:T+XYY 0, <1,
C,:T >0, (8.45)
C:1,>0,Vne N,
Cy: % > R

n

Note that the optimization problem in (8.45) is concave and, thus, it can also be
solved by dual decomposition. Its Lagrangian is given by

fan.ye@stonybrook.edu



202 P.D. Diamantoulakis and G.K. Karagiannidis

N N
L R, -
L(IU,A.,T,T,R)ZR_,U(T—}— E Tn_1)+ E /ln (b__R)a (846)
n=1 n=1 n

where 1, and u are the LMs that correspond to the constraints C4 and Cy, respectively.
The dual problem is given by

i L(u,\t,T,R 8.47
TR LR TR, o

where A is the LM vector with elements 4,,. Considering the parts of the Lagrangian
related to R, it holds that

max (1= 3" 7a) R= HO Tyt = 1 (8.48)

R o0 otherwise.

Thus, the dual problem in (8.47) is bounded if and only if Zf,v:l An = L. By setting
N-1

In=1-=>"I, (8.49)
n=1

in (8.46), the variable R vanishes and the dual problem in (8.47) is simplified to

min  max L(u,\, T, T). (8.50)

Where lN‘(,u’ )"s T, T) = L(,“» A', T, Ta R)|(8.49)-
According to the KKT conditions, given 1*, the optimal 7 and T are given by

1
"= ————, (8.51)
N npga
1+ Zn:l z
1P
Z*
= (8.52)
n N upgn’
1 + Zn:l z
where z¥, Vn € .4 is the solution of the following set of equations:
N
n b /ll’l n
In(1+2,) - —— = 8 (8.53)

14z, B Z =1 bn(l + za)

Since the dual function in (8.50) is differentiable, it can be solved iteratively. In
each iteration, 7 and t are calculated for a fixed LM vector, using (8.51) and (8.52),
while A is then updated using the gradient method as follows [2, 3]
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Jalt + 1] =[z [1] = Aalf] (—10 2(1+ ’”’"g”T)

n n

T +
— IV Jog, (1+M)>} Vnefl,,N—1,
by TN ,

where ¢ is the iteration index, ;In, n € {l,..., N — 1} are positive step sizes, [-]* =
max(-, 0), and %, denotes the projection operator on the feasible set

(8.54)

Uy = ] D2 = 1), (8.55)

n—1
The projection can be simply implemented by a clipping function [/1”] (1)72":‘ “ and

Ay can be obtained from (8.49). Since Problem 1 is concave, it is guaranteed that
the iterations between the two layers converge to the optimal solution if the size of
the chosen step satisfies the infinite travel condition [3]

oo
Zin[t] =oo,nefl,..,N—1}. (8.56)
=1

Finally, the optimal R can be evaluated by

*
R* = min (Z—”logz (1 n ”pf” )) (8.57)

neN "

where T* is given by (8.51). This is because R* is actually limited by the most
stringent constraint.

8.5.3 Common Throughput Maximization

The common throughput approach corresponds to the rate-profile method with para-
meters b, = %, Vn € A [15]. This approach guarantees equal throughput alloca-
tions to all users, while it maximizes the sum-throughput, which now is defined as
Reum = N R. Notice that the sum-throughput maximization in (8.30) and the com-
mon throughput maximization deal with two extreme cases of throughput allocation
to the users in a wireless powered communication network where the fairness is
completely ignored and a strict equal fairness is imposed, respectively.
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8.5.4 Comparison of Fairness Aware Schemes

Next, we compare the three aforementioned fairness aware approaches, i.e., the
weighted sum-throughput maximization, the rate-profile method, and the common
throughput maximization, in terms of performance and fairness. To this end, in
Fig.8.6 the sum and the minimum throughput are illustrated when 7 and T are
set according to each one of the aforementioned methods. The simulation para-
meters are set according Sect. 8.4.3. Besides, we assume that a; = 1,a, =2 and
by =2/3,b, = 1/3 for the rate-profile method and the weighted sum-throughput
maximization, respectively. This means that for the sum-throughput maximization
the user with d, = 10 m has double weight than the user with d,, = 5 m, while for
the rate-profile method the user with the longer distance from the BS must achieve at
least half the throughput that the other user achieves. As one can observe, there is a
trade-off between the sum-throughput and the minimum throughput. The rate-profile
method achieves a good balance between the sum and the minimum throughput,
while for the high region of Py, it outperforms the weighted sum-throughput maxi-
mization both in terms of throughput and fairness. On the other hand, the common
throughput maximization achieves the highest minimum throughput and the lowest
sum-throughput. Consequently, it should be selected when it is critical for the users
to transmit with equal rate, such as when only symmetrical rates are permitted.

6.5 T T T T T r r T T T . . i .
6 O—- —4A—  Weighted sum-throughput maximization (a,=1, a,=2) 7
55 1| —®— Rate-profile method (b,=2/3, b,=1/3)

Average throughput (Mbps)

: : N Minimum-throughput
0.0 T T T T T — T T T T

0 5 10 15 20 25 30 35 40
P, (dBm)

Fig. 8.6 Comparison among fairness aware schemes
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8.6 Trade-Off Between Energy Efficiency and Throughput

Next, we focus on the energy efficiency optimization when TDMA is utilized, while
we consider two different cases: (i) negligible processing cost, (ii) nonnegligible
processing cost.

8.6.1 Negligible Processing Cost

Assuming that energy is consumed only for transmission, the efficiency of the energy
transmitted by the BS, denoted by Ue¢, and defined as the ratio of the sum-throughput
and the consumed energy

Uetr = . (8.58)

It can easily be shown that U is maximized when T — 0.

In Fig. 8.7 the EE versus Py is depicted when T and t are chosen in order to maxi-
mize the sum-throughput, i.e., by solving (8.30) or (8.39). The simulation parameters
are set according to Sect.8.4.3. As it can be observed, the EE is decreased consid-
erably when the value of P is increased. On the other hand, as it has already been
illustrated in Fig. 8.4, the sum-throughput increases as Py increases. Consequently,
there is a clear trade-off between achievable throughput and EE. More details about
this trade-off have been presented in [32], where a detailed power consumption model

Average energy efficiency (kbps/J/Hz)

BB g » om omom
0 T T n

Fig. 8.7 Average energy efficiency when the sum-throughput is maximized
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has been considered, taking into account the circuit power consumed for hardware

processing. Part of this work will be discussed in the next subsection.

8.6.2 Nonnegligible Processing Cost

The EE maximization problem when the processing cost is nonnegligible can be
expressed as [32]

Z:; 1 logy (1+py yn)

max
T.wp0.0 No(poT (L=, ) +p T+X0, (2 T+0"5,))

Cl * Pn = PmaXa

C:T+YN 7 <1, (8.59)

Cs: 2+ p'ty < npoTyn,Vn € N
Cy:T>0,7,>0,Vn e N,
Cs:po=0,p,20,Vn e N,

where p is the vector with elements p,, Vn, p, = %, ¢ and ¢ are the efficiency of
the power amplifiers of the BS and the users, respectively. Also, p’ and p” denote
the constant circuit power consumption (normalized by the AWGN power) of the BS
and the users, respectively.

Using once more the dual decomposition and KKT conditions, the optimal power
and time allocation can expressed as [32]

= : L (8.60)
Pn = Noee*In(2)  y,] '

1
T* = —, (8.61)
1+ ”Pmax zr]lv:] Noy”:?yc;,,
log, ( Noeey In2) )

Noynee)

B (8.62)
log, (Noe:j‘,y Tn(Z))

7, = 1 Pyax T

where ee); is the maximum EE of user n and can be easily obtained using the bisection
method [2].

8.7 Conclusions

In this chapter, we have reviewed several trade-offs in wireless powered communica-
tion networks, when the harvest-then-transmit protocol is adopted. More specifically,
we have focused on the dependence between harvested energy, achieved throughputs,
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fairness, decoding complexity, and energy efficiency. Extensive simulations have
shown, among others, that the increase of the energy arrival rate reduces the por-
tion of time that is allocated to energy harvesting, and that NOMA can be used
to increase fairness. Finally, they reveal an interesting trade-off among efficiency,
sum-throughput, and fairness.
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Chapter 9

Simultaneous WPT and Wireless
Communication with TDD Algorithm
at Same Frequency Band

Naoki Shinohara

Abstract A wireless sensor network is considered a game changing technology.
Currently, the power of the sensors is limited by the limits of the batteries. This
chapter investigated wireless power transfer (WPT) via radio wave or microwave for
a batteryless and wireless sensor network. In this study, a WPT assisted ZigBee was
proposed as a low power wireless sensor. In particular, to suppress the interference
between the WPT and the wireless communication, a time division duplex WPT
(TDD-WPT) was proposed to enable the coexistence of WPT and ZigBee on the same
frequency band. A scheduled TDD-WPT that can automatically transmit wireless
power between the wireless communication devices was suggested and examined
through an experiment.

9.1 Introduction

Wireless sensor networks are increasingly attracting significant attention for appli-
cations in monitoring systems such as energy conservation systems for buildings and
houses, traffic management systems, and environment monitoring. Several wireless
sensor terminals are scattered over a wide area, and send and receive monitoring
information through an ad hoc network. The collected information is utilized to
actively control various infrastructures, such as electric power consumption.

A critical issue of the wireless sensor network is the method of supplying electric
power to sensor terminals. Although the power consumption of the sensor terminals
is quite small, primary batteries must be changed periodically. Thus, the running
costs of the wireless sensor network are expensive. Wired power supply can provide
stable operation of the sensor terminals. However, it confines the installation location
and burdens the wireless sensor network with wired cost. Natural energy utilization
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Fig. 9.1 Commercial wireless sensor using WPT in the 920 MHz band

like solar cells with a charging system can drive the sensor terminal permanently.
Nevertheless, as they have unstable natural energies, their installation locations and
regular operations are limited.

We, therefore, suggest wireless power supply to the sensor terminals by a wire-
less power transfer via microwaves (microwave power transfer: MPT), to realize
a fruitful wireless sensor network. The MPT is able to provide stable power for
the sensor terminals. It transmits power for long distances, simultaneously supplies
power for multiple terminals, and drives the terminals without batteries [1]. Hence,
the utilization of MPT for the wireless sensor network allows the provision of new
applications of the wireless sensor network in addition to the traditional applica-
tions. The DENGYO corporation in Japan provided a commercial wireless sensor
using WPT in the 920MHz band (Fig.9.1, [2]). The application distance is less
than 5 m. The RF-DC conversion efficiency is approximately 60 %. The proposed
application of the wireless sensor includes sensing in high temperature environ-
ments (85C120C), sensing on a rotating or moving object, and sensing in severe
environments such as outdoor or marine environments. The DENGYO corporation
developed a high efficiency rectenna, rectifying antenna with a RF-DC conversion
efficiency of approximately 86 % at 2.45 GHz, and 7 W [3].

A wireless sensor network system for disaster relief, as shown in Fig. 9.2 is a good
example of the application of the sensor system. Wireless sensor terminals located
in different places normally sleep. However, they work in emergency situations by
receiving the power from vehicles or helicopters via long range MPT. The activated
terminals can collect and send disaster information via short-range wireless commu-
nication. On July, 2015, the Japanese WPT consortium of Wireless Power Transfer
Consortium for Practical Applications (WiPoT [4]) conducted a WPT assisted sensor
experiment with a small drone (Fig.9.3). The drone carried a microwave power trans-

fan.ye@stonybrook.edu



9 Simultaneous WPT and Wireless Communication with TDD ... 213

== = Microwave power transmission

<——> Short-range wireless communication

Fig. 9.2 Conceptual image of a wireless sensor network system for disaster relief
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Fig. 9.3 WPT assisted batteryless sensor experiment with a drone at Kyoto University (July 16,
2015)
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Fig. 9.4 Conceptual image of energy harvesting through radio communications in the microwave
band

mitter and a transmitting antenna to provide the microwave power to the sensors on
the ground. A proposed application was to find a victim by using the batteryless posi-
tioning and vital sensor. Another application involved using the batteryless sensor to
measure an active volcano even when the volcano was buried by volcanic ash. In the
experiment, 8.74 W of microwave power was provided over 5.8 GHz frequency from
a flying drone at 4 m height. The sensor received and rectified the microwave power
to 6.1 mW direct current. A WiFi radio wave was used by the sensor to transmit
thermal data to a base station.

The batteryless sensor can be driven by both the transmitted microwave power and
wireless communication radio wave if the sensor does not require high power. This
technology is known as “energy harvesting” from radio communication [5]. As shown
in Fig. 9.4 mobile communication systems and wireless local area network systems
are potential candidates for energy harvesting sources in the microwave band. In
2009, energy harvesting systems that received VHF or UHF energy from TV towers
were reported [6]. University of Washington group proposes WISP (Wireless Iden-
tification and Sensing Platform) system with the WPT and the energy harvesting.
They have developed “PoWiFi” system, energy harvesting from WiFi, for temper-
ature sensor, battery-free camera, and Li-Ion Battery Charger [7]. European group
proposes hybrid energy harvester from radio wave and from solar [8] or heat [9] or
additional WPT [10] to increase harvesting energy.

Typically, anonmodulated and continuous microwave is used for the MPT. Hence,
a wave spectrum for the MPT is relatively pure as shown in Fig.9.5. However, the
power of the MPT is usually higher than that of a wireless communication because of
user requirement such as a sensor. Different frequencies like the 5.8 GHz band for the
MPT and WiFi for the wireless communication are normally used in order to suppress
an interference between the WPT and the wireless communication and allow their
coexistence. Unfortunately, there are no radio wave regulations for the WPT and the
MPT, and there is no specified frequency for the MPT. These issues are still under
discussion. The MPT experiments in previous studies were performed with ISM
(industry, scientific, and medical) bands such as 2.45 and 5.8 GHz. Currently, WiFi
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Fig. 9.5 Typical wave spectrum for MPT (by GaN HPA developed by Mitsubishi Electric. and
Kyoto University)

and the other wireless communication applications are on the ISM band. Thus, it is
important to consider the coexistence of the MPT and the wireless communication
in various ways.

9.2 Time Division Duplex WPT (TDD-WPT)

9.2.1 TDD-WPT Assisted ZigBee

The MPT continues to use ISM bands such as 2.45 and 5.8 GHz. Presently, the WiFi
and the other wireless communications use the ISM band, and there is no special
frequency band for the MPT. Hence, time division duplex WPT (TDD-WPT) was
proposed to enable the coexistence of the MPT and the wireless communication.
For example, as shown in Table9.1, ZigBee requires very low power. Therefore,
ZigBee is considered as a suitable sensor device with the WPT. The ZigBee uses a
2.45 GHz frequency band for the wireless communication. ZigBee device transmits
information intermittently between a router and an end device as shown in Fig.9.6.
Thus, interference will be suppressed if the wireless power is transmitted between
the intermittent ZigBee wireless communications even at the same frequency band
(2.45 GHz band). Moreover, the MPT and ZigBee can coexist at the same frequency
band. Hence, the TDD-WPT for the ZigBee as shown in Fig.9.7 was proposed and
experiments were conducted to demonstrate the coexistence of the MPT and the
wireless sensor.
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Table 9.1 Average power consumption of ZigBee devices (IEEE802.15.4/ZigBee Evaluation and
Development Kit TWE-EK-001)

Device type As joined in the network (mW) | As not joined in the network (mW)

End device 9.46 61.8

Router 57.4 57.1

2.96 ms
23.4 mA
2.13 mA
p 1.14s =y
SRS R . WERS |

Fig. 9.6 Typical ZigBee wireless communication timing
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Fig. 9.7 Image of TDD-WPT assisted ZigBee sensor

In this study, IEEE802.15.4/ZigBee Evaluation and Development Kit TWE-EK-
001 produced by Tokyo Cosmos Electric Company (TOCOS) was used as a ZigBee
device. The devices were driven by a range of direct currents from 2.7 to 3.6 V.
JN-AN-1122 produced by NXP Semiconductors were also installed in the devices
as applications of the ZigBee sensor network.

A coordinator, a router, and an end device configured the ZigBee network. The
coordinator was simply a device in a network that coordinated the network. The
router relayed data and sensing information from other routers and end devices. As
the functions of the end device are limited to sending data and sleeping (when no
data is sent), its power consumption is lower than the others. However, as the end
device is not part of a network, it requires a large amount of power temporarily for
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joining a network. The MPT in this study supplies the end device in the form of a
sensor device. The router and the end device woke up after sleeping for 1 s. They
were awake for 0.14 s, and sent data for approximately 2 ms of the 0.14 s. They took
approximately 2s to scan all channels of the ZigBee communication in 2.4 GHz
band, when they attempted to join the network. If the coordinator did not receive
data from the routers and end devices for 15 s, then it (the coordinator) dropped them
from its network. Once a device was out of the network, it had to go through the
necessary steps in order to rejoin the network.

The final goal of this study was to demonstrate a batteryless sensor. Nevertheless,
a small battery or a capacitance was also used to reduce microwave power and to
increase sustainability of the sensor.

9.2.2 Microwave Power Receiver (Rectenna)

A rectenna (rectifying antenna) was required as a receiver of the MPT. The rectenna
is a passive element with rectifying diodes that operates without an internal power
source. It can receive microwave power and rectify it to produce DC power. A general
block diagram of a rectenna is shown in Fig. 9.8. A low-pass filter is installed between
the antenna and the rectifying circuit to suppress reradiation of higher harmonics from
the diodes. An output filter is used to stabilize the DC current and to increase RF-DC
conversion efficiency. Various antennas and rectifying circuits can be applied. Their
selection depends on the requirements for a wireless power system and its users. A
frequency dependence of a RF-DC conversion efficiency of the rectenna developed
in the past is shown in Fig.9.9. The maximum RF-DC conversion efficiency was
approximately 90 % at 2.45 GHz band.

The RF-DC conversion efficiency shown in Fig.9.9 was obtained with a con-
tinuous microwave. However, the TDD-WPT system requires the estimation of the
RF-DC conversion efficiency of the rectenna with an intermitted microwave. For the
following experiment, a new rectenna was developed. A circular patch antenna was
adopted as the receiving antenna in this study. The measured antenna gain was 6.5
dBi. A single-shunt type RF-DC rectifier was developed. The shingle-shunt rectifier
could theoretically rectify the microwave by 100 % with a single diode [11]. The
Schottky barrier diode (Avago HSMS-2860) was adopted as a rectifier diode. The

mmad == - || Output |
S | IO Filter

Microwave | tenna LPF with *
—_——— | | Capa- DC
- ; | sitance To Load

Fig. 9.8 General block diagram of a rectenna
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measurement results of RF-DC conversion efficiency are shown in Fig.9.10. In the
CW microwave case, the rectifier provided the maximum RF-DC conversion effi-
ciency of 65 % at 2.46 GHz when the output load was 138.1 Q [12]. The RF-DC
conversion efficiency started decreasing at an input power of 180 mW. This decrease
in the conversion efficiency was related to the breakdown voltage of the diode.

We also investigated RF-DC conversion efficiency when the intermittent
microwave was input to the rectifier. The duty ratio of the intermittent microwave
changed from 1 (CW) to 0.1. The pulse frequency was 1 kHz, and the average input
powers were 16, 65, and 101 mW. As the average input power was fixed, the peak
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input power was dependent on the duty ratio. The peak input power was equal to the
average input power at the duty ratio of 1. In contrast, it was 10 times the average
input power at the duty ratio of 0.1. Figure9.11 shows the measurement results of
RF-DC conversion efficiency in the intermittent microwave case. Interestingly, the
RF-DC conversion efficiency depended on the peak input power. Even if the average
power was small, the maximum RF-DC conversion efficiency could be obtained by
adjusting the duty ratio of the intermittent microwave. The RF-DC conversion effi-
ciency decreased at low duty ratios when the average input power was 65 and 101
mW. This was because the peak input power exceeded the input power of 180 mW.

The measurement results indicated that the rectenna output voltage exceeded
4V at the input microwave power of 180 mW. In comparison, the ZigBee input
voltage should be in the range from 2.7 to 3.6 V. Therefore, a step-down DC-DC
converter (Texas Instruments TPS62120) was adopted as DC-DC converter. This
DC-DC converter provided an efficiency of over 90 % in an output voltage range of
approximately 3 V.

9.3 Coexistence of MPT and ZigBee uncontrolled-

Experimental measurements of electromagnetic compatibility between MPT and
ZigBee were first performed to investigate how the MPT affected the ZigBee [13].
Moreover, the measurements contributed to fix the frequency and maximum trans-
mitting power of MPT in this study. Two indices were evaluated and defined on MPT
power density, namely communicable power density (CPD) and joinable power den-
sity (JPD). CPD was the threshold of MPT power density that did not affect the
ZigBee. That is, when a ZigBee device joined the network, it could communicate
with another ZigBee device under the CPD. JPD was the threshold of MPT power
density under which a ZigBee device could join in the network. The CPD was gen-
erally larger than the JPD.
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9.3.1 Measurement Setup

Figure9.12 shows the experimental configuration. The ZigBee frequency was set
to 2.46 GHz (22 ch). The network had just two devices, namely, a coordinator and
an end device. First, the coordinator, which was put behind the transmitting horn
antenna, established communication with the end device. Then, the end device was
irradiated with a nonmodulated microwave as an alternative to MPT. The CPD was
measured by increasing the nonmodulated microwave power until the communication
was disabled. Subsequently, the JPD was measured by reducing the nonmodulated
microwave power until the coordinator reestablished communication with the end
device.

We investigated two types of nonmodulated microwave irradiation, namely, CW
microwave irradiation and intermittent microwave irradiation. The nonmodulated
microwave turned on and off under the conditions of a pulse frequency and a duty
ratio, during the intermittent microwave irradiation.

9.3.2 Measurement Results of CW Microwave Irradiation

The CW microwave irradiation was conducted to a ZigBee end device, by changing
the frequency from 2.4 to 2.5 GHz (20 MHz step). The maxima of the CPD and JPD
were measured at all the frequency points.

The experimental results of the CPD and JPD are shown in Fig.9.13. At all
the frequency points, the CPDs were lower than 1 mW/cm?. This is the maximum
power density determined by International Commission on Nonlonizing Radiation
Protection (ICNIRP, 1998). The power density of 5 pW/cm even interrupted the
ZigBee at approximately the ZigBee frequency. These results indicated that it was
quite difficult for the CW MPT to be compatible with the ZigBee to wirelessly supply
sufficient power for a ZigBee device.
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Fig. 9.13 Measurement results of the CPD and JPD when the ZigBee end device was irradiated
with a CW microwave

9.3.3 Measurement Results of Uncontrolled Intermittent
Microwave Irradiation

Under the same conditions as shown in Fig. 9.12, the intermittent microwave irradi-
ation was conducted to a ZigBee end device. The intermittent microwave frequency
was fixed at 2.46 GHz. This is the point at which the lowest maximum of the CPD and
JPD was obtained in the CW microwave irradiation case. The intermitted microwave
irradiation was not synchronized with the ZigBee. The end device was irradiated
with the intermittent microwave, within the pulse frequency ranging from 1 to 200
Hz, and the duty ratios of 0.1, 0.5, and 0.9.

As seen in the experimental results, 1.91 mW/cm? of the peak power density with
any duty ratios allowed the end device to participate in the network and communicate
with the coordinator. This implied that when the MPT frequency was the same as the
ZigBee frequency, the CPD and JPD of the intermittent microwave was more than
108 times greater than those of CW microwave.

The error rates of ZigBee during the intermittent microwave irradiation were also
measured. The experimental results under the peak power density of 1.91 mW/cm?
are shown in Fig.9.14. Because the peak power density was fixed in the measure-
ments, the average power density was dependent on the duty ratio as follows: 0.191,
0.955, and 1.72 mW/cm? at the duty ratios of 0.1, 0.5, and 0.9, respectively. The
experimental results shown in Fig.9.14 suggested that the ZigBee end device could
communicate with the coordinator almost perfectly at the duty ratio of 0.1. Con-
versely, it was difficult for the ZigBee end device to send data in a stable manner at
the duty ratio of 0.9.
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In the measurements, interference occurred stochastically because the period of
intermittent microwave irradiation was irrelevant to that of ZigBee. Therefore, it was
important to build a scheduling rule between the intermittent MPT and ZigBee for a
robust wireless sensor network with MPT.

9.4 Coexistence of MPT and ZigBee-Scheduled
and Single-end Device

As described in the previous section, the MPT and the ZigBee wireless communi-
cation could coexist at the same frequency band even if the microwave transmitted
continuously. However, the microwave power required to suppress an interference to
the ZigBee was not sufficiently large to drive the ZigBee. Hence, a scheduled inter-
mitted MPT to the ZigBee should be considered [14]. In this section, the number of
ZigBee end devices was assumed to be one.

Power supply microwave should be transmitted to a ZigBee end device in two
states. The first state occurs when a capacitor has no charged energy for the end device
to start up and join the network. It is also necessary for the power supply microwave
to radiate while the end device is awake in this state. Then, after the device joins the
network, the device is allowed to sleep. The power supply microwave must radiate
only while the device sleeps for robust communication. This is the second state.

Based on the above points, to save time and effort for finding some settings of the
intermittent transmission experimentally, a transmission scheduling was developed
for robust communication. The developed algorithm of the transmission scheduling
is shown in Fig. 9.15. First, after a coordinator set up its ZigBee network, the trans-
mission scheduling was started. An end device was supplied power to start up and
join the network during the time T1. The end device then tried to join in the network
while the transmission paused during the time T2. If the device did not join after the
time T2 since transmission paused, the scheduling algorithm returned to the step in
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Fig. 9.15 Algorithm of the transmission scheduling for MPT

which power supply microwave radiates for the end device started. The end device
slept when it joined the network. Power transmission restarted and continued for the
time T3, which was shorter than the time when the end device woke up. Follow-
ing this, whenever the end device sent data and slept, it was supplied power for the
time T3. It was determined that if the time T4 passed without sending data to the end
device, then the end device does not work because of insufficient energy stored in the
capacitor. In this case, the algorithm returned to the first step. The scheduling algo-
rithm did not require any extra revisions of the ZigBee. The algorithm automatically
recognized the timing of the ZigBee wireless communication and the microwave
power automatically transmitted between the wireless communications.

The transmission scheduling program was installed in a coordinator besides a
program of ZigBee sensor network. Then, an experiment was conducted to confirm
that the developed transmission algorithm was compatible with the ZigBee network.

The experimental configuration is shown in Fig.9.16. The number of times when
a ZigBee end device failed to send data for 24 min was measured. A stabilized DC
power supply was used as the power source of the end device. The output signal
of the ZigBee coordinator determined whether or not the microwave power supply
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Fig. 9.16 Experimental configuration of transmission scheduling

Table 9.2 Values of temporal parameters in the experiment of transmission scheduling
T1 (s) T2 (s) T3 (s) T4 (s)
4 3 1 15

microwave radiated. This was the “MPT control signal.” The microwave power
supply radiated in the case with the MPT control signal of 0.5V or more input
to a signal generator. Conversely, the microwave power supply paused with a MPT
control signal of less than 0.5 V input to the signal generator. Due to the insufficiency
in the coordinator’s maximum output current, a voltage follower was also inserted
between the coordinator and signal generator. Furthermore, the peak power density
of the power supply microwave was 1.2 mW/cm? at the position of the end device.
In this configuration, the center frequency of the ZigBee communication was set as
2.45 GHz (20ch), and the frequency of the power supply microwave was also set as
2.45 GHz. The values shown in Table9.2 were used as the temporal parameters of
T1, T2, T3, and T4 for the transmission scheduling.

As indicated by the experimental results, the ZigBee end device did not fail to
send data throughout the experiment. That is, the end device succeeded in sending
the data approximately 1,260 times. Figure 9.17 shows the waveforms of the power
consumption of the end device and the MPT control signal with a transmission time
of 2s during the experiment. Figure 9.17 suggests that the microwave power supply
radiated while the end device slept. The microwave also paused when the device
was awake. From these results, it was confirmed that the developed transmission
scheduling algorithm was compatible with the ZigBee network. Furthermore, the
transmission time of T3 could be set to less than 1 s given the success of the experiment
with the sleeping time of the device set to the value of T3.
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Fig. 9.18 Experimental configuration of the intermittent MPT demonstration with the transmission
scheduling

We conducted an experiment to demonstrate the power supply to a ZigBee end
device by intermittent MPT with transmission scheduling. Figure9.18 shows the
demonstration configuration. A RF-DC rectifier circuit with a slave circuit was used
as a rectifier. Both the frequencies of MPT and ZigBee communication were set to
2.45 GHz, and the values in Table9.3 were used as the temporal parameters. The
ZigBee end device had no batteries. That is, it was driven by only the intermittent
MPT controlled by the transmission scheduling. In this demonstration, we fixed the
peak power density of 2.6 mW/cm? at the rectenna position. In this configuration, the
peak power density at the end device was 0.08 mW/cm?. Power supply microwave
of this power density prevented the end device from sending data, if the end device
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Table 9.3 Values of the temporal parameters in the scheduled intermittent MPT experiment
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was awake while the microwave power supply radiated. In addition, the capacitance
of a capacitor was 33 mF.

From the demonstration experiment, the end device was driven by the intermit-
tent MPT with the transmission scheduling for 27 min. The experiment was stopped
because the end device worked even after 27 min. The end device did not fail to send
data throughout the experiment. Figure 9.19 shows the waveforms of the capacitor
voltage and MPT control signal with a transmission time of 10s during the exper-
iment. Findings revealed that the end device worked stably because the capacitor
voltage was kept at approximately 3 V.

9.5 Coexistence of MPT and ZigBee-scheduled and
Multi-end Devices

The scheduling algorithm for a single ZigBee end device is shown in Fig.9.15. We
can expand it for multiple ZigBee end devices. The expanded scheduling algorithm
for two ZigBee end devices is shown in Fig.9.20.

The experimental configuration of the scheduled multi-device TDD-WPT assisted
ZigBee is shown in Fig.9.21. Two ZigBee end devices were used. As shown in
Fig.9.22, MPT control signal was well scheduled between the turning on of two
end devices by the algorithm shown in Fig. 9.20. This suggested that the microwave
power transmitted as TDD-WPT for the multi-end devices of the ZigBee without
interference.
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9.6 Conclusion

To promote the WPT in near future, it is very important to suppress interference
between a WPT and a wireless communication. In this study, a time division duplex
WPT (TDD-WPT) was proposed to enable the coexistence of the MPT and the
wireless communication. A ZigBee sensor network was selected as an application
of the TDD-WPT. The maximum power density of the microwave beam to suppress
the interference of the ZigBee from the microwave power was estimated. It was
concluded that the maximum power, which is provided to the ZigBee, could be
increased with a scheduled TDD-WPT, and the interference could be suppressed.
In the near future, a new WPT regulation without any interference to a wireless
communication will be considered.
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Chapter 10

Asymptotically Optimal Power Allocation
for Wireless Powered Communication
Network with Non-orthogonal Multiple
Access

Nikola Zlatanov, Zoran Hadzi-Velkov and Derrick Wing Kwan Ng

Abstract In this chapter, we investigate a wireless powered communication net-
work (WPCN) comprised of a power beacon that broadcasts radio frequency (RF)
energy to a set of energy harvesting (EH) transmitters equipped with unlimited
batteries, which use the harvested energy to transmit information back to the
power-beacon in a non-orthogonal multiple access fashion. For this network, we
propose a communication scheme which achieves the capacity region. Moreover,
we show that the capacity region of the considered WPCN converges to the capac-
ity region of its corresponding non-EH multiple access network, where the non-EH
transmitters have specific average power constraints.

10.1 Introduction

Wireless sensor networks have been developed for a host of applications, such as
surveillance, environmental monitoring, and health care [1]. Wireless sensors are
small low-cost devices which are typically powered by a battery. Recharging the
batteries of such devices might be too expensive or even impossible if the sensors are
deployed in a hostile environment. As a result, alternative approaches for powering
low-cost sensors must be investigated. One viable solution for powering wireless
sensors is energy harvesting (EH). Thereby, the sensor nodes harvest energy from
external sources, such as solar, thermal, and wind energy, and transform the harvested

N. Zlatanov ()
Monash University, Melbourne 3800, Australia
e-mail: nikola.zlatanov@monash.edu

Z. Hadzi-Velkov
Ss. Cyril and Methodius University, Skopje 1000, Macedonia
e-mail: zoranhv @feit.ukim.edu.mk

D.WK. Ng
University of New South Wales, Sydney 2052, Australia
e-mail: w.k.ng@unsw.edu.au

© Springer International Publishing AG 2016 231
S. Nikoletseas et al. (eds.), Wireless Power Transfer Algorithms,

Technologies and Applications in Ad Hoc Communication Networks,

DOI 10.1007/978-3-319-46810-5_10

fan.ye@stonybrook.edu



232 N. Zlatanov et al.

energy into electrical energy. However, EH from natural resources is usually location
and climate dependent, and may not be suitable for small and mobile wireless sensors.
In these cases, wireless power transfer (WPT) of radio frequency (RF) energy to an
EH transmitter is an appealing solution for providing a perpetual power supply [17].
For example, using current technology, RF EH circuits embedded in wireless sensors
are capable of harvesting microwatt to milliwatt of power over the range of several
meters for a transmit power of 1 W and a carrier frequency of less than 1 GHz [3].

In this chapter, we investigate a wireless powered communication network
(WPCN) comprised of a power-beacon that transmits RF energy to a set of EH
transmitters, which use the harvested energy to transmit information back to the
power-beacon. The considered WPCN is illustrated in Fig. 10.1. In general, the EH
transmitters can use different schemes for transmitting information to the power-
beacon. For example, each EH transmitter can transmit information to the power-
beacon in orthogonal channels, which can be separated either in frequency or in time,
and such schemes have been investigated in [8—10]. However, orthogonal multiple
access is not optimal in terms of achievable date rates [4]. In particular, in order for
the EH transmitters to maximize their data rates, they have to transmit information
to the power-beacon non-orthogonally, i.e., at the same time and in the same fre-
quency band. As a result, non-orthogonal multiple access (NOMA) schemes have to
be investigated for the considered WPCN. In order to maximize the achievable data
rates, NOMA schemes have to involve optimal allocation of the transmit powers of
the power-beacon and the EH transmitters. Moreover, optimal selection of the coding
schemes and the data rates of the EH transmitters is also necessary. To this end, full-
channel channel state information (CSI) is needed at all network nodes. Although
full CSI may be impractical, the maximum achievable rates of a NOMA scheme
utilizing full CSI can serve as an upper bound for the data rates achieved by more
practical multiple access schemes which require only local CSI. As a result, studying
a WPCN with NOMA is crucial for understanding the limits on the achievable data
rates of WPCN. For the considered WPCN with NOMA, illustrated in Fig. 10.1, we
propose a communication scheme which achieves the capacity region. Moreover, we
show that the capacity region of the considered WPCN converges to the capacity
region of its corresponding non-EH! multiple access network, where the non-EH
transmitters have specific average power constraints.

Multiple access schemes for EH transmitters have been proposed in [6, 7, 11, 16,
18, 20]. In this chapter, in order to derive optimal NOMA schemes for the considered
WPCN, we follow the theoretical framework developed in [6, 19, 20].

By non-EH system we mean a communication network that is comprised of nodes which
have unlimited power supply that they can use for transmitting information.
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Fig. 10.1 WPCN comprised
of a power-beacon (PB) and
K energy harvesting
transmitters (EHT)
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10.2 The Point-to-Point WPT System

In order to introduce the proposed framework for maximizing the achievable rate
of WPCN with NOMA, we first present a corresponding framework for a point-to-
point channel with WPT, which can be considered as a NOMA scheme for WPCN
comprised of a single EH transmitter. This will allow the reader to better under-
stand the proposed framework for a general WPCN comprised of K EH transmitters
which transmit information to the power-beacon employing NOMA. We note that
the capacity of the EH additive white Gaussian noise (AWGN) channel with EH from
natural resources (i.e., not from a power-beacon), has been derived in [12, 13].

All of the assumptions and definitions that we introduce for the single EH trans-
mitter are also valid for each of the EH transmitters in the WPCN with NOMA
introduced in Sect. 10.3.

10.2.1 Point-to-Point WPT System Model

We consider an EH transmitter which harvests RF energy from a power-beacon and
stores it in its battery. Then, the EH transmitter uses the stored energy to transmit
information back to the power-beacon, which also acts as a receiver of information,
cf. Fig.10.2. We assume that the EH transmitter and the power-beacon are both
equipped with a single antenna. Furthermore, we assume that the EH transmitter is

energy
.................. 4--------------------

information

Fig. 10.2 Point-to-point channel with WPT comprised of a power-beacon (PB) and an energy
harvesting transmitter (EHT)
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equipped with a battery of unlimited storage capacity. Moreover, we assume that the
power-beacon transmits energy in one frequency band and receives information in
another (nonoverlapping) frequency band. As a result, the EH transmitter also harvest
energy from the power-beacon in one frequency band and transmits information to
the power-beacon in another frequency band. We assume that the transmission time
is divided into N time slots, where N — oo. Moreover, the channels between the
EH transmitter and the power-beacon are assumed to be AWGN channels with noise
variance N, which are impaired by block fading. Thereby, the channels have constant
fading gains during one time slot, and the fading gains change from one time slot to
the next.

In time slot i, let x (i) denote the power of the fading gain of the channel between
the EH transmitter and the power-beacon. Similarly, let y(i) denote the power of
the fading gain of the channel between the power-beacon and the EH transmitter.
Let the amount of transmit power” that is radiated from the power-beacon in time
slot i be denoted by Py(i). We assume that the power-beacon has an average power
constraint, denoted by 130, and a maximum power constraint, denoted by Py max, 1.€.,
Py (i), Vi, have to satisfy

N
. 1 . _
ngr;oﬁ »2—1 Po(i) < Py (10.1)
and
Po(i) < Po,max, Yi. (10.2)

Let P, (i) denote the amount of harvested power in the battery of the EH transmit-
ter in time slot i. Then, P;, (i) can be expressed as a function of the transmit power
of the power-beacon as [9]

Pin (i) = ny (@) Po (i), (10.3)

where 0 < 7 < 1 denotes the energy harvesting efficiency. Assuming stationary and
ergodic fading, the average harvested power of the EH transmitter, denoted by Py,
can be obtained as

_ 1
Pin = lim —
N—oo N

N
D Puli) = E{Pa(i)), (10.4)

i=1

where E{-} denotes expectation.

Let Poy (i) denote the amount of power extracted from the battery in time slot
i and used for the transmission of information to the power-beacon. Moreover, let
B(i) denote the amount of stored power in the battery of the EH transmitter at the

2We adopt the normalized energy unit Joule-per-second. As a result, we use the terms “energy”” and
“power” interchangeably.
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end of time slot i. Then, using the harvested power in the battery in time slot i, Py, (i),
and the power extracted from the battery in time slot i, Poy (i), the amount of stored
power in the battery of the EH transmitter at the end of time slot i, B(i), can be
obtained as

B(i) = B(i — 1) + Py (i) — Pou (i), (10.5)
where
Pou (i) < B(i — 1) (10.6)

holds due to the energy causality, i.e., in time slot i, an EH transmitter is unable to
extract more power from its battery than the amount of power already stored in the
battery in the previous, i.e., (i — 1)-th time slot.

Our task in this section is to maximize the achievable data rate of the considered
point-to-point system with WPT by optimal power allocation of the transmit powers
of the EH transmitter and the power-beacon, as well as optimal selection of the data
rates at the EH transmitter. To this end, in the following, we introduce the notion of
the desired amount of power that the EH transmitter wants to extract from the battery
in time slot i, denoted by Pq4(i), and then use it for transmission of information. Note
that, in contrast to a non-EH system, in an EH system, the desired amount of power
that the EH transmitter wants to extract from its battery in time slot i and the actual
amount of power that can be extracted from the battery in time slot i may not be
identical. In particular, if the desired amount of power that the EH transmitter wants
to extract from its battery in time slot i, Py(Z), is smaller than the amount of power
already stored in the battery at the end of time slot i — 1, B(i — 1), then at most
the EH transmitter can extract B(i — 1) units of power. Otherwise, if the desired
amount of power that the EH transmitter wants to extract from its battery in time
slot i, Py(i), is larger than or equal to the amount of power already stored in the
battery at the end of time sloti — 1, B(i — 1), then the EH transmitter transmits with
power Poy (i) = Pqy(i). To simplify® the proposed framework, we assume that when
B(i — 1) < P4(i) holds, i.e., there is not enough desired power stored in the battery
in time slot i, the EH transmitter is silent, i.e., Pyy (i) = 0 holds. Mathematically,
the relation between Py(i), Py (i), and B(i — 1) can be written as

o Pa) if B — 1) > Py(i)
Pou (i) = |o if B — 1) < Py(i). (10.7)
By introducing a binary indicator variable for time slot i, denoted by ¢ (i), which is
defined as

Lif B — 1) > Py(i)

q() = |0ifB(i — 1) < PyGi), (10.8)

3This simplification is without any loss to the average data rate.
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the relation in (10.7) can be simplified as
Pou (i) = q (i) Pa(i). (10.9)

Note that we can obtain the time average of the desired transmit power, denoted by
Py, and the actual transmit power of the EH transmitter, denoted by Poy, as

N
_ ) 1 .
Py = lim z,l Pi(i) (10.10)
and
Po = lim —2 Pou(i) & Jlim —2 (i) Pyi), (10.11)

where (a) follows from (10.9). Moreover, it can be observed that Py < Py always
holds.

Remark 10.1 Note that the transmit power of the EH transmitter in time slot i,
Py (i), is completely dependent on Py(j) and Py(j),V,j < i.Hence, in order to find
the optimal transmit power of the EH transmitter for time slot i, Py (i), we need to
find the optimal desired transmit powers, P;(j), and the optimal transmit powers of
the power-beacon, Py(j),Vj < i. Although this may seem as a complex task at first,
we will show that, using the proposed framework, the power allocation solution can
be obtained analytically.

10.2.2 Maximization of the Average Data Rate

In time slot i, using power Py (i), the maximum possible data rate that the EH
transmitter can achieve, denoted by R(i), is given by

R — log, (1 . ng\i’)x(i)) @ 1og, (1 . q(i)p;[(l-)x(,-))
0 0

=)q(i)log2 (1 + M) (10.12)
No

where (a) follows from (10.9) and () follows since log,(1) = 0. The data rate in
(10.12) can be achieved if the EH transmitter uses optimal capacity coding for the
AWGN channel, i.e., it transmits codewords which are comprised of infinitely many
complex zero-mean Gaussian distributed symbols with variance Poy (i) = ¢ (i) P4 (i).
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Using (10.12), the average data rate that the EH transmitter can achieve during
N — oo time slots via optimal capacity coding for the AWGN channel, denoted by
R, is obtained as

(10.13)

R = 1m —Zq(z)log2 (1 + Pd(l)x(l))

No

Our task is to maximize the average data rate R in (10.13). Due to the proposed
framework, the desired powers Py(i), Vi, and the transmit powers of the power-
beacon, Py(i), Vi, are the only variables with degrees of freedom in the expression
for R in (10.13). In particular, ¢(i) in (10.8) depends completely on Py(j) and
Ps(j),Vj <i,via B(i — 1), cf. (10.5). Hence, to maximize the average data rate in
(10.13), we need to find the optimal Py(i) and Py(i), Vi. To this end, we formulate
the following optimization problem for N — oo

N I Pa(i)x (i)
Maximize : v gq(z) log, (1 + T)

Py(i),Po(i),Vi 0
Subject to: Cl:B(i)=B(@i — 1)+ Pu(i) — q(@)Pa(i),
C2: Pin(i) = ny (i) Po(i),

o [1ifBG = 1) = Pa(i)
C3:q@) = [o if BG—1) < Pj(i),

N
1 o
C4: v ;:1 Po(i) < Po,

C5: PO(i) = PO,maXa
C6: Py(i) > 0,
C7: Py(i) > 0. (10.14)

In (10.14), constraint C1 is the expression that describes the input—output relation
of the battery, cf. (10.5); constraint C2 describes the relation between the harvested
power of the EH transmitter and the transmitted power of the power-beacon, cf.
(10.3); constraint C3 is the expression for the binary indicator variable ¢ (i), cf.
(10.8); constraints C4 and C5 are the average and maximum power constraints of the
transmit power of the power-beacon, respectively, cf. (10.1) and (10.2); constraints C6
and C7 constrain the powers Py(i) and Pg4(i) to be nonnegative. As can be observed,
the maximization problem (10.14) is non-concave, and therefore, very difficult to
solve analytically, in general. However, the following lemma will provide us with
the necessary tools for solving the maximization problem in (10.14).

fan.ye@stonybrook.edu



238 N. Zlatanov et al.

Lemma 10.1 In the considered point-to-point WPT system, if Pq(i) > 0, Vi, are
chosen such that they satisfy

N
.1 . 5
ng%oﬁ E_l Pa(i) = P, (10.15)

then the following relations hold
Pin = Pou (10.16)

and
|
Nh—I};oN gl qi)=1. (10.17)

Expression (10.16) means that all of the harvested power is eventually used for the
transmission of information, i.e., there is no excess of energy that is kept stored in
the battery and not used for the transmission of information. On the other hand,
expression (10.17) means that the events q(i) = 1 hold for practically all time slots*
i. Conversely, the number of time slots for which q (i) = 0 holds are negligible com-
pared to N — 00. As a result, these time slots have a negligible contribution to the
average data rate and therefore these events can be neglected.

Hence, by choosing the values of Py(i) > 0, Vi, arbitrarily, as long as the con-
straint in (10.15) holds, we actually choose the values of Py (i) arbitrarily for
practically all time slots i.

Proof If Py is setto Py = Py, i.e., if (10.15) holds, then the following must hold

N N
D 1 . ) 1 . - _
P ;q(t)Pd(l) < lim Zl: Po(i) = By = By. (10.18)

t — lim —
o N—soo N 4

We prove the above claim, i.e., equality (a) in (10.18) by contradiction. Assume that
Py = Py, holds, however, equality («) in (10.18) does not hold and

N N
. 1 N .1 Z N B _ 5
P _El q(l)Pd(l) < IVh—IEcl)oN -~ Pd(l) = Pd = Pi (1019)

t — lim e
ou N—soo N 4

holds instead. However, since P, < P., holds, more energy is harvested into the
battery than what is extracted from the battery. Since the battery storage capacity is
unlimited and since the number of transmit time slots is also unlimited, after some

4When we say that it holds for practically all time slots, we mean that it holds for all time slots or
that it holds for all time slots except for a negligible fraction of them, denoted by 4, which satisfies
limy_o0 4/N =0.
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negligible transient time, during which ¢ (i) = 0 might occur, ¢ (i) = 1 will hold
in all subsequent time slots. In other words, when Py < P, holds and the battery
is unlimited, after some negligible transient time of the start of the transmission,
there will always be sufficient power in the battery such that B(i — 1) > Py4(i), i.e.,

g (i) = 1 will always hold.> Now, since when P,y < P, ¢(i) = 1 will hold for
practically all time slots, we obtain

N N
p .1 . N . ] . -
Pou = lim ;CI(l)Pd(l) = lim — ; Pi(i) = Py,  (10.20)

whee () holds since ¢ (i) = 1 holds for practically all time slots when Py < P
holds and the battery is unlimited. Note that (10.20) is a contradiction to (10.19).
Due to this contradiction, (10.19) cannot hold and (10.18) must hold instead. This
concludes the proof of (10.18).

Now, there is only one possibility for which (10.18) can hold. In particular, the
only possibility for which (10.18) can hold is if and only if

N
.1 .
Nh—%oﬁ ._El qi) =1 (10.21)

holds. On the other hand, if (10.21) holds, then the average data rate in (10.13) can
be written as

N N
- .1 Py (i)x (i) . Pq(i)x (i)
R=1 — 1 — ) =1 — 1 1+ —).
Nl—l;noo N Eq(l) °82 ( + No ) Nl—r>noo N ; ng( + No )
(10.22)
This completes the proof. ([

Using, Lemma 10.1, we now provide a very simple solution to the optimization
problem in (10.14). To this end, we first add the constraint in (10.15) into the opti-
mization problem in (10.14) as constraint C8. As a result, we obtain the following
optimization problem for N — oo

Maximize : — Z‘I(l)logz (l n Pd(l)x(l))

Pa(i), Po(i). i
Subject to: CI: B(l) =B — 1)+ Py(i) — q()Ps(i),
2: Pin(i) = ny () Po(i),

[ 1ifBG = 1) = Py(i)
C3:q() = [0 if B(i—1) < Pj(i),

3For a rigorous proof of this claim, please refer to [12, 20].
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1 & _
C4: ; Po(i) < Poli),

C5: PO(i) = PO,maXa
C6: Py(i) > 0,
C7: Py(i) > 0,

N
1 o
C8: Zl Pi(i) = Py. (10.23)

Note that, since the optimization problem in (10.23) has an additional constraint
compared to the optimization problem in (10.14), the maximum data rate obtained
from (10.23) can only be lower than or equal to the maximum data rate obtained from
(10.14). On the other hand, in the optimization problem in (10.23), since constraint
(10.15) is satisfied, Lemma 10.1 holds. Therefore, we can consider that ¢ (i) = 1
holds for practically all time slots, i.e., the events for which ¢ (i) = 0 holds have a
negligible contribution to the average data rate. As a result, we can set g(i) = 1,
Vi, in (10.23). Now, with ¢ (i) = 1, Vi, in (10.23), constraints C1 and C3 become
unnecessary, and therefore can be removed. Moreover, we can plug in constraint
C2 into C8, and thereby obtain the following equivalent optimization problem for
N — oo

N N
. 1 Py(i )X(l))
Maximize : — lo 14+ —-
Pa(i),Po(i),Yi N ; &2 ( Ny

N
. 1 N~ P
Subject to: Cl: v ; Po(i) < Po,

C2: Po(i) < PO,max:
C3: Py(i) =0,
C4: Py(i) = 0,

N N
1 . 1 . .
C5 1 D Pali) = 5 Dy Pi). (10.24)
i=1 i=1
The optimization problem in (10.24) is concave and can be easily solved using the

Lagrangian method. The solution of (10.24) is given in the following Theorem.

Theorem 10.1 The solution of the optimization problem in (10.24), i.e., the optimal
power allocation that maximizes the average data of the considered point-to-point
system with WPT is given by

N PO,mux lf)’(l)Zﬂ
Po(i) = [0 iFy(0) < u (10.25)
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and

1 N

+
Py(i) = (I - )Tz)) , (10.26)

where (x)T = max{0, x}, and u and A are Lagrange multipliers corresponding to
constraints CI and C5 in (10.24), respectively. The transmit power of the EH trans-
mitter, Poy (i), can be found by inserting (10.26) into (10.9).

The maximum data rate achieved with the power allocation solution in (10.26) is
obtained by inserting (10.26) in (10.22) as

N +
Z ogz(l L0 (Z _ %) ) (10.27)

Proof The solutions for Py(i) and Py(i) can be relatively easily obtained using the
Lagrangian method [2]. The exact derivation using this method is shown in [6]. [

Remark 10.2 1In (10.25), u is found such that constraint C1 in (10.24) holds. If fy (y)
is the probability distribution function (PDF) of the fading power gain y(i), then the
constant x4 can be found as the solution of the following identity

Pomes / Fr(v)dy = B, (10.28)
u

On the other hand, in (10.26), 4 is found such that constraint C5 in (10.24) holds,
with Py(i) given in (10.25). If fx(x) is the PDF of the fading power gains x (i), then
A can be found as the solution of the following identity

® /(1 N =
/) (I - _) fX(x)dx - ”P() max/ ny(Y)dy' (1029)
t H

Remark 10.3 Aninteresting consequence arising from Theorem 10.1 is that the max-
imum average data rate of the considered point-to-point WPT system is identical to
the capacity of a non-EH point-to-point AWGN channel with an average power con-
straint 7 E{y(i) Py(i)} at the non-EH transmitter, where Py(i) is given in (10.25),
see [5]. Having in mind that the EH transmitter cannot harvest more power than
nE{y(i)Py(i)}, with Py(i) given in (10.25), we can conclude that the rate achieved
with the power allocation outlined in Theorem 10.1 is also the capacity of the con-
sidered WPT system with one EH transmitter. Note that this result is inline with the
results in [12, 13], which derive the capacity of the EH AWGN channel with EH
from natural resources (i.e., not from a power-beacon).
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10.3 Wireless Powered Communication Networks
with Non-orthogonal Multiple Access

In the following, we generalize the framework developed for the WPT system with
one EH transmitter to the case of multiple EH transmitters which transmit information
to the power-beacon in a non-orthogonal manner, i.e., we generalize the framework
to the WPCN with NOMA.

10.3.1 System Model

The WPCN with NOMA is identical to the point-to-point system with WPT inves-
tigated in Sect. 10.2, but, instead of a WPCN with one EH transmitter, the system is
comprised of K EH transmitters which transmit information in the same time and in
the same frequency band to the power-beacon. On the other hand, the power-beacon
broadcasts energy to the K EH transmitters, which use the harvested energy to trans-
mit information back to the power-beacon, cf. Fig. 10.1. We assume that the channels
between the EH transmitters and the power-beacon are independent AWGN channels
with noise variance N, affected by block fading.

In time slot 7, let x; (i) denote the power of the fading gain of the channel between
the kth EH transmitter and the power-beacon. Similarly, let y, (i) denote the power of
the fading gain of the channel between the power-beacon and the kth EH transmitter.

Let P, x(i) denote the amount of harvested power in the battery of the kth EH
transmitter in time slot i. Then, considering that the transmit power of the power-
beacon in time slot i is Py(i), Pin (i) can be obtained as

Pin k(i) = nyi (i) Po(i). (10.30)

In each time slot, each EH transmitter extracts power from its battery and uses it
to transmit information to the power-beacon. Let the transmit power of the kth EH
transmitter in time slot i be denoted by Poy «(i). Moreover, let Pg (i) denote the
desired power that the kth EH transmitter wants to extract from its battery in the ith
time slot. Then, similar to the single EH transmitter case, Pou (i) and Pq (i) are
related by

Pouk (i) = qi (i) Pa (i), (10.31)
where ¢ (i) is defined as

Lif By(i — 1) = Pyx(i)

(i) = [0 if Be(i — 1) < Py(i). (10.32)
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In (10.32), B, (i) is the amount of power stored in the battery of the kth EH transmitter
at the end of the ith time slot, which is given by

B (i) = Br(i — 1) + Pinx (i) — Pourk (i), (10.33)
where
Pou k(i) < Bi(i — 1) (10.34)

holds. For the kth EH transmitter, the average_transmit power, denoted by f’om,k, the
average desired transmit power, denoted by Py x, and the average harvested power,
denoted by P;, «, are given by

N
- . 1 . .
Py = A}grcl)o v ._E P,1(), o €{out,d,in}. (10.35)

10.3.2 Maximization of the Average Data Rate

The achievable average rate region of the considered WPCN with NOMA is given
by

Rregion = [ U (Rl, Iéz, ey RN) :
Z R, < hm — Z:log2 (1 + Z Pomk(l)xk(l))]

ke ke

(é) [ U (Rl, Rz, vy RN) :
> R < Jim Zlog2 (1 + > qli)Py, k(l)xk(l))], (10.36)

ke ke

where (a) follows from (10.31), and where .% is any subset of {1, 2, 3, ..., K} and
Ry is the average data rate of the kth EH transmitter. The boundary surface of region
Riegion can be achieved if the data rate of the kth EH transmitter in each time slot 7,
denoted by Ry (i), is given by [15]

Poul,k (i)xk (1)
L4+ Poui(i)x:(0)

I<k

R (i) =log, [ 1+
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G (1) Pa i () xi (i)
14+ qi(i) Pay(i)x (i)

1<k

=log, [ 1+ (10.37)

Moreover, for the boundary surface of region Ryegion t0 be achieved, the power-beacon
has to decode the transmitted codewords from the EH transmitters in the order K,
K — 1, ..., 1. In addition, when the power-beacon decodes the information from EH
transmitter &, it should consider all the codewords transmitted from EH transmitters
I < k as noise. Furthermore, once the power-beacon decodes the codeword from EH
transmitter k, it uses successive interference cancelation, i.e., it subtracts the decoded
codeword from its received codeword. On the other hand, the data rate in (10.37)
can be achieved if all EH transmitters use optimal capacity coding for the AWGN
channel, i.e., transmit codewords which are comprised of infinitely many zero-mean
complex Gaussian distributed symbols with variance Pou (i) = qr (i) Pax (7).

To simplify the proposed framework, without any loss in the average rate region
as will be shown later, we propose the kth EH transmitter to transmit with a rate
which is smaller than the rate in (10.37), and given by

N g () Pa(Dxe @) \ . Pa i ()xx (0)
Ri(@) =log, | 1+ 1+ IZ;,{ Pa(i)x (i) | qi()logy {1+ 1+ IZ}{ Py (i)x; (i)
(10.38)

Hence, the kth EH transmitter reduces its rate compared to (10.37) by considering
that ¢;(i) = 1,Vl < k,i.e.,all]l < k EH transmitters will have enough power in their
batteries to transmit information to the power-beacon. Using (10.38), the average
data rate that the EH transmitter can achieve during N — oo time slots, denoted by
Ry, is given by

Py i (0)xi (7)
1+ IZ]:{ Py, (0)x; (i)

N
= .1 .
R, = ngIclxu v '_El qr(i)log, | 1+ (10.39)

To maximize the boundary rate region Ryegion in (10.36), similar to the problem formu-
lation for maximizing the boundary rate region of the non-EH multiple access channel
described in [14, 15], we need to maximize the weighted sum rate Z,le v Ri, where
Ry is given by (10.39) and v, are non-negative constants. More precisely, the maxi-
mum boundary rate region Ryegion in (10.36) can be obtained by solving the following
optimization problem for N — oo

SE g Py i (D). (i)
.. . d,k k
Maximize : Vi — i)lo 1+ - - -
Pas (), Poli),Viok ,; “N ;%( ) log: 14> Pag(i)x (i)
= = 1<k

Subject to: Cl: Bi(i) = Bi(i — 1) + Pnx(i) — qi (i) Pax (i), VK,
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C2: Pni(i) = nye(D) Po(@), Vk,

o | Vi B = 1) = Pyy(i)
C3: D) = [Oif Bli—1) < Pud) " "

N
1 o
C4 ~ ; Po(i) < Py,

Cs: PO(Z) = PO,maxa
C6 : Py(i) = 0,
C7: Pyy(i) =0, Vk, (10.40)

where vy are nonnegative constants which have to satisfy6 Vi > vy > ... > vk and
Z,f:, vr = 1, see [15]. One set of values for the constants vy, vy, ..., Vg provides
one point of the boundary rate region Ryegion. By varying the values of vy, vy, ..., vg,
all of the point of the boundary rate region Ryegon can be obtained, see [14, 15]. On
the other hand, the constraints C1 to C7 in (10.40) are identical to the constraints C1
to C7in (10.14), but now have to hold for all k = 1, ..., K EH transmitters. Again, the
optimization problem in (10.40) is non-concave and is difficult to solve in general.
However, similar to the single EH transmitter case, this optimization problem can be
easily solved utilizing Lemma 10.1.

To solve the optimization problem in (10.40), we first add the constraint in (10.15)
into the optimization problem in (10.14) as constraint C8 which has to hold Vk.
Thereby, we obtain the following optimization problem for N — oo

aB P (D)x (i)
.. . d,k (1) Xg
Maximize : Vi — i)lo 1+ - - -
Par (i) Poli).Visk kZ_; "N ;qk( )log, 14+ Pag(i)x (i)
= = I<k

Subject to: Cl1: Bi(i) = Bx(i — 1) + Pinx (i) — qx (i) Pax (i), Vk,
C2: Piy(i) = ny(@) Po(@), Vk,
Lif Br(i — 1) > Py (i) Vi

Grald)= [Oika(i—l) < Pa@)
L
C4 - ~ ;Po(i) < P,

C5: P()(i) < PO,max:
C6 : Py(i) > 0,
C7: Pd,k(l.) > 0; Vka

SNote that, if a different decoding priory is needed other than K, K — 1, ...,1, then, without loss of
generality, the EH transmitters can be renumbered such that vy > vy > ... > vk again holds, where
EH transmitter 1 is related to vi, EH transmitter 2 is related to vy, ..., and EH transmitter K is related
to vk, see [15].
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1 N
C8: Zl‘, Pii(i) = Py, Vk. (10.41)

Similar to the single EH transmitter case, note that, since the optimization problem
in (10.41) has an additional constraint compared to the optimization problem in
(10.40), the maximum data rate obtained from (10.41) can only be lower than or
equal to the maximum data rate obtained from (10.40). On the other hand, according
to Lemma 10.1, since the constraint in (10.15) holds, g (i) = 1 holds for practically
all time slots, i.e., the events for which g, (i) = 0 holds have a negligible contribution
to the average data rates at the individual EH transmitters. As a result, we can set
qr(i) = 1, Vk, i, in (10.41). Now, with ¢;(i) = 1, Vk, i, in (10.41), constraints C1
and C3 become unnecessary, and therefore can be removed. Moreover, we can plug
in constraint C2 into C8, and thereby obtain the following equivalent optimization
problem for N — oo

LI P P (D)x (i)
.. d,k k
Maximize : Vi — lo 14+ - - -
Pa(0), Pol0) Virk ,; ‘N ; =2 L+ > Pag()x (i)
- - 1<k

N
. 1 . 5
Subject to: CI: v ; Py(i) < Py,

C2: PO(l) < PO,mam
C3: Py(i) = 0,
C4: Pd,k(l') >0, Vk,

1 & N o
C5:N;Pd,k(l)zﬁgnyk(l)ﬂ)(l), Vk. (10.42)

The optimization problem in (10.42) is concave and can be easily solved using the
Lagrangian method. The solution to this problem is given in the following Theorem.

Theorem 10.2 The solution to the optimization problem in (10.24), i.e., the optimal
power allocation that maximizes the average data of the considered WPCN with
NOMA is the following

N PO,max, Z/le j-kyk(i) > Ao
Po(i) = [ 0, otherwise, (10.43)

and

Vkl — l)kz _ 1
Ay = Aty Xy (0) /21, (1) 24, (0)

Py, (i) =
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. Vi, = Vg 1
Pag, (i) = - .
j'km - /lk<m+1) Xk, (l)/xk(,,,+1)(l)
_ Vigu-1y — Vkn
— A, + /’{k(m—l) Xk, (i)/xk(m,l)(i)
. vk[ vk(1_|) - vk]
Py, (i) = — — - .
: /lk, _/lkl + /lk(/,]) Xk (l)/-xk(/,l) (l)
Pd,x(i) 209 VS ¢ {kla"" kma"'a kl}) (1044)

where Ay is a Lagrange multiplier correspond to constraint Cl in (10.42) and
A, for k =1, ..., K, is the Lagrange multiplier correspond to constraint C5 in
(10.42). The numbers ki, k..., kg in (10.44) are obtained as follows. Let x(i) =
[x1 (i), x2(Q), ..., xn (i)] denote the fading vector for time slot i. The space of all
possible vectors x(i) is divided into 2X disjoint regions, such that the jth region is
associated with the binary expansion {ji, ja, ..., jk» ---» jx }, Where ji, = 1 implies an
active EH transmitter k and j, = 0 implies a silent EH transmitter k. If the indices
J1 < jo <+++ < jm < --- < jj denote the positions of 1s in this binary expansion,
then K — | EH transmitters are silent and | EH transmitters transmit with optimal
powers given by (10.44) (see [15] for more details on how the numbers ji, jr..., jk
are obtained.)

The transmit powers Poy i (1), Yk, are obtained by inserting the appropriate Pq 1 (i)
in (10.44) into (10.31).

A point of the maximum achievable rate region is obtained by inserting the appro-
priate Py (i) in (10.44) into

1 & Pa (i) xi (i)
- . k(1) X
Ry = lim — lo 1+ : 10.45
k= NS N ; £2 14> Pay()x(0) ( )
- 1<k
fork=1,.., K.

Proof The solutions for Pq (i), Yk, and Py (i) can be relatively easily obtained using
the Lagrangian method [2]. The exact derivation using this method is shown in [6,
15]. O

Remark 10.4 When there are only two EH transmitters, the power allocation solution
in Theorem 10.2 is simplified significantly as [15]

N PO,maxy 2211 j-kyk(i) = ’10
Poti) = [ 0,  otherwise, (10.46)

fan.ye@stonybrook.edu



248 N. Zlatanov et al.

and
0 if .X]/N0</11/U1
Py,1(i) = y vi/A1 — No/x1(i) if x1(i)/No < A1/viand Py(i) =0
(1 — w2)/ (A1 — A2x1(i)/x2(i)) if x1/No > A1/vi and Py (i) # 0
(10.47)
and
Pyoi) = 0 if xp(0)/(No + x1() Pa,1(0) < A2/v2)
’ v2/ A2 — (No + x1() Pa,1 (D) /x2G) if x2(0)/(No + x1()Pq,1(0)) < A2/v2).

(10.48)

Remark 10.5 Aninteresting consequence arising from Theorem 10.2 is that the aver-
age data rate region of the considered WPCN with NOMA converges to the capacity
of a non-EH multiple access network comprised of K transmitters, where the kth
non-EH transmitter has an average power constraint 57 E{y; (i) Po (i)} with Py(i) given
in (10.43). For the considered WPCN, having in mind that the kth EH transmitter
cannot harvest more average power than #E{y, (i) Py(i)}, we can conclude that the
rate region achieved with the power allocation outlined in Theorem 10.2 is also the
capacity of the considered WPCN with NOMA.

10.4 Numerical Examples

In the following, we provide numerical examples in which we show the average rate
of the point-to-point system with WPT and the WPCN with NOMA for two EH
transmitters. To this end, we first outline the system parameters.

We assume Rayleigh fading, where the average power of the fading gains of link
k is found using the standard path loss model as

2
c —a

In (10.49) c is the speed of light, fj is the carrier frequency, d is the distance between
the power-beacon and the kth EH transmitter, and « is the path loss exponent. For
the numerical examples in this section, we assume o = 3 and d; = 10 meters, Vk,
and the energy conversion efficiency is set to 7 = 0.5. Moreover, we assume that the
carrier frequency used by the power-beacon to broadcast energy is f. = 2.3999 GHz,
whereas, the carrier frequency used by the EH transmitters to transmit information to
the power-beacon is f, = 2.4001 GHz. The maximum transmit power of the power-
beacon is set as Py max = 5P. The transmit bandwidth is assumed to be B = 100
kHz. Thereby, assuming ideal Nyquist sampling, we have 2B independent symbols
per second. Moreover, we assume that the noise power per Hz is —160 dBm, which
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Fig. 10.3 Average data rate of the point-to-point system with WPT for different time slots N as a
function of Py

leads to a total noise power of 10~ B Watt. Finally, since the derived rates throughout
this chapter are in bits/symbol, to plot the rates in bits/sec, we need to multiply the
corresponding rate expressions by 2B.

In Fig. 10.3, we show the average data rate, R, of the point-to-point system with
WPT for different numbers of time slots NV as a function of the average transmit
power at the power-beacon Py. The figure shows that even for finite N, the loss in
data rate is small compared to the case when N = 10°. Moreover, the average data
rate achieved by the WPT system for N = 10° is almost identical to the AWGN
channel capacity with an average power constraint at the non-EH transmitter given
by nE{y(i)Py(i)}, where Py(7) is given in (10.25).

In Fig. 10.4, we plot the average rate region of the WPCN with NOMA for two EH
transmitters (K = 2), Py = 5 Watt, and different numbers of transmission slots, N.
We note that for N = 10 the boundary surface of the WPCN with NOMA is identical
to the boundary surface of the non-EH network with NOMA for two transmitters,
where the kth non-EH transmitter has an average power constraint # E{y; (i) Py (i)}
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Fig. 10.4 Average data rate region of the WPCN with NOMA for two EH transmitters, Py = 10
Watt, and different time slots N
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with Py(i) given in (10.43). On the other hand, Fig. 10.4 also shows that even for
finite NV, the loss in data rate is small compared to the case when N = 10°.

10.5 Conclusion

We have presented a theoretical framework which provides analytical solutions for
the power allocations of a WPCN with NOMA. The power allocation solutions
obtained by the theoretical framework are identical to the already available power
allocation solutions for a non-EH network with NOMA, where the transmitters have
specific average power constraints related to the average harvested power at the
corresponding EH transmitters of the WPCN. Moreover, we have shown that the
maximum achievable average rate region of the WPCN with NOMA is identical to
the capacity rate region of the corresponding non-EH network with NOMA under
identical average power constraints at the transmitters.
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Chapter 11
Energy-Efficient Cooperative Transmission
for SWIPT in Wireless Sensor Networks

Songtao Guo, Yuanyuan Yang and Hongyan Yu

Abstract This work considers applying simultaneous wireless information and
power transfer (SWIPT) technique to cooperative clustered wireless sensor
networks, where energy-constrained relay nodes harvest the ambient radio frequency
(RF) signal and use the harvested energy to forward the packets from sources to
destinations. To this end, we first formulate the energy-efficient cooperative
transmission (eCotrans) problem for SWIPT in clustered wireless sensor networks
as a non-convex constrained optimization problem. Then by exploiting fractional
programming and dual decomposition, we develop a distributed iteration algorithm
for power allocation, power splitting, and relay selection to solve the non-convex
optimization problem. We find that power splitting ratio plays an imperative role in
relay selection. Our simulation results illustrate that the proposed algorithm can con-
verge within a few iterations and the numerical analysis provides practical insights
into the effect of various system parameters, such as the number of relay nodes, the
intercluster distance and the maximum transmission power allowance, on energy
efficiency and average harvested power.

11.1 Introduction

Maximizing energy efficiency for data transmission becomes one of the most impor-
tant design considerations in energy-constrained wireless sensor networks (WSNs).
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Moreover, in a clustered WSN, the relay nodes near cluster heads (CHs) will deplete
their energy rapidly due to carrying out heavy tasks of data forwarding. Such nonuni-
form energy consumption may easily cause the network disconnected. It has been
shown in [1] that cooperative transmission is more effective to balance energy con-
sumption among nodes and improve energy efficiency of data transmission in WSNs.
Recently, there have been some research efforts on developing cooperative schemes
in clustered WSNs [2-5], in which sensors within a cluster relay data packets to
nearby clusters using cooperative communication. A key element of cooperative
transmission schemes is the selection and coordination of cooperative nodes.

In the meanwhile, energy harvesting technology has also been recognized as a
promising cost-effective technique to maximize energy efficiency in WSNs. Unlike
the conventional energy harvesting technique, which scavenges energy from the
natural sources such as solar, wind and thermal, wireless power transfer (WPT) is
an emerging energy harvesting technique, where sensors charge their batteries from
electromagnetic radiation [6]. In WPT, green energy can be harvested through either
strongly coupled magnetic resonances or radio frequency (RF) signals. The former
requires that each sensor as an energy receiver to mount a coil tuned to resonate at
exactly the same frequency as the coil on the energy transmitter [7-10]. However,
in practice, sometimes it is difficult to mount a resonant coil in a small sensor.
Moreover, energy transfer based on magnetic resonances is usually activated by near
field induction from more powerful nodes (e.g., base stations and vehicles). Clearly,
the application of this technology has some limitations in certain applications where
there are no base stations near sensor nodes or the vehicle cannot travel or migrate
very close to sensors, such as in wild forests and steep mountains.

On the other hand, compared to strongly coupled magnetic resonances, radio fre-
quency (RF) signal can convey both energy and information simultaneously. Thus,
it is a promising energy source of wireless power transfer [11], since it can achieve
both wireless information transmission and energy transfer, even in a hostile envi-
ronment. Recently, a RF-based energy harvesting technique, called simultaneous
wireless information and power transfer (SWIPT), becomes very appealing since it
utilizes both information and energy carried by RF signals at the same time, and
potentially offers great possibility to replenish the energy of sensor nodes. The core
idea of SWIPT is that the receiver has two circuits to perform energy harvesting and
information decoding separately [12].

SWIPT as an appealing energy harvesting technique has been applied to various
types of wireless communication networks [13-21]. In [16], Lee et al. considered
the application of SWIPT to cognitive radio networks. SWIPT for multi-antenna
systems also attracts much attentions from researchers. In [20], Zhang et al. stud-
ied a three-node multiple-input multiple-output (MIMO) broadcasting system with
SWIPT. Furthermore, Chen et al. extended the work in [20] by considering SWIPT
in large-scale MIMO systems employing energy beamforming. In [19], Xu et al.
studied a multiuser multiple-input single-output (MISO) broadcast SWIPT system.
In [14], Chen et al. analyzed the tradeoff of wireless energy and information trans-
fer for limited-feedback multi-antenna systems. In the meanwhile, the application
of SWIPT in orthogonal frequency division multiple access (OFDMA) systems has
gained the attention in academia. The resource allocation algorithm was designed

fan.ye@stonybrook.edu



11  Energy-Efficient Cooperative Transmission for SWIPT in Wireless ... 255

in [18] for energy-efficient communication in OFDMA systems with SWIPT as an
optimization problem. Subsequently, Zhou et al. [21] provided the optimal design for
SWIPT in downlink multiuser orthogonal frequency division multiplexing (OFDM)
systems.

Energy harvesting in wireless cooperative networks is particularly important as
it can enable information relaying. In [17], the problem of SWIPT in an amplify-
and-forward (AF) wireless cooperative network was studied. In [15], Ding et al.
considered the application of SWIPT to wireless cooperative networks with one
source-destination pair and multiple energy harvesting relays. However, these exist-
ing works did not consider how to optimally allocate transmit power and provide
power splitting ratio to maximize energy efficiency. Compared to existing works
in the literature, the contribution of this work is that (i) we address the problem
of energy-efficient data transmission between clusters in WSNs by integrating RF-
based SWIPT with cooperative relay, and (ii) we provide the optimal solution of
power allocation, relay selection and power splitting to maximize system energy
efficiency.

In this work, therefore, we consider applying SWIPT to wirelessly charge the relay
nodes with low energy in clustered WSNs. The superiority of this scheme lies in two
aspects: (i) the network system can enjoy the benefit of cooperative transmission using
intermediate sensors as relays in significantly saving energys; (ii) the relay nodes can
be powered by the harvested energy as the energy compensation for data forwarding.
This work aims at determining the optimal transmission power and relay selection,
and finding the optimal power splitting ratio for energy harvesting and information
decoding so that the system energy efficiency is maximized.

To this end, we first formulate the energy-efficient cooperative transmission
(eCotrans) problem for SWIPT in clustered WSNs as a non-convex optimization
problem constrained by the minimum harvested energy, the minimum system data
rate, and the maximum transmission power. The non-convex optimization problem is
solved by an iteration algorithm, which combines nonlinear fractional programming
and dual decomposition via appropriate objective function and optimization variable
transformations. It is worth noting that although we employ a similar mathematical
method to that in [18, 22] for formulating and solving the energy efficiency max-
imization problem, our work is significantly different from the work in [18, 22],
which aimed at finding optimal policies of power allocation, subcarrier allocation
and power splitting for energy efficiency optimization in OFDMA systems, instead
of solving the problem of cooperative transmission with relay selection and energy
harvesting in clustered WSNs.

Furthermore, we provide a distributed algorithm for power allocation, power split-
ting, and relay selection. In particular, we find that power splitting ratio plays an
imperative role in relay selection and it depends on the minimum harvested energy
requirement. Finally, our simulation results demonstrate that the proposed algorithm
can converge within a few iterations and its energy efficiency depends on the num-
ber of relay nodes and the intercluster distance. More importantly, we observe that
the maximum allowed transmission power has a limited impact on average har-
vested energy. Compared to existing algorithms without adopting energy harvesting
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or energy efficiency maximizing, our proposed algorithm can achieve higher energy
efficiency and more remaining energy.

The remainder of this chapter is organized as follows. Section 11.2 introduces
the system and communication models. Section 11.3 formulates the eCotrans prob-
lem and provides an iterative algorithm to solve the problem. Section 11.4 proposes
a distributed algorithm for power allocation, power splitting and relay selection.
Section 11.5 provides numerical results. Finally, Sect. 11.6 concludes the paper.

11.2 System and Communication Models

In this section, we first introduce the system model and communication model, and
then formulate the optimization problem for energy-efficient resource allocation in
a clustered WSN with SWIPT.

11.2.1 System Model

We consider a wireless sensor network consisting of multiple clusters of sensor nodes
and a sink node as shown in Fig. 11.1, where sensor nodes are statically and randomly
scattered over the sensing field. Each sensor node has a single antenna. The sink node
is responsible for collecting data from all the sensor nodes. The nodes within the same
cluster are distributed closely around the cluster head (CH), and can cooperate on
signal transmission and/or reception. Suppose that the cluster head (CH) in a cluster
(the source) wants to transmit data to the CH of its nearby cluster (the destination).
Since the transmission distance is relatively long between clusters, the source can
first broadcast the data to the member nodes in the cluster, select the “best” relay
from a set of potential cluster member nodes, and then use this relay to aid the source-

Fig. 11.1 A clustered
wireless sensor network with
SWIPT consisting of 3

clusters .
Sink Node

B Cluster Head

@ Relay Node
O Sensor Node
O Q O --—» Intra-cluster SWIPT
\ —— Inter-cluster SWIPT
O ———- Cluster Member
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to-destination communication. Clearly, the transmission is the single-relay-selection
cooperative communication scheme. It is worth noting that the destination here refers
to the CH of the source’s nearby cluster instead of its final data sink node. In general,
the CHs of two adjacent clusters can communicate directly or by one-hop relay. If
the sink node is far away from the source, it may require multiple hops.

To enable SWIPT, each CH works as both an information transmitter and a power
transferrer. While a source CH transmits data to its relay/destination node, in practice,
the RF energy is also transferred to the node. The receiver harvests the RF energy
from the source CH and uses the energy to replenish its rechargeable battery as a
compensation for supporting the energy consumption of forwarding. In particular, to
concurrently decode information and harvest energy from the received radio signals,
the receiver node is composed of a power splitting unit, an energy harvesting unit,
a conventional signal processing core unit and a rechargeable battery, as shown in
Fig. 11.2. Since the signal used for decoding the information in the receiver cannot
be used for harvesting energy due to hardware circuit limitations [12], we employ a
separated information decoding unit and energy harvesting unit.

In this paper, we adopt a practical dynamic power splitting (DPS) scheme, which
is implemented by power splitting unit at the receiver, to enable the receiver to harvest
energy and decode information from the same received signal at any time. The core
idea of the DPS scheme is that a receiver i dynamically splits the received signal
into two power streams in the radio frequency (RF) front end with power splitting
ratio p! and pF as shown in Fig.11.2, which are used for decoding information
and harvesting energy, respectively, where 0 < p/ < 1 and 0 < pf < 1. In order to
improve energy efficiency, we adopt the cooperative communication scheme in a
decode-and-forward (DF) and time division relaying manner. As shown in Fig. 11.1,
the energy harvesting cooperative transmission is carried out in two phase as follows.

Phase I: The intracluster broadcasting transmission. When a CH has data to
transmit, it first broadcasts a request-to-send (RTS) message to the cluster member
nodes (CNs) within the same cluster to contend for the shared wireless channel.
Once receiving the RTS message, the member nodes reply a clear-to-send (CTS)
message to show being ready to communicate. These ready CNs also belonging to
the receiving cluster form the set of candidate relays. To elaborate, when a source
node has data to transmit, it first sends out arequest-to-send (RTS) message to contend
for the shared wireless channel as in IEEE 802.11 protocol. The destination node

Wireless Information
and Power Y AWGN
Y2

= Signal
processing unit

.
Y | p‘E Energy
. L2 ; harvesting unit
Transmitter Power splitting unit
Receiver

I g
Pi > P; : Power splitting ratio

I.. 8 Rechargeable
Battery

Fig. 11.2 A block diagram of the receiver model with SWIPT
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and the source’s cluster member nodes hear this message. Once receiving the RTS
message, the destination node and the source’s cluster member nodes reply a clear-
to-send (CTS) message. Based on the information in CTS, the source node and the
destination’s cluster nodes estimate the channel gains from them to the destination.
After a successful RTS/CTS exchange, all cluster nodes of both the source and the
destination become aware of this transmission event and refrain themselves from
transmitting data to avoid collisions. After the RTS/CTS exchange, all candidate
relay nodes will calculate their priority according to some predefined policies, which
will be described in Sect. 11.4.4, based on the available channel state information fed
back by RTS/CTS messages. Then they compete with each other within a fixed time
window of length T,,,,, which is called the “relay contention period.” The cluster
member node with the higher priority will transmit and “win” the competition to
serve as the relay for cooperative data transmission.

Phase 2: The intercluster cooperative transmission. After the relay is determined,
the source sends out data to the relay/destination. The relay/destination decodes
the received data and meanwhile harvests the energy from the received RF signals
based on DPS scheme. To elaborate, The relay/destination first tries to direct the
received data flow to the signal processing unit to decode and detect whether the
minimum targeted data rate is satisfied, following the DPS approach. If the detection
is successful and there is some energy left, the remaining signal flows will be directed
to the energy harvesting unit, and the harvested energy will be used to support relay
transmission. Then the source and relays will simultaneously transmit the packets to
the destination (i.e., the CH of the receiving cluster).

The single-relay selection cooperative scheme is fully distributed and easy to
implement. The underlying reasons are that it is much simpler than the multi-relay
cooperation [5]. The former only selects one “best” relay to forward data, while the
latter requires the distributed space-time coding or beamforming. In particular, the
selected relay can use the energy harvested to support relay transmission so as to
avoid its energy being drained.

11.2.2 Communication Model

We consider two types of transmission modes for wireless communications: direct
transmission mode (DT) and cooperative relay transmission mode (RT). Depending
on whether the relay is helpful, each source may work in either the DT mode or the
RT mode. Let P; and P, be the transmission power of source s in Phase 1 and relay
r in Phase 2, respectively; .45 and .4, be the set of cluster member nodes (CNs) of
source node s (the CH in the transmitting cluster) and the destination node d (the CH
of the receiving cluster), respectively. Then the candidate relay set A4 = A5 N ;.
We assume that all the links are symmetrical, i.e., the channel from node i to node
J is the same as the channel from node j to node i, and the channel from the source
to the relay/destination follows quasi-static block fading. The channel is unchanged
over the block time 7" and independently and identically distributed from one block

fan.ye@stonybrook.edu



11  Energy-Efficient Cooperative Transmission for SWIPT in Wireless ... 259

to the next, following a Rayleigh distribution. The use of such channels is motivated
by prior research [12, 17]. We take a relatively short block duration compared to the
minimum coherence time of the channel and interference such that both the channel
and interference can be treated as unchanged during each block transmission. Let
hsq and hy,, r € 4, denote the channel gains between source s and destination d
and between source s and its relay r, respectively, h,4, r € ./, denote the channel
gain from relay r to destination d, and afd, crszr and O'rzd denote the variances of the
additive white Gaussian noise (AWGN) in the corresponding channels.

It is shown in [23, 24] that it is difficult to obtain perfect channel state informa-
tion (CSI) due to noisy channel estimation and the unavoidable delay between the
time channel estimation is performed and the time the estimation result is used for
actual transmission. Therefore, we will consider imperfect CSI in this paper, i.e., the
receiver knows the value of CSI, and both the transmitter and the receiver know the
distribution of CSI, since transmitting CSI information would lead to extra overhead
and considerable additional complexity.

To perform relay selection and power allocation, the source can obtain the chan-
nel gains by the feedback of the CTS message in Phase I via the dedicated con-
trol channel. To elaborate, in practical implementation, during the training period,
i.e., RTS/CTS exchange in Phase 1, before data transmission in the first time slot,
the source transmits training signals by RTS message so that the relay and the des-
tination measure the SR and SD channels and get the corresponding channel gains,
respectively. The relay then transmits training signals in the second time slot to the
destination so that the destination measures the RD channel and obtain its channel
gain. The measured channel gains can be fed back to the source by CTS message on
dedicated reverse control channels. Since all the links are assumed to be symmetrical,
the source can obtain the SR and SD channel gains.

The normalized effective channel gains can be represented by a,y = |hsq|?/ aszd,
agr = |hy|*/0y,, and arg = |hyql? /07, Where hij = G;L;;", Li; is the distance
between transmitter i and receiver j, o is a constant path loss exponent, and (;;
is a normalization constant depending on the radio propagation properties of the
environment. As aforementioned, source s via direct link would actively transmit
data in both time slots while source s via relay link would only transmit data in the
first time slot. Thus, the end-to-end data rate from source s to destination d during
the two phases is given by

R, — B IOg(l + plliasd Py), DT mode
sd = £ min(log(1 + plasa Py + plhara Pr), log(1 + plag, Py)), RT mode,

(11.1)
where B denotes the base-band width and the rate is scaled by % since the entire
transmission takes two phases. A criterion to decide the working mode of the source
in selective DF mode was given in [25], that is, using relay is advantageous when
min (plds, phara) > phasa. Otherwise, the relay keeps inactive in the relay phase.
In particular, the effect of best relay selection on the rate for the RT mode is
reflected by the following two aspects. (1) Best relay selection as a single-relay
cooperative scheme can avoid the complex mathematical expression for data rate

fan.ye@stonybrook.edu



260 S. Guo et al.

since compared to multi-relay cooperative schemes, single-relay cooperation requires
neither cooperative beamforming nor distributed space-time coding [4]. (2) Best
relay selection can ensure that the candidate relay that can provide the maximum
data rate is always selected as the actual relay of source s as shown in relay selection
subalgorithm in Sect. 11.4.4. Moreover, the increase of the number of relays will
increase the cooperation overhead and degrade the energy efficiency of cooperative
communication, i.e., more cooperators may lead to less energy efficiency [26]. This
also motivates us to adopt the best relay selection.

We first consider the data rate R,; in the RT mode. Let P,,; indicate the total
transmission power between source s and destination d in the two phases. As men-
tioned in Sect. 11.2.1, the harvested energy from the source is used by the relay as the
energy compensation of data forwarding. This means that the harvested energy may
not be enough for data forwarding to ensure the minimum data rate requirement, as
shown in constraint C5. In this case, the relay has to consume part of its own energy
for data forwarding. Therefore, the total consumed power should be the sum of the
transmission powers of the source and the relay, i.e., P; ; = P + P,.If the harvested
energy from the source is sufficient for data forwarding, then P; ; = P. Clearly, the
transmission power of relay r, P,, includes two parts: one is the harvested power,
denoted by P; 40, from the source, which is given by P p4ry = np,f Py |hgy |2 [18],
where 0 < 1 < 1 is the energy conversion efficiency. The other is the power from
the relay itself, denoted by P, ,,,. Therefore, we have P, = Prjarp + Prown-

‘We can observe from (11.1) that the achievable rate is maximized when the amount
of decoded information at the relay node is the same as the destination, i.e.,

I+ pfja.vdps + pfjardPr =1+ p:asrPr (112)
Together with P;; = P; + P and P, = Py jiarp + Prown. We Obtain

1
Palrd

s ﬂfﬂ:r+ﬂ,ll“/-d—ﬂ,llﬂsd sd> (11 3)
L —placg—pharanpE |ha | .
P __ PrAsr—Pydsd—Pydra NP | hsk
rown — sd -

phara+plas—phas
In the DT mode, we can easily obtain P; = Py, and P, = 0. Let A\, be the equivalent

channel gain given by

I I
pl Asr+0,0rd—PyAsd

(11.4)
phasa, DT mode.

1 '
__ PrlsrPylrd s RT mode’
)\sd =

Accordingly, by introducing a binary indicator 1, which is 1 if source s transmits
data in the DT mode, and Oin the RT mode, we can unify the data rate as

B
Rsa = 5(1 + ;) log (1 + Asa Psa) - (1L.5)
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We can observe from (11.5) that as the equivalent channel gain in (11.4) is directly
proportional to power splitting ratio p’, increasing p’ can improve the unified data
rate.

11.3 Problem Formulation

In this section, we formulate the SWIPT-based resource allocation optimization prob-
lem for cooperative transmission, aiming to maximize system energy efficiency.

11.3.1 Network Energy Efficiency

Let # denote the set of CHs in the network and | #| = K, and .4/~ denote the
candidate relay set for source s and |.4"| = N. We assume ¢, , is a binary indicator,
which is 1 if relay node r is selected for forwarding data from source s, and 0
otherwise. Next, we give the definition of the weighted system throughput.

Definition 11.1 (Weighted System Throughput) The weighted system throughput
is defined as the weighted sum of the data rates that all the sources deliver to the
destinations in the network and is given by

K

N
U(P.p. T)= D D oty Rulbit/s] (11.6)

s,d=1 r=1

where & = {Py; > 0,Vs, d € 2 }is the power allocation policy, p = {pi', piE >0,
Vi € & U A }isthe power splitting policy and 7 = {1, , € {0, 1}, Vs € &, r € A/}

Let «, denote a nonnegative weight that accounts for the priorities of different
receivers to enforce certain fairness and is specified by the application layer. In
practice, proportional fairness and max-min fairness can be achieved by varying the
values of «, over time [27].

On the other hand, by considering the constant circuit power consumption and
the inefficiency of power amplifier, we model the weighted power consumption as

K N

Urp(2.p, T)=KPcy + KNPcr+ D D eti,Pu (11.7)
s,d=1 r=1

where Pcy > 0 and Pcg > 0 denote the constant circuit power consumption in the
CH and relay node, respectively. Thus the first two terms indicate the total circuit
power consumption in the K CHs and all relay nodes. The last term is the total power
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dissipation in the power amplifiers of all sources and the corresponding relays. € > 1
is a constant that accounts for the inefficiency of power amplifier in the source and
relay nodes.

Next, we give the definition of weighted energy efficiency similar to [18].

Definition 11.2 (Weighted Energy Efficiency) The weighted energy efficiency of
the considered system is defined as the total average number of bits successfully
conveyed by the sources and relays to the destinations per Joule consumed energy
and is given by

U, p, 7
Ui (P, p, T) = UTIE(Tppﬂ)) (11.8)

Compared to the energy efficiency in [18], the harvested energy at the receiver is
not taken as the replenishment for the total system power consumption, which is
because that from the whole network system point of view, the total energy of the
whole system does not get replenished but is recycled and transferred from one node
to another so as to achieve energy balance.

11.3.2 Optimization Formulation

As aforementioned in Sect. 11.2, the power splitter splits the received signal y, in

p!l : pE, such that the portion of the received signal, ,/p! y,, is sent to the information

decoding unit and the remaining signal strength, \/ pf y,, drives the energy harvesting
unit. Using the signal received at the input of the energy harvesting unit, similar to
[17], the harvested energy at receiver k from transmitter s during a half of the block
time, T/2, is given by

Qi = npi ts.x Ps |hgk” (T /2) (11.9)
where 0 < n < 1 is the energy conversion efficiency.

In this paper, we aim to provide the optimal power allocation policy &7, power
splitting policy p*, and relay selection policy .7* such that the weighted energy
efficiency is maximized. To this end, the energy-efficient cooperative transmission
(eCotrans) problem for SWIPT in clustered WSNs can be formulated as

OPT — 1 max U/ (2, p, 7) (11.10)
P.p, T

Subject to

Cl: Qy+ Qcy > Ef™ Yk e X,
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N

C2: D 1, Py < P Vs, d e X
r=I1

C3: Pcy + ety Pog < E™&

K N
C4: D > t,Ry>R™,Vd e X,

s=1 r=1
N

C5: D>ty R = RY™,Vs,d e A,
r=1

C6: t,, €{0,1},Vse X, re s,
N,

CT: D, <LVsed, C8:ph, <pf <ph,
r=1

C9: Phuin <Pl < Pmas CLO:pf +pf < LVi

where Cl1 is energy harvesting constraint, which specifies that the sum of the har-
vested energy Oy and the remaining energy Q¢ x should be bounded by the minimum
required energy transferred to receiver k, EM™". We assume E"" > Q¢ so as to
guarantee the harvested energy Q; > 0. Transmission power constraint C2 ensures
that the power radiated by transmitter s is upper bounded by maximum transmission
power P™. Power consumption constraint C3 restricts the maximum power sup-
plied by the source for supporting the power consumption on its circuit and power
amplifier to the maximum battery capacity E™**. C4 is a quality of service (QoS)
constraint for the system that the aggregate network throughput should satisfy the
minimum system data rate requirement, Ry,;,. Note that although R, is not an opti-
mization variable in this paper, we can strike a balance between energy efficiency and
aggregate system throughput by varying its value. C5 is the minimum required data
rate R7" for the delay constrained services of receiver d, and is specified by the appli-
cation layer, and .#” denotes a set of receivers having delay constrained services.
C6 and C7 are relay selection constraints which require that each relay node is only
allocated to at most one source exclusively. C6 and C7 implicitly impose a fairness
constraint, since each relay node is only allocated to at most one source exclusively.
In other words, the relay allocated to a source is not allowed to forward the data
from other sources. This implies that a weaker source also has a higher chance to be
selected as a relay. C8 specifies that the power splitting ratio for harvesting energy
is limited by the constant lower bound, pZ. , and upper bound, p£, . These bounds
reflect the limited capability of receivers in splitting the received power. p!. and
pl. in C9 denote the constant lower and upper bounds of the power splitting ratio
for decoding information, respectively, where p%. + p! = 1and pE  + pl. = 1.
C10 reflects that the power splitting unit as shown in Fig. 11.2 is a passive device
and no extra power gain can be achieved during the power splitting process.
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The key challenge in solving the optimization problem OPT-11n (11.10) is its lack
of convexity due to the fractional form of the objective function and the couplings of
optimization variables {Z, p, .7} in constraints C1-C5 and the objective function.

11.3.3 Transformation of Objection Function

We now transform the objective function in OPT-1 problem in the fractional form
into an equivalent one in the subtractive form via nonlinear fractional programming
[28]. Without loss of generality, we define the maximum weighted energy efficiency
q* as

. U(*, p*, T%) ma U(Z,p, )
= = X —m4m8m8888
U= Urp (P, 5, T5 2y Urp( 2, p, T)

(11.11)

We introduce the following important theorem for solving the OPT-1 problem in
(11.10).

Theorem 11.1 The optimal resource allocation policies (22*, p*, T*) achieves the
maximum energy efficiency q* if and only if

max [U(2,p, 7) —q Urp(2, p, T)]
P.p, T
= U(P*, p*, T*) — ¢*Urp(P*, p*, T*) = 0 (11.12)
forU(Z,p, 7)) > 0and Urp(ZP, p, T) > 0

Proof 1t follows from (11.6) and (11.7) that U(Z,p,T) >0 and Urp
(2, p, T) > 0 are satisfied and U,.sr(Z, p, 7) is well defined. The remaining
proof can be completed by following a similar approach to that in [22, Appendix A].

Theorem 11.1 reveals that for any optimization problem with an objective func-
tion in fractional form, there exists an equivalent objective function in subtractive
form, e.g., U(Z, p, 7) — q*Urp (2, p, 7) in the considered case, such that both
problem formulations lead to the same optimal resource allocation policy.

11.3.4 Iterative Algorithm for Energy Efficiency
Maximization

We now propose an iterative algorithm based on the Dinkelbach method [28] for
solving the optimization problem OPT-1 in (11.10) with the equivalent objective
function U(Z2, p, T) — q*Urp (2, p, 7). The proposed algorithm is described in
Algorithm 3.

fan.ye@stonybrook.edu



11  Energy-Efficient Cooperative Transmission for SWIPT in Wireless ... 265

Algorithm 3: Iterative algorithm for OPT-1 problem
Require:
Itermax: maximum number of iterations;
&: an infinitesimal number;
q: energy efficiency;
Jj: iterative index;
Ensure:
{2*, p*, T*}: optimal resource allocation policy;
¢*: maximum energy efficiency;

I j«<1,qg <0

2: while j < Iterpmax do {Main Loop}

3: Solve the optimization problem in (11.13) for a given ¢ and obtain resource allocation
policies { £, p, T}

4: it U(Z,p, T)—qUrp(2, p, 7)<e then

5. return {F*,p*, T*}) ={P,p, T} and ¢* = %

6: else oo

7 Setq:%andjzj-l—l

8: end if

9: end while

Algorithm 3 can be described briefly as follows. In each iteration of the main
loop, we solve the transformed OPT-2 problem in (11.13) for a given parameter
g via dual decomposition and obtain an alternative optimal policy (<2, p, 7) of
power allocation, power splitting and relay selection. Then we update parameter
q and use it to solve the main loop problem in the next iteration until the condi-
tion U(Z, p, 7) — qUrp(Z, p, T) < ¢ is satisfied, which implies that the iter-
ative algorithm converges and the obtained allocation policy achieves optimum,
ie, (2, p, T)— (2%, p*, T*).

The transformed problem (OPT-2) for given energy efficiency g can be given by

OPT -2 }nany(@,p, T)—qUrp(P, p, T) (11.13)
2.p,

Subject to constraints C1-C10.
Next, we verify the convergence of the iterative algorithm in Algorithm 3.

Theorem 11.2 The proposed algorithm of energy efficiency maximization in Algo-
rithm 3 converges to the optimal energy efficiency if the optimization problem (11.13)
can be solved in each iteration.

Proof We employ a similar approach to that in [22, 28] to prove the convergence
of Algorithm 3. We first introduce two propositions to demonstrate the properties of
the equivalent objective function in (11.13). For the sake of notational simplicity, we
define .# as the set of feasible points of the optimization problem in (11.10) and let
F(Q) = gglgxgu(ga P> y) - qUTP('QD P> y)
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Proposition 11.1 [22] F(q) is a strictly monotonically decreasing function with
respect to (w.rit) q, i.e., F(q) > F(q) ifq > ¢’

Proposition 11.2 [22] Let { &', p/, T'} € F be an arbitrary feasible solution and
q = % Then F(q') > 0.

Next, we prove the convergence of Algorithm 3. This proof includes two parts: the
first part is to prove that energy efficiency g increases with the number of iterations;
the second part is to prove that if the number of iterations is large enough, then energy
efficiency g converges to the optimal g* such that it satisfies the optimality condition
in Theorem 11.1,i.e., F(¢*) = 0.

Let {Z,, pn, 7} be the optimal resource allocation policies in the n-th iteration.
We assume g, # ¢* and g, # g™ represent the energy efficiency of the system in
iterations n and n + 1, respectively. By Proposition 11.2, we have F(g,) > 0 and
F(gu+1) > 0. On the other hand, in the proposed Algorithm 3, we calculate g, as

U(PnsPu, T
qn+1 = wi(‘@—”py)) Thus we can compute F(g,) by

F(CIn) = U(fgzna Pns '71.1) _qI‘IUTP(L@ns Pns z)
= Qn+1UTP(<@n: Pns Z) - anTP(@n’ Pns %)
= Urp(Pn, pn> T0)(Gns1 — Gn)

Since F(g,) > Oand Uy p (P, pn, Z,) > 0,itisnotdifficult to obtain g, > g,.
That completes the proof of the first part.

By ¢u+1 > g, and Proposition 11.1, we can obtain that F(g,) will eventually
approach zero and satisfy the optimality condition in Theorem 11.1. That completes
the proof the second part.

In fact, the transformed objective function has an interesting pricing interpretation
from the economy point of view. U (22, p, 7) indicates the system profit due to data
cooperative transmission, while U7 p (£, p, .7) represents the associated cost due to
energy consumption. The optimal value of ¢ indicates a scaling factor for balancing
profit and cost.

Although the transformed optimization problem (OPT-2) has an equivalent objec-
tive function in subtractive form which is easier to handle, there are still two obstacles
in tracking the problem. First, p! and pf are coupled with the power allocation vari-
ables in both the objective function and constraints C1, C4 and C5, which complicates
the solution. Second, the binary constraint C6 on relay selection variables creates a
disjoint feasible solution set and makes constraints C1-C5 become the combinatorial
constraints, which is a hurdle for solving the OPT-2 problem.

In order to strike a balance between solution tractability and computational com-
plexity, we handle the above issues in following two steps. In the first step, due to
the integer constraint #, . € {0, 1}, problem OPT-1 is a mixed integer programming
problem, which is in general non-convex and NP-hard. Thus, we first adopt the time-
sharing relaxation technique that has been employed in [18, 29-32] to guarantee the
convexity and tractability of the optimization problem. We relax the relay selection
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variable f; , in C6 to a real number between O and 1, i.e., 0 < ¢, < 1. Then ¢, can
be interpreted as a time-sharing factor for the K sources to utilize relay node r.

In the second step, we introduce a new auxiliary variable Fyd, which is defined
as 13“1 = t;, Py and represents the actual transmitted power from source s to its
destination d through relay node r. In addition, we assume that the power splitting
ratio for information decoding at relay r is the same as that at the corresponding
destination d, i.e., p! = p!. This is justified since if p! # pl, it can be observed
from (11.4) that the update of p! at relay node r depends on the update of p, at its
destination d in the proposed power splitting subalgorithm, and vice versa, which
greatly increases the computation complexity and consumes much more energy for
exchanging a large number of intermediate computation messages.

As for the suboptimality caused by the assumption, let p/* and p/** denote the

suboptimal and optimal power splitting ratios for information decoding at destination

I 1
d, respectively, and we can obtain £& = — 29
> TESp Y, i plas +pl(ara—asa)

for DT mode. The latter is because the channel gain A, is not related to p!. Clearly,
for RT mode, when a,4 — a4, p* will approximately equal p/**. In practice, this
case occurs frequently since the relay usually lies in the middle between the source
and the destination, and the channel gain a,, between the relay and the destination
is close to the channel gain a,,; between the source and the destination.

Based on this assumption, we follow the approach in [18] and approximate the
data rate as

for RT mode and p%* = p/i**

B -~ ~
Ry = 5(1 + ;) log (piAsa Psa/ts.r) (11.14)

which is a tight approximation for high SINR, i.e., A;q Pss >> 1. Indeed, high SINR
can be guaranteed since a minimum required system data rate R™" s set to guarantee
a desired system data rate. )\, is defined as

~ —G4wdd __ RT mode,
Nog = | @rtara—asa (11.15)
asq, DT mode.
To remove the associated non-convexity, we can rewrite constraint C1 as
Emin
CU sty Py P (7/2) + 265 > B (11.16)
Pk Pk

Next, we explore the convexity of the transformed OPT-2 problem with approx-
imate data rate R;; and auxiliary variable Py .

Theorem 11.3 The transformed OPT-2 problem with constraints C I’ — C10is con-
vex with respect to (w.r.t) the optimization variables P, p[[,, pf and tq ;.

Proof We first prove that the transformed objective function U(Z, p, 7) — qUrp
(&, p, 7) is jointly concave w.r.t. the optimization variables Py, pf,, pf and £ ;.
Then we show the convexity of constraints C1-C10.
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The concavity of the transformed objective function can be proved by the follow-
ing steps. First, we consider the concavity of function U (&, p, ) based on a relay
selection w.r.t. the optimization variables Py, pl and pf.

For notational simplicity, we define a vector X;q = [Pea, pl, pE] and a function
fsa(sa) = 51+ 05), 10y (ph Asa Pea)- Then we use H( foa(Xeq)) and 71, 7 and 73
to denote the Hessian matrix of function fy,(X;4) and eigenvalues of H( f;4(Xs4)),
respectively. The Hessian matrix of function f;;(X,,) is given by

1 O 0
H(fiu(Xa)) =] 0 2 0
00 T3
where 7 = —fﬁ;’}pfﬁ’ = —% and 3 = 0. Since 7; <0,i € {1,2, 3},

H(fsa(X;4)) is a negative semi-definite matrix. In other words, function fi;(Xsq)
is jointly concave w.r.t. Py, p)) and p5.
Then we can take the perspective transformation on fy;(X,4), which is given by

B -~ ~
usd(xsd) = E(l + ﬁ.y)t.s,rar 10g2 (p‘11>\sd Psd/ts,r) = Oyl Rgq

It is shown in [33] that the perspective transformation preserves the concavity of
the function. Thus, function u,,(X,s) is jointly concave w.r.t. i’;d, ptli, pf and #; ,.
Function U (2, p, ) is the sum of u;,(X;4) over indices s, d and r, which preserves
the concavity of the function [33].

In the following, we prove the convexity of function Urp(£2, p, 7). Since the
function Urp (22, p, 7) is an affine function of the variable la’;d, the function is
convex w.r.t the variable Ed. Therefore, it is not difficult to obtain that the trans-
formed objective function U(Z2, p, T) — qUrp (22, p, 7) is jointly concave w.r.t.
the optimization variables Py4, pl, p¥ and , ,.

Now, we verify the convexity of constraints C1'-C10. The left term of constraint
C1’ is linear, which implies that it is both convex and concave, and its right term is
convex. Therefore, constraint C’ is convex. Since all the inequalities in constraints
C2 and C3 are linear function of variable 13;[,, clearly, the constraints C2—-C3 are
convex. The relaxed constraint C6 and constraints C7—C 10 span a convex feasible
set. As for constraints C4 and C5, it is easy to show that the constraints are convex
due to the concavity of function U (<2, p, 7).

As a result, the transformed OPT-2 problem is a convex optimization problem
W.I.L. Iid, pé, pf and f; .

Theorem 11.3 reveals that the transformed OPT-2 problem in (11.13) has a zero-
duality gap and satisfies the Slater’s constraint qualification. The zero-duality-gap
result provides an avenue to obtain the optimal solution of the primal problem in
(11.13) derived from its corresponding dual problem as will be seen later.
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11.4 Distributed Algorithm for eCotrans Problem

In this section, we solve the transformed OPT-2 problem with the approximated data
rate Ry in (11.14), relaxed constraint C4 and constraint C1’.

11.4.1 Dual Problem Formulation

The resource allocation policy is derived via solving the dual problem of (11.13) with
the approximated data rate function. For this purpose, we first give the Lagrangian
function of the primal problem (11.13) by

Lw,n, u,v,v,o,p, 2,p, 9) (11.17)
K N,

= Z ot Yd—q(Pr-FZ:Z:ffpvd)

s,d=1 r=1 s,d=1 r=1

K N, ch Emin
30 o (At por 254 - B
1r=

s,d=1 r=1 pd Pa
K

K

— D psa(Poa — P = D vwa(Pen +ePyg — E™)
s,d s,d=1

N, N,
+U(Zzts,rﬁsd - Rmin) - (,b(z ts,r — 1)

s,d r=1

+zznd(tsr sd_RLIjnm)_‘pZ(pd +pd_ 1)

s,d r=1

where Pr = K Pcy + Zusl Zi\/;l Pcr, Hr = n|hsq|*(T /2). Lagrangian multiplier
w=[w,,s=1,..., K] is for the inequalities of energy harvesting constraint C1,
which denote the prices for the individual minimum transferred power of harvested
energy in Cl. Lagrangian multiplier jt = [pt5q, s, d =1, ..., K]T corresponds to
transmission power constraint C2, which represents the price for the individual
maximum transmission power. v = [vsy, s,d = 1,..., K 17 is Lagrangian multiplier
for power consumption constraint C3, which indicates the price for the individual
maximum power consumption. Lagrangian multiplier v is for QoS constraint C4,
representing the price for the minimum data rate requirement Rp;, of the system.
Lagrangian multipliern = [1,, b = 1, ..., K]7 is for the minimum required datarate
constraint C5. ¢ is Lagrangian multiplier for relay selection constraint C7, denoting
the price for a relay corresponding to at most one source. Lagrangian multiplier ¢
is for power splitting ratio constraint C10, reflecting the price for no extra power
gain during power splitting process. On the other hand, the boundary constraints C8
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and C9 on optimization variables are captured by the Karush—Kuhn—Tucker (KKT)
conditions when deriving the resource allocation solution later.
The dual problem for the primal problem (11.13) is given by

min max L(w,n, u,v,v,d, p, 2P, p, T 11.18
o min | max w,m, u, v, 0,0, ¢ p> ) ( )

Based on zero-duality-gap result, we know that the solution of the OPT-2 problem
in (11.13) can be derived from its dual problem in (11.18).

We use an iterative approach to solving the dual problem (11.18) as follows. In
each iteration, given dual variables w, n, i, v, v, ¢ and @, we first calculate the primal
variables &, p and 7 by applying the KKT conditions; Then by using the primal
variables, we update the dual variables via the subgradient method. In the following,
we give the corresponding distributed subalgorithms for power allocation, power
splitting and relay selection.

11.4.2 Power Allocation Subalgorithm

Power allocation subalgorithm aims to determine the optimal transmission power at
the source in Phase I and at the relay in Phase I1, satisfying the constraints of maximum
power consumption and minimum data rate requirement (QoS requirement). Using
standard convex optimization techniques and the KKT conditions [33], for a given
q, in each iteration of the Dinkelbach method, the power allocation policy is given
by

. B(1 4 195) 5"
P;Zi:[(a +v+na)B(1 + )} (11.19)

2In 2(Dyq.r) 0
where Dy, = qe+pisa + Vsae — weHr, and Hr =17 |hsal? (T/2). Here operator
[x]Z is defined as [x]Z = max(a, min(x, b)). If source s and P;;** can be considered
as a water vessel and its maximum water level, respectively, it is clear that different
sources have different maximum water levels, and the power allocation in (11.19) has
the form of multilevel water-filling, which can be interpreted as adaptively allocating
transmission power according to a certain law and channel state. Usually, the link
with good channel gain will always be allocated more power, that is, be filled more
water up to its maximum water level in the vessel, in order to maximize transmission
rate. However, the power allocation in (11.19) is not exactly multilevel water-filling
since the water level in allocating power on source s, i.e., %W, is not only
directly proportional to the priority of the source via variable ., but also depends

on the channel gains among the source, relay and destination.
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11.4.3 Power Splitting Subalgorithm

Power splitting subalgorithm aims at determining the optimal power splitting ratio at
the receiver so as to guarantee that the harvested energy at the receiver is no less than
the minimum required power transfer while the aggregated data rate is no less than
the minimum system data rate requirement. In practice, the power split for energy
harvesting and that for information decoding contradict with each other, that is, the
increase of pF will lead to the decrease of p!. The optimal power splitting policy can
be obtained by solving the following maximization problem:

~ w,
max(c, +v + 7)1 Rea — wy— — ¢ (0F + pl) (11.20)
PPy Py

Subject to
C8: pfﬁin = pg = pglax’
€9 prlnin = pé = pl{nax’

where wy; = ET" — Q¢ 4.
By the KKT conditions [33], for a given ¢, p* and p5* are given by

B 1 ,'9 - prlnax
Pl = (1 +95)(ar+v +na4) 11.21)
21n 2<p ol
, Prnax
C(EMin
pEr = \/M (11.22)
¥
pfﬂn

We can observe from (11.21) that the power splitting ratio for information decoding,
pl, is also a water-filling scheme and depends on the priority of the receiver via a,
which implies that the receiver with high priority has to increase p/, to improve its
data rate. Besides, Lagrange multiplier v forces the receiver to split larger ratio of
power used to decode information in order to ensure that the aggregated network
throughput satisfies the minimum system data rate requirement. On the other hand,
E gﬁ“ and wy, require the receiver to increase the power splitting ratio for energy
harvesting, p5, so as to meet the constraint of ET".

11.4.4 Relay Selection Subalgorithm

The goal of the relay selection subalgorithm is to provide a relay selection criterion
by which all overhearing nodes calculate their priority. The node with the highest
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priority will be selected as the relay node that cooperatively delivers data from the
source. Thus, using the standard convex technique [33] to solve the dual problem
(11.18), relay node r is assigned to source s when the following selection criterion
is satisfied

1,if r = argmax; M ;
« _ L J M, j
lsr = [ 0, otherwise (11.23)
where B
My, = = (optv +1n0) log (o X Py) = ¢ (11.24)

M; . can be regarded as the marginal benefit provided to the system when relay r is
assigned to source s. In other words, relay r is selected to cooperatively forward the
data of source s if it can provide the maximum marginal benefit to the system, which
implies that relay r has the highest priority to be selected among all candidate relay
nodes of source s. Besides, if relay r has a high priority, it will have a large value
of «, and the resource allocator at the transmitter will have a higher preference to
selectrelay r. On the other hand, we can observe from (11.23) that although constraint
relaxation is used in constraint C6 for facilitating the design of the resource allocation
algorithm, the relay selection policy on each relay for the relaxed problem remains
Boolean.

11.4.5 Lagrange Multiplier Update

In this subsection, we will solve the minimization problem at the high level in (11.18)
by using the subgradient method which leads to the following Lagrange multiplier
update

min +
Wyt + 1) [ <r>—6<r>( sdPSd+QC"’+Ed)} (11.25)

Pa
(e + 1) = [mp(0) + 6(2) (8, Roa — RT™)]" (11.26)
psa(t + 1) = [pea®) + 6(1) (Poa — PE™)]" (11.27)
Vsa(t + 1) = [v5a(t) + 0(0) (Pe + e Pog — E™)]" (11.28)

K N, +
vt +1) = o) ~ 6(:)(2 D terRea — Rmi“)} (11.29)

s, d=1 r=1
ot + 1) = [p) +6@t) (0F + o —1)]" (11.30)

where Hyy = Hr Ayq.r, index t > 0 is the iteration index, and (¢) is positive dimin-

ishing step size. Updating ¢ is not necessary as it has the same value for all nodes
and does not affect the power splitting in (11.21) and (11.22) and the relay selection
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Updating w,n, 1,0, v,y
By (25)-30)

‘ High Level: Master Problem

/‘ N il > 2
N E ~ 7y,
/ S A - ~k .
-7 | IR
e v< ~

Lower Level: Lower Level: Lower Level:

1** Subproblem 2" Subproblem 3 Subproblem
Solved by (19) Solved by (21)-(22) Solved by (23)-(24)

—— Information Passing from Lower Level to High Level

— — — — » Information Passing from High Level to Lower Level

Fig. 11.3 Dual decomposition of OPT-2 problem into a two-level problem in each main loop
iteration

in (11.23). Therefore, we can simply set ¢ = 0 in each iteration. Indeed, in each
iteration for solving the main loop problem, the master problem at the high level
adjusts the Lagrange multipliers by (11.25)—(11.30). On the other hand, each sub-
problem at the lower level adjusts the water levels of (11.19), (11.21) and (11.22) and
relay selection metric (11.23) by using the updated Lagrange multipliers. The proce-
dure is repeated until convergence is achieved or the number of iterations reaches a
predefined maximum number of iterations for the main loop, as shown in Fig. 11.3.

We now analyze the time complexity of the proposed iterative algorithm in
Algorithm 3. It consists of two nested loops. The outer loop is to update the para-
meter g and can be proved to have a linear time complexity. On the other hand, the
inner loop optimization problem is proved to be convex in Theorem 11.3, in other
words, solving the inner loop optimization problem requires only a polynomial time
complexity, i.e., the complexity is O(K x N). As a result, the proposed algorithm
has a polynomial time complexity, i.e., O (Iterm, X K x N).

11.5 Simulation and Discussions

In this section, we first verify the convergence of the proposed eCotrans algorithm.
Furthermore, we compare and evaluate the performance of our solution for different
parameters.

We assume that 50 cluster member nodes (CNs) are randomly located within
a circular area within a radius of 120 m. Here, we only use LEACH algorithm as
an example to organize the clusters. Note that many other clustering protocols can
also be used in our algorithm. We let « = 2, ¢ = 5 and (;; = 1. The channel gains
are generated according to a Rayleigh fading model. Without loss of generality,
we assume that all receivers have the same priority o, = 1, and all nodes have
the same circuit power consumption, i.e., Pcy = Pcg = 10dBm. We let pE. =
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Table 11.1 Parameter settings

Parameter Value Parameter Value
B 3MHz P> 40dBm
K 100 T 10s

N 8 i 0.4
a2, —130dBm Emin 0J

o2, —120dBm Emax 1007
o, —110dBm £ 0.001
RMin 2Mbps itermax 20

pl. =0and pE = pl = 1. Moreover, to ensure fast convergence, the iteration
step size adopted in Lagrange multiplier updates is optimized via backtracking line
search [33]. Other system parameters are listed in Table 11.1.

11.5.1 Convergence and Performance Analysis

In this subsection, we study the convergence of the proposed eCotrans algorithm.
Figure 11.4 illustrates the evolution of energy efficiency for different maximum trans-
mit power allowance P”**, and the number of relays N in a cluster. By analyzing the
results in Fig. 11.4, we can see that the energy efficiency increases with the number
of iterations and then converges within 12 iterations in every considered scenario.
Note that the number of iterations in Fig. 1 1.4 indicates only the main loop iterations
for the Dinkelbach method, but not that for the gradient method. Another important
observation is that the energy efficiency is directly proportional to P™%*. This is
justifiable since a higher transmit power allowance leads to the larger transmit power
and data rate.

11.5.2 Impact of Relay Nodes on Energy Efficiency

In this subsection, we evaluate the impact of the number of candidate relay nodes in
a cluster on energy efficiency under the DT and RT modes, respectively. To reflect
the DT and RT modes, we let pf = pé and a,, > a,4, which implies that if a,y > ayq,
the CH works at the RT mode, otherwise, it works at the DT mode. We define
INR = a,4/asq and let INR be 0.5, 0.8, 1.2 and 1.5. Clearly, the first two ratio
values indicate the DT mode is valid while the latter two values imply that the RT
mode is available. We observe from Fig. 11.5 that compared to the DT mode, the
energy efficiency of the proposed algorithm at the RT mode increases remarkably
with the number of candidate relay nodes. However, the increase of energy efficiency
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becomes slower and finally stable with further increase of the number of relays. This
is mainly due to that (i) it induces more collisions and energy consumption of all
control messages such as RTS/CTS; (ii) the relay selection subalgorithm has to
traverse more candidate relays and execute more iterations to find the optimal relay.
Another important observation is that for the same transmission mode, the energy
efficiency is directly proportional to the normalized effective channel gain.

11.5.3 Impact of Power Allowance on Average Harvested
Energy

In this subsection, we explore the impact of the maximum allowed transmit power
P on the average harvested energy for different INR levels. Figure 11.6 depicts
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the average harvested energy at the CH versus the maximum power allowance for
different / N R levels. We set INR to be 1.2, 1.5, and 2.0, which means that the CH
works at the RT mode. It can be observed from Fig. 11.6 that in lower P"“*, only a
small portion of received energy is harvested by the CH for energy efficiency maxi-
mization. This is due to the fact that for small values of the transmit power allowance,
the received power of the desired signal at the receivers may not be sufficiently large
for simultaneous information decoding and energy harvesting. On the contrary, for
the higher level of the transmit power allowance, the receiver has a higher tendency to
split a larger proportion of the received power for energy harvesting until the amount
of average harvested energy is saturated. This is because that once the constraints on
the minimum required energy transfer to receiver k, E}{ni“, and the minimum system
data rate requirement, R, are satisfied, the transmitter stops increasing the transmit
power for energy efficiency maximization. On the other hand, we can observe that a
higher amount of energy is harvested by the receiver when the / N R level increases.
As a result, splitting more received power for energy harvesting can enhance the
system energy efficiency.

11.5.4 Impact of Intercluster Distance on Energy Efficiency

In this subsection, we discuss how the distance L;; between the CH i and the CH j
affects the energy efficiency under the different maximum transmit power allowance.
In this case, we set the number of CN nodes in a cluster as N = 8 and let P™%*
be 30dBm and 40dBm. Figure 11.7 reflects the evolution of energy efficiency with
intercluster distance. It can be seen in Fig. 11.7 that when the intercluster distance
L;; increases, the energy efficiency decreases, correspondingly. This is justified since
when L;; increases, the proposed algorithm needs more sensor nodes to participate
in cooperation to reach long transmitting distance for a given P™“*, which leads to
more energy consumption. Another observation is that the energy efficiency at the
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RT mode is always larger than that at the DT mode as L;; increases. This is because
that the long transmitting distance will hinder the direct transmission between the
two CHs and even make the direct transmission invalid.

11.5.5 Comparison on Energy Efficiency and Remaining
Energy

In this subsection, we compare the performance of the proposed eCotrans algorithm
and several existing cooperative schemes, such as the eCocom scheme in [4], the
coCoalition scheme in [3], the eCooperation algorithm in [2], and the coNetspa
scheme in [15] in terms of energy efficiency and remaining energy for different
maximum allowed transmit powers. The eCocom is an energy-efficient selective
single-relay cooperative scheme with physical layer power control. The coCoali-
tion is a cooperative communication scheme based on coalition formation game in
clustered WSNs. The eCooperation is an energy-efficient cooperative transmission
strategy using cooperative multiple-input and multiple-output (CMIMO) technique.
The coNetspa scheme is an energy harvesting cooperative scheme for wireless infor-
mation and power transfer in cooperative networks with spatially random relays. The
first three schemes are energy-efficient cooperative schemes, but without energy har-
vesting, while the coNetspa scheme involves the application of SWIPT to wireless
cooperative networks, but it does not consider energy efficiency maximization.

In the simulation, we let N = 8 and INR = 1.5. We consider the scenario that
all cluster member nodes (CNs) have the same amount of data to be sent and the
same initial remaining energy. Figure 11.8 illustrates the comparison of energy effi-
ciency between the proposed eCotrans algorithm and the existing schemes. It can
be observed that all the cooperative schemes have an increasing energy efficiency
with the maximum transmit power allowance until the achieved energy efficiency
gain attains its maximum in the high transmit power allowance region. However,
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Fig. 11.8 Energy Efficiency
(bits/mJ) versus maximum
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our proposed eCotrans algorithm achieves the highest energy efficiency. This is jus-
tified since we employ the energy harvesting cooperative transmission, combining
the optimal cooperative relay selection with the optimal power control and power
splitting at the physical layer.

Figure 11.9 depicts the remaining energy in the battery for receivers CH1, CNI1,
CN2 and CH3 as shown in Fig. 11.1 after transmitting the same amount of data by
different cooperative schemes. It is observed that the proposed eCotrans algorithm
has more remaining energy in the batteries of all receivers while also having the best
remaining energy balance among receiver nodes. In particular, for the receivers CN1
and CN2, the superiority of the eCotrans algorithm is more obvious. The reason is
that using eCotrans algorithm, the receivers are able to harvest the energy from the
received signals and replenish the harvested energy in the battery while forwarding
the data from their upstream nodes. More importantly, although the CH3 node has
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more data to forward from its neighbor nodes as shown in Fig. 11.1, it still has more
remaining energy in its battery. This is because the CH3 node is capable of harvesting
the energy of ambient RF signals from the transmitters.

11.6 Conclusions

In this paper, we consider applying SWIPT to cooperative clustered WSNs, where
energy-constrained relay nodes avail the ambient RF signal and simultaneously har-
vest energy and process information to prolong their lifetime. Our goal is to provide
the optimal policies for power allocation and relay selection and determine the opti-
mal power splitting ratio so that the system energy efficiency is maximized. To
achieve this goal, we formulate the eCotrans problem as a non-convex constrained
optimization problem. Furthermore, we propose a distributed iteration algorithm
with closed-form transmission power, power slitting ratio and relay selection by
exploiting dual decomposition. In particular, we find that power splitting ratio plays
an imperative role in relay selection, however, it depends on the minimum harvested
energy requirement. Our simulation results demonstrate that the proposed iterative
algorithm converges within a small number of iterations. Compared to existing algo-
rithms without energy harvesting or energy efficiency maximizing, our proposed
iterative algorithm can achieve higher energy efficiency and more remaining energy.
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Chapter 12
Using Mobile Nodes in Wireless Sensor
Networks with Wireless Power Transfer

Xiaobing Wu

Abstract In this chapter, we introduce works on using mobile nodes in wireless
sensor networks with wireless power transfer ability. The mobile nodes here can be
mobile chargers or mobile sensor nodes. There are works discussing the energy
provision problem considering mobility of sensors in the network although most
works focus on the scenario where only chargers are mobile. We classify the works
into two categories, namely, centralized approach and distributed approach. The for-
mer one refers to that the proposed method is centrally controlled and relies on global
information of the network, and the latter one refers to that the proposed scheme
works based on limited local information. As for centralized approach, we introduce
several popular topics such as mobile charger planning, joint mobile charging and
data gathering, using minimum mobile chargers, etc. As for the distributed approach,
we present topics including on-demand charging, planning for a single mobile charger
and coordination of multiple mobile chargers. There are more works on centralized
approach than on distributed approach. Finally we conclude this chapter.

12.1 Introduction

In traditional wireless sensor networks (WSNs), the sensors are powered by battery
and the networks are usually deployed in remote areas where it is difficult for people
to replace the battery. The network lifetime of WSNs is defined as the duration from
the time when the network starts to operate till the time when the first node in the
network depletes its energy. A lot of research has been conducted on how to improve
the network lifetime of WSNs. Wireless power transfer (WPT) technology can help
to overcome the energy problem of traditional WSNs. Using mobile nodes in WSNs
enabled by wireless power transfer brings both opportunities and challenges. Many
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research efforts have been put in this field. In this chapter, we introduce the latest
progress in regarding to using mobile nodes in WSNs enabled by wireless power

transfer.

12.2 Centralized Approach

A typical wireless-power-transfer-enabled rechargeable sensor network is usually
composed of a base station, one or multiple mobile chargers and many sensors as
illustrated in Fig. 12.1. The base station can serve as a dual role of data sink for
the sensor nodes and energy refilling station for the mobile rechargers. Usually the
mobile charger and base station are different nodes, but we will introduce some
works on co-located mobile charger and mobile base stations. The mobile charger
roams in the network according to some traveling path which is computed a priori
or on-site. It is usually assumed that the chargers have higher capacities than the
ordinary nodes in terms of energy, mobility and communications. Using centrally
controlled mobile chargers means that the network operator can design and plan
the operation of the mobile charger a priori based on global network information.
Centralized approach always brings higher system efficiency since less coordination
is involved. We will introduce some of the most important works in this area in the
following subsections. The topics include planning of single mobile charger, joint

-
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Fig. 12.1 Tllustration of a typical wireless rechargeable sensor network which consists of a base
station, one/multiple mobile chargers and many sensor nodes
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mobile charging and data gathering, using minimum mobile chargers, collaborative
mobile charging, localization with mobile chargers, etc.

12.2.1 Planning of Mobile Charger

In wireless ad hoc networks with wireless power transfer, the wireless charger is
usually a more advanced device compared to ordinary nodes. Accordingly, it is more
expensive in terms of device cost. Using a mobile charger to travel in the network
instead of deploying multiple static chargers is an effective method to reduce the
device cost. We need consider several technical issues when we consider using a
mobile charger in the network. In particular, one needs to consider the trajectory,
moving speed, sojourn points, sojourn of the mobile chargers. All these factors can
influence the charging efficiency of a mobile charger. Here we introduce two impor-
tant works in the literature.

12.2.1.1 Trajectory of Mobile Charger

Xie, Shi, Hou and Sherali [23] assume that there are sensors and a static sink in
the network and a mobile charger that travels inside the network and charges the
sensors. Initially, every node is fully charged and has an energy reserve of E, ;.
The node stops working once its remained energy goes below E,,;,. The mobile
charger starts from a service station and moves at a speed of V. It will stop at a node
i for a duration of 7;. It is assumed that the mobile charger has unlimited supply of
energy. The mobile charger returns to the service station after it visits every node
in the network. The time between two tours is called vacation time of the mobile
charger, 7,,.. Here a tour is defined as the process that the charger starts from the
service station and return to it. In order to improve the charging efficiency, we need
to maximize the ratio of vacation time to the whole tour time . It is also assumed
that the data flow routing in the network does not change over time. The energy level
of every node in this network under these assumptions is periodic and goes to a high
level when the mobile charger comes in its vicinity and drops to a lower level before
the mobile charger comes again. The authors call the periodic energy level renewable
if it starts and ends with the same energy level over the tour period of the mobile
charger and it never falls below E,;;,. The following theorem has been proved.

Theorem 12.1 ([23]) The mobile charger needs to travel along the shortest Hamil-
tonian cycle covering all ordinary nodes and the service station in order to maximize
the vacation ratio Tyqc/T.

Based on Theorem 12.1, now it is enough if we can figure out the flow routing and
charging time for each sensor node. The authors propose an optimization formulation
for the joint flow routing and charging time problem. It is however non-linear and
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NP-hard in general. They resort to approximation for a near-optimal final solution.
The following lemma states the performance guarantee of the near-optimal solution.

Lemma 12.1 The proposed approximation algorithm guarantees that the perfor-
mance difference between the feasible solution and the optimal one is no greater
than U - z-TSP/{4’”2(Emax - Emin)}-

Here m is the number of piecewise linear segments to approximate the quadratic
curve of the original problem. t7gp is the tour duration of the shortest Hamiltonian
cycle.

12.2.1.2  Velocity of Mobile Charger

In [17], Shu, Yousefi, Cheng, et al., consider the velocity control problem of the
mobile charger in a wireless rechargeable sensor network. It is assumed that the
trajectory of the mobile charger is given a priori and the time for one tour is bounded.
The aim of the proposed scheme is to maximize the minimum charged energy among
all the nodes in the network. In particular, it is assumed that the charger moves at
v () with acceleration of a(¢) at time ¢ within each charging trip duration 7. The aim
of this problem can be formulated as follows [17],

T
maxmjn(/ P;(t)dt — y;T), (12.1)
i Jo

where the first part in the min function is the integrated charged energy for node
i and the second part is the energy consumption during the time 7'. The first part
can be calculated via multiplication of charging efficiency and distance between the
node and the mobile charger. Usually the charging efficiency is an exponentially
decreasing function of the distance between the charger and the node.

Itis in fact hard to solve the problem since the function (12.1) is non-convex due to
the non-linear continuous change of the distance between the charger and the node.
The authors propose to use both temporal and spatial discretization to approximately
solve the problem. Here temporal discretization refers to that the speed can change
only at discrete time. Spatial discretization means that the pre-defined trajectory
is divided into multiple segments where for each segment, the charging power is
approximated by the lowest charging power when the mobile charger moves along
the segment. With the discretization, the authors present an algorithm outputting the
velocity profile for each segment for the single-node scenario. The authors have also
proved the performance guarantee of their algorithm as follows.

Theorem 12.2 ([17]) The velocity profile output by the proposed algorithm enables
that the node is charged at least E* /(1 + ¢).
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Here E* is the charged energy by the optimal solution and ¢ is the approximation
parameter.

For multiple nodes scenario with given arbitrary 2D trajectory, the authors first
prove the NP-hardness of the problem by reduction from the Multi-Objective Shortest
Path problem. A heuristic algorithm is given with theoretical bounds.

12.2.2 Joint Mobile Charging and Data Gathering

In traditional wireless sensor networks, using mobile sink for data collection has been
regarded as an effective method for achieving longer network lifetime. The reason
behind this is that the nodes near to the sink usually consume their energy faster and
the energy consumption of all the nodes can be more balanced if the nodes around
the sink change all the time. At the same time, using a mobile charger can save the
deployment cost since wireless charger is always more expensive. Zhao, Li and Yang
propose to combine the data collection function with wireless power transfer ability
into one mobile node in their pioneering work [25].

12.2.2.1 A Two-Step Approach for the Joint Optimization

In the journal version [26] of the work [25], the authors elaborate on a two-step
approach for the joint optimization of data gathering and mobile charging. The first
step of the proposed design is to periodically select a set of anchor points where
the mobile sink and charger will visit them and charge the sensors located there
in sequence and collect data from all sensors nearby. The second step is for the
sensors around the mobile charger to adjust their data rates, link scheduling and
flow routing according to their energy replenishing status. In this work, the authors
assume that the charging happens in a one-to-one fashion. There are two types of
tours, namely, recharging tour (R-tour) and data gathering tour (D-tour). The R-tour
is used mainly for scenarios where energy is consumed quickly. The D-tour is used
mainly for scenarios where energy depletes slowly. Different strategies are used when
performing the anchor points selection. For R-tours, the selection criterion is to find
a subset of sensors with energy reserve below a threshold and the tour length is upper
bounded. On the contrary, for D-tours, the selection criterion is to find a subset of
nodes with energy lever higher than a threshold and the tour length is also upper
bounded. Within a time interval guaranteed for bounded data collection latency, the
system can perform at least one R-tour ensuring that the network is operational and
q D-tours ensuring an efficient data collection. Here ¢ is a system parameter and it
is tunable for the balance of energy charging and data collection. The next step is
how to plan the data collection trip when the anchor points are decided regardless
of either R-tour or D-tour. The authors treat it as a utility maximization problem. A
DAG (Directed Acyclic Graph) is set up over all the anchor points and the mobile
charger. For other nodes not included in the DAG, it finds its shortest path towards
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an anchor point using Dijkstra algorithm. The weight of outgoing edge can be set to
the reciprocal of the residual energy at the node for simplicity. The utility function
has been defined as strictly concave, increasing and twice-differentiable with respect
to the data gathered from a specific sensor during a specific time interval. The aim
of this optimization is to maximize the total network utility which is the sum of
all utilities of all sensors. There are three types of constraints considered in this
formulation. Flow constraints state that the equality between outgoing flow rates
and incoming flow rates plus local data rate. Energy constraints ensure that energy
consumed for data receiving and transmitting is less than the remained energy at
the node. Capacity constraint enforces that the flow rate allocated on a link for an
anchor point is feasible. Node exclusive interference model is employed to model
the interference among links.

12.2.2.2 From Time-Dependency to Spatial-Dependency

Xie, Shi, Hou, Lou et al. [22] study the scheme for minimizing the energy con-
sumption while ensuring a long-run wireless sensor network with a mobile charger
behaving as a mobile data collector as well. Along a pre-defined path, the mobile
charger can travel at a constant speed and make stops in the network and collect data
via multiple hops. It is equivalent to maximize the ratio of mobile charger’s vacation
time to the whole trip duration, i.e. 7,,./7. Here 7,,. is the idle period during the
whole trip time z. The authors propose formal problem formulation for maximizing
Tpac/ T, With time, flow and energy constraints. This problem is generally difficult
to solve since the variables are time-dependent. The authors then consider a special
case where data flow routing and energy consumption only depend on the mobile
charger’s location. That is to say, as long as the mobile charger visits some point
along the path, the data flow routing and energy depletion will not change in spite of
the time when the mobile charger visits the point. In essence, this special case comes
based on the observation that the mobile charger moves at a constant velocity. The
following theorem has been proved.

Theorem 12.3 ([22]) The optimal value of the spatial-dependent only problem for-
mulation is the same as the general time-dependent problem formulation.

The spatial-dependent only problem formulation is still hard to solve since the
path has infinite number of points. The authors resort to approximation method
based on discretizing the path, treating a segment as a logical point. The proposed
approximation method achieves a (1-¢)-optimal solution. The basic idea is to model
the energy consumption of a sensor node corresponding to a logical point (in fact
a segment) as the worst case to that point. Then the lower bound of 7,,./7 can be
calculated. The authors have proved that the low bound is sufficient for achieving
the (1-¢) near-optimal solution.
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12.2.2.3 Stochastic Analysis and Battery-Aware Charging

Wang, Yang and Li [21] observe that most schemes proposed in the literature are
predetermined in terms of which sensor to charger and in which order. The authors
assume that sensor nodes are placed on a virtual grid and time is slotted. The mobile
charger follows a random walk mobility model. In order to ensure that the network
can operate forever without depleting any node’s energy, it is assumed that every
node is forced to sleep once its energy reserve goes below the sleep threshold L.
At the same time, the mobile charger usually does not charge the sensor to its full
capacity since it takes too long for keeping other nodes alive. They propose to use
the Markov Chain to model the wireless recharge process. Each sensor works with
probability p and sleeps with probability 1 — p. In the model, the state represents
the energy level of a sensor node. A node transfers from state i to state i + R in one
step if it gets recharged, where R is the energy received from the mobile charger in
a time slot. It is also possible to generate the transition matrix for this Markov Chain
model based on the above information. Generally, the steady state probabilities of all
the states can be obtained through eigen decomposition. Here it is hard to do eigen
decomposition since the variable R is changing. The authors propose a recursive
algorithm to solve this problem based on the fact that the Markov Chain forms an
R-th order linear recurrence equation. Then the steady state probability that a sensor
is in mandatory sleep mode (7, ) can be derived and the percentage of inactive nodes
and failed nodes can be calculated as well. These two rates can be used for network
planning.

The authors further propose two algorithms for sensor activation and recharging.
The linear adaptation and prioritized recharge algorithm (LAPR) is used to adjust the
working probability for the sensors. The working probability increases and decreases
according to its state in the last time slot. The probability resets to the ratio of R to
the node full capacity M whenever it get recharged by a mobile charger. The mobile
charger can enquiry the battery level of sensor nodes and moves towards the area
with lower battery level. The battery-aware sensor activation and k-step selective
recharge algorithm (BSR) is similar to LAPR except that this algorithm does not
consider the last k nodes which have been recharged by the mobile charger.

12.2.2.4 Tradeoff Between Data Latency and Charging Efficiency

Wang, Li and Yang [18] raise the mismatch issue of charging latency versus data col-
lection latency. With the current charging technology, charging takes up to 90 minutes
but data collection costs only several minutes. It is possible that data become obsolete
when the mobile charger returns to the base station after finishing its charging. The
authors propose to use a dedicated mobile sink for data collection so as to reduce
the data collection latency. Besides the mobile sink, multiple mobile chargers are
used in the network to charge the nodes, ensuring no node dies out of energy. It is
assumed that sensor nodes are deployed uniformly randomly in the field. The net-
work will be organized into clusters. The mobile sink visits every cluster head to
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collect data and deliver them to the static sink when it returns. The mobile charger
charges the sensor node based on its current energy level. The information on energy
level of sensor can be gathered through the scheme proposed in [19]. The authors try
to answer two questions. The first one is how many clusters are needed to cover the
whole network to minimize the data collection latency. The second one is how many
mobile chargers are needed to guarantee that no sensor node runs out of energy. As
for the first question, the authors believe that it is equivalent to finding a complete
coverage of the sensing field with minimum number of circles of radius r = kd,.
Here £ is the biggest hop number a cluster head can cover and d, is the transmission
range of a sensor node. The following theorem gives the lower bound of number of
circles (clusters).

Theorem 12.4 ([18]) The number of circles with radius r to cover a square area
with side length L should be greater than 2</3(L* — 2z r?)/9r2.

As for the second question, the authors have the following result.

Theorem 12.5 ([18]) The minimum number of mobile chargers for forever network
operation is [(2.330. + ucn. — Eo)T,/(CsT)].

Here n. is the lower bound of the number of clusters. u, = o.” is the average energy
consumption in a cluster in time 7. Ej is the total initial energy of sensor nodes in
the network. 7, is the time required for a charger to fully charge a sensor node to
its capacity Cs. These two theoretical results serve as good guidelines for network
planning when we want a balance between data collection delivery and charging
efficiency.

The scheme proposed in [20] is used for scheduling the mobile charger. The
intuitive behind this scheme is to cluster nodes according to their energy demands
and locations to avoid charging nodes back and forth. Also the scheme ensures that
node in emergency of energy gets higher priority when being charged.

12.2.3 Using Minimum Mobile Chargers

Using multiple mobile chargers is necessary since a single mobile charger is usually
capacity-limited. For large-scale wireless sensor networks, using multiple mobile
chargers has been proposed to keep the network running. A natural question is how
to charge the whole network with minimum mobile chargers. Dai, Wu and Xu et al.
[8] examine this problem and present interesting theoretical results. The minimum
number of mobile chargers problem is proved to be NP-hard and approximation
algorithms are given. Hu and Wang [11] propose a two-step approach to solve this
problem. The first step is to divide a Hamilton tour into sub-tours and the second is to
assign these sub-tours to minimum number of mobile chargers in a greedy fashion.
Numerical results indicate that the proposed heuristic performs quite close to the
optimum.
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12.2.3.1 Hardness and Approximation

Dai, Wu and Xu et al. [8, 9] study the minimum number of mobile chargers for
keeping a rechargeable sensor network immortal. The authors assume that multiple
mobile chargers are dispatched by the sink to charge the sensors periodically. Each
mobile charger visits and charges a subset of sensor nodes and then returns to the
sink to be refilled. The mobile charger repeats its schedule after a period. This period
includes traveling time, charging time and vacation time which is the time duration
when charger stays idle at the sink. Different mobile chargers have different periods
so no one needs to wait for the others. A weighted complete graph is used to represent
the network. For an edge connecting node i and j, the edge weight w(i, j) is the
traveling time for a mobile charger to move from one node to the other. It is assumed
that the edge weights are symmetric and form a metric space. The minimum mobile
chargers problem (MinMCP) has been formally defined as: To find a minimum
number of mobile chargers starting from the sink and charging all the sensor nodes,
ensuring that no nodes depletes its energy.

MinMCP is proved to be NP-hard by reduction from Distance Constrained Vehi-
cle Routing Problem (DVRP). Accordingly, the authors propose to solve a relaxed
version of MinMCP where the linear constraint over the traveling time of mobile
chargers is removed. An approximation algorithm is proposed for the relaxed Min-
MCP. The algorithm is based on y -Constant Transformation, DVRP algorithm and
Nearest Neighbour Algorithm for TSP (Travelling Salesman Problem). y -Constant
Transformation is a metric-retained adjustment of edge weights of a graph. Then a
feasible solution for MinMCP is possible by considering the linear constraint again.
The authors present theoretical results in terms of approximation ratio for the pro-
posed solution for the original MinMCP.

12.2.3.2 A Two-Step Approach

A two-step approach is described in [11] to solve the minimum mobile chargers
problem for wireless rechargeable sensor networks. Heuristics are used due to the
hardness of the problem. The two steps are tour construction and tour assignment.
The first one is to construct minimum number of tours to exactly cover all the nodes
in the network. Here the tour refers to a sequence of nodes which can be charged by
a single mobile charger and none of them runs out of energy. It has been proved that
the minimum tour construction is NP-hard. Accordingly, a Hamilton tour (traversing
all nodes including the sink) is constructed by using the Lin-Kernighan algorithm.
Then the Hamilton tour will be cut into several sub-tours. Each sub-tour is maximal
in terms of number of nodes which can be charged by a single mobile charger
and none of them will use up their energy. The second step is to assign these sub-
tours to a minimum number of mobile chargers. It is referred to as tour assignment
problem which is proved to NP-hard by reduction from the set-partition problem.
Note that a single mobile charger might cover several sub-tours. The authors propose
a heuristic to assign the sub-tours to mobile chargers. Numerical results indicate that
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the proposed solution achieves an approximation ratio less than 1.1 in comparison to
the lower bound of minimum number of mobile chargers.

12.2.4 Collaborative Mobile Charging

Zhang, Wu and Lu [24] propose the idea of collaborative charging for the first time. In
collaborative charging, mobile chargers can charge each other as well. Accordingly,
energy can be transferred among mobile chargers. This is a brand new paradigm
for wireless power transfer. They propose different protocols for different scenarios,
starting from the simplest case where sensors are deployed along a line. Madhja,
Nikoletseas and Raptis propose to use two layers of mobile chargers in [15]. The
upper layer of mobile chargers are called super chargers. The lower layer of chargers
are ordinary mobile chargers. The super chargers charge mobile chargers and the
ordinary mobile chargers charge sensor nodes. They propose heuristics for different
cases depending on how much network information is available and whether the
coordination among super chargers is centralized or distributed.

12.2.4.1 Homogeneous Collaborative Mobile Charging

In [24] Zhang, Wu and Lu first propose the concept of collaborative charging among
mobile chargers for wireless rechargeable sensor networks. Collaborative charg-
ing among mobile chargers means that besides charging the ordinary sensor nodes,
mobile chargers can charge each other as well. In this work, the authors assume
different charging efficiencies for charging sensors and for charging mobile charg-
ers. Energy consumption for traveling and energy loss during charging are overhead
energy. The final energy received by the sensors is called payload energy. Then the
ratio of payload energy over all the energy consumed is defined as energy usage
effectiveness. The authors propose different schemes to optimize the energy usage
effectiveness for different scenarios from the basic linear network to two-dimensional
network. For the simplest case where every sensor in a line has the same recharging
cycle (the longest period a fully charged sensor can last), the charging efficiency
is ideally 100 %. Since there is no charging loss during charging, either charging
ordinary sensor nodes or mobile chargers, minimizing the traveling distance can
maximize the energy usage effectiveness. The proposed solution is to let as few
mobile chargers as possible to carry all the residual energy of all mobile chargers
to charge the sensors, thus saving traveling distances. A more complex case is the
energy loss during charging. The authors find that in this case it is better to exploit the
collaborative charging wisely. Particularly, no collaborative charging is needed if it
covers no less sensor nodes than using collaborative charging because collaboration
among mobile chargers increases overhead energy. The strategy without collabora-
tive charging use a single mobile charger for each sensor node and tunes the traveling
distance of each mobile charger such that the residual energy reduces to zero when it
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returns to the base station. Collaborative charging can be used for those sensor nodes
not covered by non-collaborative charging. For other cases, the authors also present
efficient collaborative charging schemes. All these schemes are combination of the
schemes for the aforementioned schemes for the simple cases.

12.2.4.2 Hierarchical Collaborative Mobile Charging

Madhja, Nikoletseas and Raptis [15] propose to use two layers of mobile chargers.
The lower layer of mobile chargers charge ordinary sensor nodes and the higher layer
of mobile chargers charge lower layer chargers. Initially, each mobile charger takes
care of a group of sensors and each higher layer charger (super charger) charges
a group of mobile chargers. The super chargers may cooperate with each other
to improve the charging efficiency. The authors propose a coordination decision
problem (CDP) and prove that it is NP-complete by reduction from Bin Packing
Decision Problem. The CDP deals with whether there is a partition of mobile chargers
such that every super charger can charge them to their full capacity. Accordingly,
heuristics are proposed. Depending on how much network information is available,
whether there is coordination among the super chargers and the coordination is
distributed or centralized, the authors propose four kinds of protocols for different
scenarios. Extensive simulations have been done to evaluate the performance of the
proposed protocols. Results indicate that with two-layer network knowledge and
centralized coordination among super chargers, the network performance in terms of
network life time has been improved greatly. These protocols serve as good guidelines
for deploying different types of chargers in the network.

12.2.5 Localization with Mobile Chargers

Localization in wireless sensor networks has been investigated for many years. The
basic methods can be classified into two categories, range-based localization and
range-free localization. Range-based localization needs the ranging between the tar-
get node and the anchor node. Such methods includes those of Angle of Arrival
(AoA), Time of Arrival (ToA), Time Difference of Arrival (TDoA) and Received Sig-
nal Strength Index(RSSI). The range-free methods rely on the connectivity informa-
tion among nodes to infer the location information. Usually range-based localization
methods need extra hardware, although they provide higher precision. Range-free
methods have no such requirement but their precision is lower. Shu, Cheng, Gu, Chen
and He [16] propose to use the time of charging (ToC) in localization in wireless
rechargeable sensor networks with a mobile charger. ToC can be used to measure the
distance between the mobile charger and the target node. Here the mobile charger
serves as an anchor node for localization and charges the nodes at the same time.
ToC-based localization therefore belongs to the range-based category. Their work
assumes the use of an omnidirectional antenna. Chang, Wu, Wang and Chen design
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two methods for localization with mobile charger with directional antenna in wireless
rechargeable sensor networks in [4]. The current available charging devices always
use directional antenna due to its higher charging efficiency.

12.2.5.1 Using Omnidirectional Antenna

In [16], Shu, Cheng, Gu, Chen and He propose the concept of time of charging
(ToC) for the first time for localization in wireless rechargeable sensor networks. It
is observed that there is an obvious correlation between the charging time and the
distance between the chargers and the sensor node. Use of ToC can help localize the
nodes in the networks. The basic idea of the proposed scheme is to gradually reduce
the potential area where the target node could be when the mobile charger moves in
the network. In particular, two region dividing schemes are proposed in this work.
The first one, Inter-Node Division, divides the feasible region into two parts with the
perpendicular of the line connecting the two stops of the mobile charger. Depending
on which one of the stops is closer to the target node, Inter-Node Division can decide
which part is the narrowed down potential region for the target node. The other one,
Inter-Area Division, makes use of the charging range of the mobile charger. The basic
idea is to further reduce the feasible region of the target node by reducing it to the
intersection or difference of the original feasible region and the circular coverage of
the mobile charger. The authors discuss how to optimize the stops of mobile chargers
in order to localize the target node. For both one node and multiple nodes scenarios,
the intuition behind is to cut the original feasible regions into two parts such that the
length of its diagonal is minimized after division. A smaller diagonal of the feasible
region means smaller localization error.

12.2.5.2 Using Directional Antenna

Chang, Wu, Wang and Chen [4] observe that the current available COTS (Commer-
cial off-the-shelf) energy chargers usually use a directional antenna instead of an
omnidirectional one. They propose to make use of the angular property of the direc-
tional mobile charger. Two schemes are proposed, namely, Angle Division and Grid
Division. As for the angle division, the feasible region can be reduced to the inter-
section of the original feasible region and the sector area of the mobile charger if the
target node is covered. The angle division is designed for deployment field of convex
polygon shape. As for the grid division, it is efficient when the nodes are distributed
uniformly and the area is approximate to a rectangle. The basic idea of grid division
is to use the chords of the angular coverage of the mobile charger to partition the
field into grids. Exploitation of time of charge can further speed up the localization
and improve precision. The authors conduct experiments and simulations to evaluate
the performance of the proposed schemes.
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12.2.6 Stochastic Event Capture with Mobile Chargers

Wireless sensor network technology can be applied to event monitoring scenarios.
There are quite a few interesting problems when event monitoring application meets
wireless charging. The basic question is how to schedule the mobile charger and how
to activate the sensors such that the quality of monitoring (QoM) is optimized. Cheng,
He, Jiang, Gu and Chen [5] first notice this problem. The results on moving speed and
charging time of the mobile charger, and the duty cycle of sensors are interesting and
insightful although simplified assumptions are used to make the problem solvable.
Dai, Jiang and Wu et al. [7] make generalization over their work and prove that the
problem is NP-hard. Accordingly they present useful approximation algorithms.

12.2.6.1 Moving Speed, Charging Time and Duty Cycle

Cheng, He, Jiang, Gu and Chen investigate this problem for the first time in [5].
It is assumed that the mobile charger charges the sensor nodes when moving in
the network. Each sensor node monitors a point of interest (Pol). The metric QoM
is defined as ratio of captured events over all events in the long run. Due to the
random appearance of events and the on-off working style of sensors, it is reasonable
that not all events can be captured. The authors analyze QoM of three scenarios:
(1) the mobile charger moves at constant speed to recharge the sensors and the
sensors consume energy at their best effort; (2) the mobile charger stops to charge
sensor nodes for a duration and sensor nodes deplete energy as much as possible;
(3) the mobile charger stops to charger the sensor node and the sensor nodes work
in duty cycle. For the first scenario, the authors have the following result.

Theorem 12.6 ([5]) In order to achieve the maximum QoM, it is necessary that the
mobile charger moves at its maximum speed.

In essence, this theorem states that if the charger charge the nodes on the run and the
sensor node consumes its energy as much as possible, the mobile charger needs to
move as fast as possible for higher QoM.

For second scenario, the authors assume that the charger stays at each sensor for
a constant duration of time. The authors present the following theorem.

Theorem 12.7 ([5]) All of the sensors can work constantly if the number of sensors
is not greater than t/ (ﬂzPaC,) and the charging duration is no less than (P, L —
2Ar)B?/((t — N Py, f2)0), where A = 2tr/(B(r + B)).

Here 7, f and r are system parameters related to charging efficiency; P, is the
power consumption for activating a sensor; L is the length of the traveling path of
the mobile charger; N is the number of sensors; v is the moving speed of the mobile
charger. For the third scenario, the authors have the following theorem regarding to
the maximization of QoM.

fan.ye@stonybrook.edu



298 X. Wu

Theorem 12.8 ([5]) Given the moving speed v and the charging duration t of the
mobile charger, the QoM is maximized (1) with no duty cycle if 1 /o < AE/(Pyer —
Py1p); (2) with a specific duty cycle if otherwise.

Here 1/a is the expected event staying time; A4 E is the extra energy consumption
when the sensor wakes up from sleeping. Py, is the sleeping power of the sensor
node. This theorem states essentially that the sensor needs to be active (without duty
cycle) if the event stays shorter than a threshold and it can work with duty cycle if
otherwise.

12.2.6.2 Generalization and Approximation

Dai, Jiang and Wu et al. [7] generalize the work by Cheng, He, Jiang, Gu and Chen
[5] and present approximation algorithms. They assume that a single Pol (Point of
Interest) can be monitored by multiple sensors, the charging duration for every sensor
can be different and a utility function for measuring the quality of monitoring (QoM)
is used. The problem in this work is formally defined as the maximum QoM charging
and scheduling problem (MQCSP). The objective of MQCSP is Max > ", w; Q(i),
subject to time, charging and energy constraints. Here w; is the weight associated with
the i-th Pol and Q (i) is the QoM at the i-th Pol. MQCSP is quite challenging since it
involves optimization over factors such as traveling time, charging duration, sensor
activation and the calculation of QoM. The authors propose to solve a relaxed version
R-MQCSP in which the traveling time of the mobile charger is neglected. In fact, the
traveling time could be much less than the charging time. However, even R-MQCSP
is proved to be NP-hard via restriction to a known NP-hard problem Maximum
Coverage Problem. Then the authors show that R-MQCSP can be converted into a
monotone submodular maximization function, assuming that the utility function is
concave. An approximation algorithm specially tailored for the original MQCSP is
proposed based on proposed algorithm for R-MQCSP. The following theorem states
the property of the algorithm.

Theorem 12.9 ([7]) The proposed algorithm for MQCSP achieves %(1 —

trsp(V)+max{ci}y : :
e )-approximation.

Here t75p(V) is the traveling time of the mobile charger which moves along a
specified TSP route traversing all nodes in the set S. z,, is the total maximum working
time of the charging schedule, including the travel overhead and the charging time of
all selected sensors. ¢; is the required charging time for the charger to fulfill enough
energy to the sensor node such that it can work for one time slot.

12.2.7 Energy Provision for Mobile Nodes

In[10] and its extension [6], the energy provision problem with mobile nodes in terms
of moving velocity and battery capacity is discussed. This work is quite interesting

fan.ye@stonybrook.edu



12 Using Mobile Nodes in Wireless Sensor Networks ... 299

because the authors assume that there are one or multiple static chargers deployed
in the network while the ordinary sensor nodes are mobile which is in contrast to
the most of the existing works with mobile chargers. The quality of energy provi-
sion (QoEP) metric is used in this work. Before a formal definition of QoEP, the
instantaneous quality of energy provisioning (IQoEP) of a node at time ¢ is defined
as,

r®

s

IQOEP(I): ’Ere(t):()/\pr(t) < Ds-

Here p,(t) is the cumulative charging power the node received at time #; E,.(t)
is the remained energy of the node; p; is the constant power consumption when the
node is working. Then the QoEP is defined as,

Q0EP = lim

t—>oo0 f — fy

t
/ T1QoEP(t)dt'.
t'=ty

This definition of QoEP captures the expected portion of time in the long run that
the node can operate normally. It is however time-dependent. The authors further
define a spatial-dependent QoEP as follows. Quality of energy provision at location
x (LQoEP(x)) of a node is the expected proportion of cumulative time that the node
maintains normal operation to the duration the node stays at the location x.

13
. TQoEP{)I(t,x)dt
LQoEP(x) = lim Jr=y ) )
1—00 [, I, x)dt
t'=ty ’

>

where (¢, x) equals to 1 if a node stays at location x at time ¢, and O otherwise.
Then QoEP can be rewritten as

QoEP =/ LQOoEP(x) fuis(x)dx.
Q

Here fy;s(x) is the spatial distribution function at location x. Now QoEP depends
only on spatial information provided that L Qo E P (x) exists. The authors first drive
theoretical bound of the QoEP in 1D case with a single source in the following
theorem.

Theorem 12.10 ([6]) The QoEP in 1D case with a single energy source is no greater

. opt opt )
than QoE P,,;, + pmintde (Qp"_)’A’l (Q’)}.

Here it is assumed that the energy source is located at the origin point and the whole
line is divided into two parts. Q; is the part close to the energy source where a node
receives power no less than p;. Q, is the remained part. 47" (Q;), A" (Q,) are
the maximum expected received energy for the part 2; and the maximum expected
energy consumption rate for part Q,, respectively. QoE P,,;, is the derived lower
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bound for 1D case with a single energy source which is only related to the spatial
distribution of the nodal moving trace.
As for the 2D case with multiple energy sources, the following result is given.

Theorem 12.11 ([6]) The QoEP is at least f_Q Sais(x, y)J(M)dxdyfor 2D case
with multiple sources, where J(x) = x for 0 < x < 1 and J()]c) =1forx > 1.

Here fy;s(x, y) is the spatial distribution of the moving trace £ of the node and
pr(x, y) is the energy received by the node at location (x, y).

12.3 Distributed Approach

Most works related to using mobile chargers or mobile nodes in wireless rechargeable
sensor networks adopt a centralized approach. The proposed problems are mostly
NP-hard and the authors resort to heuristics. Usually, a centralized approach assumes
the availability of global information about the network. In spite of this, there are
some works concentrating on distributed schemes for mobile charger scheduling and
planning. Dai, Jiang, Wu and Chen [12] propose the idea of on-demand scheduling
of mobile chargers where the mobile charger charges the sensor nodes based on the
received requests from the nodes. Angelopoulos, Nikoletseas and Raptis [1] also
propose the idea of using distributed and reactive schemes for mobile charger plan-
ning. Madhja and Nikoletseas and Raptis [13, 14] further propose the coordination
schemes for multiple mobile chargers.

12.3.1 On-Demand Mobile Charger Scheduling

Using mobile chargers for wireless charging in sensor networks is an economic
way compared to deployment of static chargers. Most works about mobile chargers
assume that the traveling path of the mobile charger is pre-calculated. Obviously
the pre-calculation needs a priori information (e.g. the energy status of all nodes).
Dai, Jiang, Wu and Chen [12] propose the idea of on-demand scheduling of mobile
chargers based on no a priori knowledge. The sensor nodes can send energy charging
requests and the mobile charger decides where to move on receiving the energy
requests. The authors consider an event monitoring application where sensors are
dispersed in the field to cover a few Pols (Point of Interest). The mobile charger will
travel in the network and charge the sensors based on its received energy requests.
At any time ¢, the coverage utility is defined as the ratio of the number of covered
Pols currently to the number of Pols that can be covered by all the sensors. Note
that some sensors might be turned off not to cover a Pol. The authors prove that the
maximum covering utility charging scheduling (MCUCS) problem is NP-complete
by reduction from the geometric TSP problem. Here the MCUCS problem is to find
whether there is a feasible schedule for the mobile charger to visit the senors such
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that all events will be captured. Three heuristics are proposed. The first one is to
meet the energy request with maximum marginal coverage utility; The second one
is to satisfy the energy request with maximum coverage utility gain over its service
time. Here the service time includes traveling time and charging time. The intuition
behind this is that some energy requests are less preferable if the nodes are far away
although they might brings more utility gain.

12.3.2 Planning for Single Mobile Charger

In[1], Angelopoulos, Nikoletseas and Raptis propose the idea of using distributed and
reactive schemes for the planning of mobile charger. They notice that most centralized
schemes are of high computational complexity. They propose to consider two related
issues: (1) how much each sensor needs to be charged; (2) the trajectories the mobile
charger should follow. They propose to use a new metric to measure the importance
of each node, i.e. node criticality, which is related to the traffic passing the node
and the energy consumed by the node. A node with higher traffic and low residual
energy is usually of higher priority to be recharged. Three protocols are evaluated
through simulations. The first protocol is one relying on global knowledge of the
network. This protocol assigns priorities according to the criticality of the node and
the distance between the mobile charger and the node. The higher is the criticality
and the nearer is the node, the higher is its priority. In the protocol with limited global
knowledge, the sink collects information about some representative nodes across the
network and informs the mobile charger. In the protocol with local knowledge, the
mobile charger moves along a set of concentric circles.

They further elaborate their idea in [2]. Node criticality is improved to energy/flow
criticality which is the multiplication of flow passing the node and energy consump-
tion at the node. The protocols with global network knowledge, limited network
knowledge and local knowledge are evaluated extensively and thoroughly.

Angelopoulos, Nikoletseas and Raptis et al. [3] propose the so-called charger
dispatch decision problem (CCDP) where given the network information including
energy capacity of every node, distance among nodes and charging information of the
mobile charger, they need to decide whether there is a feasible schedule of the mobile
charger to charge the sensors and no data is lost due to deficit of energy. This problem
is proved to be NP-complete. The authors find that instead of always charging the
nodes to their full capacity, the strategy of partial charging is more efficient. Five
trajectories for the mobile charger are discussed: (1) In the global knowledge traversal
strategy the mobile charger move first to the node minimize (1 + %)(1 + %).
Here E .y, Einis, distq,r, R refer to the current energy, initial energy, distance of
the sensor and the radius of the field, respectively; (2) In the spiral traversal strategy
the mobile charger starts from the sink and travels around circles with increasing
radii. This strategy covers the whole network but is not adaptive; (3) In the diameter
traversal strategy, the mobile charger first moves to the perimeter of the network
and moves along the perimeter for a certain degree once it reaches the perimeter;
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and then it moves towards the other side of the network along a diameter; (4) In
random walk traversal strategy, the mobile charger staying at a node turns to one of
its neighbors with equal probability; (5) In the proposed adaptive circular traversal
protocol, the mobile charger starts from the sink and travels along concentric circles
with increasing radii; it keeps its moving direction if it is moving towards energy-
hungry areas but changes its direction if it is entering energy-rich areas. Whether the
area is energy-hungry or energy-rich is decided by a comparison between the current
energy profile and the historical energy profile.

12.3.3 Coordinating Multiple Mobile Chargers

In [13], Madhja and Nikoletseas and Raptis propose the concept of distributed coor-
dination among multiple mobile chargers. The extended version of [13] appears
in [14]. It is assumed that there are multiple mobile chargers deployed in the net-
work to charge all the static sensor nodes. The authors consider two critical issues:
(1) how can these mobile chargers coordinate with each other such that the network
performance is optimized; (2) what kind of trajectories the mobile chargers should
follow. It is assumed that the network is deployed in a circular area and the network is
divided into several sectoral areas. The mobile charger can charge at most one sensor
and the data rate at different sensors are different (drawn from uniform distribution).
In the proposed scheme, the charging process consists of two phases, coordination
phase and charging phase. The mobile chargers might have different energy reserve
after serving the network for a while since the data rates of sensor nodes are different.
In coordination phase, mobile chargers with less energy can be assigned to smaller
areas. The coordination among chargers can be finished in a centralized or distributed
way. The mobile chargers might have quite a few choices of trajectories depending
on how much information on the network they own in the charging phase.
Specifically, the authors present five coordination and charging protocols. The
first one is the distributed coordination (DC) protocol. In its coordination phase,
neighboring mobile chargers coordinate with each other to either enlarge or shrink the
charging area depending on the energy information. In the charging phase, the mobile
charger moves across the whole network to cover all sensor nodes. The second one
is the centralized coordination (CC) protocol. In its coordination phase, each mobile
charger is assigned to a sector proportional to its energy reserve. The trajectory of
mobile charger can be a scanning scheme to visit all nodes in its charging area.
The third one is the distributed coordination local knowledge (DCLK) protocol. Its
coordination phase is similar to that of DC protocol. The local knowledge the mobile
charger acquires in the charging phase is the information on the residual energy of
the nodes in its charging area. Accordingly, the mobile charger can charge some
sub-areas first. The fourth one is the centralized coordination reactive knowledge
(CCRK) protocol. The coordination information is exchanged through the sink node.
The mobile charger puts priorities to nodes according the distance to travel and the
residual energy at the node. The fifth one is the centralized coordination global
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knowledge (CCGK) protocol. Different from the coordination phase in CC protocol,
CCGK’s coordination is based on the clustering of nodes and clusters are assigned
to mobile chargers, although it is also centralized. In its charging phase, the mobile
charger moves first to the node of its cluster which minimizes (1 + %)(1 + Eia - ).
Here dist;; is the traveling distance from mobile charger j to sensor node i; E; and

E,.. are the residual energy and capacity of node i.

12.4 Conclusion

In this chapter, we review the representative works and present interesting results
in using mobile nodes in wireless ad hoc networks with wireless power transfer in
this chapter. As for centralized approach we cover topics such as joint data gathering
and mobile charging, planning of a single mobile charger or multiple chargers. Most
related problems are proved to be NP-hard and heuristics have been proposed. As
for the distributed approach, we discuss on-demand mobile charging and planning
for one or more multiple chargers. Distributed approach is reactive and relies on no
or limited network information.
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Chapter 13
Strategies for Wireless Recharging in Mobile
Ad-Hoc Networks

Constantinos Marios Angelopoulos, Julia Buwaya, Orestis Evangelatos
and José Rolim

Abstract In this chapter we investigate the problem of wireless power transfer in
mobile ad-hoc networks. In particular, we investigate which traversal strategy should
a Mobile Charger follow in order to efficiently recharge agents that are randomly and
dynamically moving inside an area of interest. We first formally define this problem
as the Charger Traversal Decision Problem and prove its computational hardness.
We then define a weighting function which evaluates several network parameters in
order to prioritize the nodes during the charging process. Based on this function we
define three traversal strategies for the MC; a global-knowledge strategy that uses
an Integer Linear Program to optimize its trajectory; a global-knowledge strategy
which tessellates the network area and prioritizes the charging process over each tile;
a local-knowledge strategy that uses local network information collected and ferried
distributively by the moving agents. We also evaluate two naive zero-knowledge
strategies; a space-filling deterministic one in which the MC systematically sweeps
the network area and a randomized one in which the MC performs a blind random
walk. We evaluate these strategies both in homogeneous and heterogeneous agent
distributions and for various network sizes with respect to number of alive nodes over
time, energy distribution among the nodes over time and charging efficiency over
distance traveled. Our findings indicate that network agnostic strategies are sufficient
in small networks. However, as the network scales the use of local distributed network
information achieves good performance-overhead trade-offs.
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13.1 Introduction

In principle, the theoretical and technological know-how regarding wireless power
transfer has been known since the beginning of the 20th century. However, only
recently the corresponding technology has become mature enough so as to be used
in practice and to be commercialized. In particular, in [1] it has been shown that
through strongly coupled magnetic resonances, the efficiency of transferring 60 watts
of power over a distance in excess of 2 meters is as high as 40 %. Industrial research
has also demonstrated that it is possible to improve transferring 60 watts of power
over a distance of up to two to three feet with efficiency of 75 % [2]. As technology
constantly improves, commercial products utilizing wireless power transfer have
been available on the market such as those in [3] and [4]. The potential of this
technology has led to the establishment of corresponding industrial standardization
bodies such as the Rezence Alliance for Wireless Power [5] and the Wireless Power
Consortium (WPC) [6] that seek to maximize the use of Wireless Power Transfer.

In parallel, significant research effort is conducted in the context of this tech-
nological advance. In the field of ad-hoc networks, a new paradigm has emerged;
the Wireless Rechargeable Sensor Networks (WRSN). In WRSNs sensor motes are
equipped with fast rechargeable batteries [7] and with specialized hardware compo-
nents called wireless power receivers. There also exist special mobile entities called
Mobile Chargers (MC), that are able to wirelessly transfer power to the sensor motes
while traversing the network area. The existence of the MCs enables the detailed and
efficient energy management of the network while it also renders obsolete the need
for complex and computationally intense energy management algorithms that infer
significant computational and communication overhead to the network. However, as
hand-held mobile devices demonstrate high acceptance rates by the general public,
we believe that research efforts in Wireless Power Transfer should not be restricted
only to WRSNs but should also address mobile ad-hoc networks in general.

The Problem. We consider a set of mobile agents deployed in an area of interest.
The agents abstract moving people that carry portable autonomous devices, such as
smartphones, smart-watches or sensor motes, that are capable of wirelessly receiving
power and fast charging their batteries. The type of motion of the agents is considered
to be diverse and unpredictable. Finally, we consider a single, special purpose mobile
entity, called the Mobile Charger (MC), that traverses the network area of interest
and is capable of wirelessly recharging devices that lie in its vicinity.

The problem we study is which traversal strategy should the Mobile Charger
follow in order to efficiently recharge the moving agents of the network. We focus
on the process of efficiently transferring energy from the MC to the network and
therefore the strategies we design and evaluate are agnostic to any underlying, energy
consuming tasks.

Remarks. We note that, although the wireless charging problem might look simi-
lar to other related research problems (such as aggressive data collection via mobile
sinks), it admits special features that necessitate a direct approach, while the opti-
mization of concrete trade-offs and the fine-tuning of design alternatives that arise
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in wireless charging necessitate the distinct investigation of special protocol design
parameters. Finally, we note that Mobile Charger optimization problems are (inher-
ently) computationally hard e.g. in [8] we have formulated the wireless charging
problem as the Charger Dispatch Decision Problem—CDDP, and showed that it
is NP-complete (via reduction from the Geometric Travelling Salesman Problem,
G-TSP; see e.g. [9], p. 212).

Our Contribution. Our contribution can be summarized as follows: (a) We for-
mally define the Charger Traversal Decision Problem (CTDP) and prove its com-
putational hardness. (b) We identify four network parameters that affect the MC
in choosing its trajectory; the energy needs of the nodes, their energy dissipation
rates, their mobility level and their distance from the MC. We define a correspond-
ing weighting function used to prioritize the nodes during the charging process.
(c) Based on this weighting function, we design three traversal strategies for the MC;
a global-knowledge strategy that uses an Integer Linear Program, to compute the
MC’s trajectory, a global-knowledge strategy that tessellates the network area and
prioritizes each tile based on its aggregated weight, and a local-knowledge strategy
that uses local network information collected an ferried distributively by the moving
agents. (d) We evaluate the designed strategies along with two naive zero-knowledge
ones; one space-filling deterministic strategy and one in which the MC performs
a blind random walk. In our evaluation we use several performance metrics and
simulate various network sizes and densities. Our findings indicate that in small net-
works network agnostic strategies are sufficient. However, as the network scales the
use of local distributed network information achieves good performance-overhead
trade-offs.

13.2 Related Work and Comparison

There has been much research effort in WRSNSs; in particular for the case where the
charged entities (e.g. sensors) are static. In [10, 11] authors study the cases where a
Mobile Charger traverses the network area where a set of static sensors is deployed. In
each work, authors focus on some particular aspect of the network (e.g. on the ratio of
the MC’s vacation time over the cycle time) and provide methods in order to compute
corresponding optimal charging tours. In [12], the authors formulate an energy-
constrained wireless charging problem, which maximizes the number of sensors
wirelessly charged by a Mobile Charger. The paper proposes heuristic solutions
based on the meta-heuristics of Particle Swarm Optimization. However, the model
assumes the charger has an extensive knowledge on the network and the performance
evaluation is limited to simulations of small-scale networks.

In a previous work of our group [8], we study the impact of the charging process to
the network lifetime for selected routing protocols. They propose a mobile charging
protocol that locally adapts the circular trajectory of the Mobile Charger to the energy
dissipation rate of each sub-region of the network. They compare this protocol against
several other trajectories via a detailed experimental evaluation. The derived findings
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demonstrate performance gains, but are limited to uniform network deployments, in
contrast to our approach in this chapter which also considers heterogeneous node
distributions.

Alternative versions of the problem have also attracted important research atten-
tion. In [13—15] the authors consider the wireless recharging problem, using multiple
Mobile Chargers. In this case, several other interesting aspects emerge, such as the
minimum number of chargers that suffice to cover the network area, inter-charger
coordination, etc.

Few research efforts have also taken into consideration settings in which the
charged entities are mobile. In [16] authors study the throughput of an energy-
constrained mobile network where MCs recharge the battery of each mobile node.
However, they do not focus on the traversal of the MC per se as they consider it
to perform only a random walk. Also, they assume a naive mobility model for the
mobile nodes (they assume identically distributed random processes). In [17] au-
thors also consider mobile nodes and propose a novel metric, the Quality of Energy
Provisioning (QoEP, to characterize the expected portion of time that a node sustains
normal operation by taking into account node speed and battery capacity. In [18]
authors consider a small scale network of mobile robots in which the MC needs to
rendezvous with the robots in order to recharge them. Authors provide a centralized
solution while considering direct-contact charging technologies.

Although these efforts successfully identify and address fundamental aspects of
wireless power transfer in ad-hoc networks, they significantly differ from our ap-
proach in this chapter. They mostly consider networks with low dynamics, where the
sensor motes are static or small scale networks. Also, motivated by the characteris-
tics of the wireless power transfer via conductive charging technologies that operate
efficiently in very small distances (in the order of few centimeters), in most of the
previous efforts the charging model considered is point-to-point. On the contrary, we
envision a wireless power transfer scheme that is based on inductive charging; i.e.
the MC is able to simultaneously charge devices that lie inside its charging radius by
creating an electromagnetic field [19].

13.3 The Model

In our model we consider two types of entities: the set of n mobile agents o/ =
{A; |i:1 <i <n}, that abstracts autonomous devices carried by people (such as
smartphones, smart-watches and sensor motes) and a Mobile Charger (MC) which
is a special purpose entity capable of wirelessly transferring power to devices located
in its vicinity while traversing the network area §2. We discuss below the mobility
and energy aspects of our model.
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13.3.1 Mobility Models

We consider a planar area of interest §2 in which the set of mobile agents .o/ is initially
uniformly atrandom deployed. The speed at which each agent traverses the network is
modelled as arandom variable following the Poisson distribution. The corresponding
mean value s; capturing the average speed of agent A; is drawn uniformly at random
from a set of four indicative values corresponding to four distinct mobility levels
///; (x € {work; walk; bic; veh}). Each mobility level captures a different kind of
activity such as moving in an office environment, walking, riding the bicycle and
moving by using a vehicle. As a result, a diverse population of agents is created in
terms of mobility in £2. In order to model the particular type of motion of each A; we
use two mobility models, each one leading to a different agent distribution over 2.

The Random Walk Mobility Model—RWMM. According to this model, the agents
are initially deployed uniformly at random inside 2. Then each agent A; performs
a random walk independently of the other agents. The motion of each agent in this
model consists of consecutive movements of a constant time duration Az. We refer
to these intervals as rounds. In particular, each agent A; given its current position and
its mobility level .Z!, moves to a new location by randomly choosing a direction
in which to travel from [0, 27 ]; if the agent lies close to the borders of £2, then the
interval is properly adjusted so as the agents to always remain inside £2. From a
broad point of view, this model over time results in a uniform distribution of agents
over §2, while at the same time local minima and maxima emerge in the density of
the agents.

Although similar mobility models to the RWMM (e.g. the well-known Random
Waypoint Model) have been proven not so efficient in capturing particular charac-
teristics of human mobility (note we assume that agents abstract people carrying
electronic devices), we choose to use this model for its simplicity that helps us fo-
cus and highlight the qualitative characteristics of each traversal strategy during the
evaluation process.

The extended Random Walk Mobility Model—eRWMM. To better address the
intrinsic social aspects of human mobility, we take into consideration the notion of
social attraction. Social attraction comes from the field of social network theory and
is broadly used in mobility models for Mobile Social Networks [20]. In particular, it
is used in community-based mobility models in order to capture in a more realistic
way the aspects of human mobility [21]. Social attractivity is defined as the aggregate
attraction among the agents as well as towards physical locations inside the area of
interest. Real-life examples would include the commercial mall of a city or a cafeteria
in a university campus.

Towards more heterogeneous and dynamic placements, we expand the RWMM
by adding social hotspots inside area 2, that attract the agents during their network
traversal. More specifically, in this extended model each agent randomly chooses a
new direction in [0, 277 ] not uniformly but with a bias factor b towards the hotspots.
The value of b affects the impact of the hotspot on the network; higher values result to
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Fig. 13.1 Example snapshots of homogeneous and heterogeneous agent distributions

denser hotspots and thus in more heterogeneous agent distributions in §2. Figure 13.1a
depicts a snapshot of a network following the RWMM model while Fig. 13.1b depicts
a network following the eERWMM model.

13.3.2 Energy Model

We denote with E the amount of energy reserves of agent A; on time 7 and with
E,., the maximum amount of energy each agent may have; i.e. when an agent is fully
charged. Initially each agent is assumed to be fully charged; i.e. E? = E, ., VA; €
</ . We also assume that the amount of energy each agent A; dissipates during a time
interval At, i.e. around, follows a Poisson distribution with mean value A;. For each
agent, A; is constant and is chosen uniformly at random from [, , Amqy]- Intuitively,
small values of ; correspond to users that mainly perform light activities with their
devices (e.g. taking pictures or chatting), while larger values correspond to users that
tend to perform more intense activities (e.g. high definition video streaming or GPS
navigation).

13.3.3 Charging Model

We assume that the Mobile Charger uses inductive charging technology thus being
able to wirelessly transmit energy in an omnidirectional way and to simultaneously
recharge multiple devices that lie in its vicinity. We identify two charging zones
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Fig.13.2 Graphical representation of the charging zones around the mobile charger. Over all zones,
the efficiency of the power transfer reduces sub-quadratically to the distance from the mobile charger.
However, for distance d < Ry, (central zone) the efficiency of charging is sufficiently high for
the MC to fully charge agents in a single round. In distances d > Ry, efficiency is so low, that
effectively no charging takes place

around the MC (Fig. 13.2). The first one extents up to a radius R, around the MC.
Inside this zone the charging process is conducted at such a high efficiency that the
corresponding agents can be fully charged during a single round. The second zone
lies in distances greater than Rp;g, and smaller than Ry,,,. In this zone although the
devices are being charged, this happens with a lower efficiency and therefore an
agent may end-up being only partially recharged after a single round (depending of
course on its residual energy at the beginning of the round). For distances greater
than Rj,,, although energy is still emitted, we assume that charging efficiency is so
low that effectively no charging takes place.

Based on the specifications of commercially available wireless chargers (such as
those in [3]), we assume that the amount of energy each agent receives and eventually
stores in its battery per round is reversely proportional to the square of its euclidean
distance from the MC. In fact, in order to estimate the amount of the received power,
industrial manufacturers make use of the Friis transmission equation. Figure 13.3
shows the theoretical received power rates from the specifications of a 3 Watt Pow-
ercast transmitter [3]. In fact, the actual power that can be received by the battery
of the receiver is about 50 % less than the power its antenna receives in distances
up to 6 m and more than 70 % less in distances further than that. This is due to the
RF-to-DC energy conversion efficiency.

We consider the energy reserves of the MC to be significantly bigger than those
of the agents’ or to be easily and continuously replenished during network traversal;
e.g. via energy harvesting from the environment (like solar panels) or via more
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Fig. 13.3 Received power using a 3 Watt powercast charger (transmitter)

conventional means such as having the charger draw energy from the vehicle it is
attached on. Therefore, in this work we consider the energy reserves of the MC to
be infinite.

13.4 The Charger Traversal Decision Problem

Based on the model presented in the latter section, we formally define the Charger
Traversal Decision Problem and prove its NP-completeness.

Definition 13.1 (CTDP) Suppose that we are givenaset {A; |i = 1, ..., n} of mobile
agents with positions (x/, y/) at times r =0, ..., T. We assume that at initial time
t =0 all agents are charged up to their maximum energy level of E,,,, energy
units. The energy dissipation units EU/ in time windows [t — 1, ¢] are known for
all agents and times ¢ = 1, ..., T. Furthermore, we are given a Mobile Charger MC
which charges all agents in its range up to radius R, in one time unit up to their
maximum energy level. All agents with distances greater than Ry, up to Rjoy, are
charged following a rule such that the amount of energy units received by an agent
is reversely proportional to the square of its distance from the MC. The additional
amount of energy units the agent eventually stores is limited such that the maximum
energy level of the agent is not exceeded. The Charger Traversal Decision Problem
(CTDP) is to determine whether there is a feasible schedule for the MC to visit points
in the plane such that no agent falls below sufficient energy level at any time.

Theorem 13.1 The CTDP is N Z-complete.

Proof Given a schedule S of the MC visiting positions in the plane, we can verify
whether all agents have sufficient energy at all times in polynomial time. Let E!
denote the residual energy of agent A; at time ¢. For all times ¢t > 0, we compute the
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euclidean distances d; of the agents to the MC. Let E*“(d]) denote the additional
energy units an agent A; receives reversely proportional to the square of its distance
d!.Fromd! we can infer the residual energy of agent i which equalsto E} ' _EU Lif
d' > Rjpy;equalstothe max{E,, EI" — EU! + EF(d)},if Ripw > d! > Rpigs
or else equals to E,q . Note that the value of E[(d!) can be computed in polynomial
time in d;. Therefore CTDP € 4" 2.

Now consider the subclass of CTDP problem instances where the positions of the
agents are static; i.e. there exists x;, y; such thatxf = x; and yl? =y foralli=1,..,n
and t =0, ..., T. Let us denote this subclass by CTDP***. To prove completeness,
we reduce the Charger Dispatch Decision Problem (CDDP), introduced and proved
to be A4 P-complete in [8], to the CTDP*'*' in polynomial time. In the CDDP, we
are given a set of sensors S with a maximum energy deposit of discrete energy units
and information of distances between every two sensors in the form of a distance
matrix. These sensor motes are the agents in our corresponding CTDP*'*’ instance.
Now in the CDDP, for every sensor s € S, we have a list L of pairs (#/, €7), j > lin
which ¢/ corresponds to the time that the j-th message of s was generated and e} to the
energy that the sensor used to transmit it. In the corresponding CTDP*'*, we consider
these values by setting the energy dissipation units of the agents as EU! = Zj: =t el
(i.e., we are summing up the transmission energy of node s for messages send at time
t]). In the CDDP, a charger which can charge a sensor in one time unit to its initial
(maximum) energy is given. In order to create the same setting, we increase distances
between nodes by a constant factor such that the smallest distance between two nodes
is larger that R;,,,. In this way, the corresponding charger in the CTDP*'*’ can charge
at most one node per time unit as well. The CDDP is to determine whether there
is a feasible schedule for the charger to visit the sensors so that no message is lost
due to insufficient energy. This corresponds to the decision problem of the CTDP*'¢
for the created instance. An answer to the CTDP*'* would provide an answer to the
CDDP, hence the CTDP*“" is .4 Z-complete. Since all instances of the CTDP*'%
are in the CTDP, the CTDP is .4 &?-complete. ]

Note that the CTDP and CDDP differ particularly in the mobility of agents and
in the charging range enabling the MC in the CTDP to charge several agents at
the same time. In addition, in the CTDP we consider energy dissipation of agents
independently of their precedent actions while in the CDDP energy is considered in
relation to message transmission.

Distinguishing our work from previous related works, in this chapter we focus
on the investigation of tackling the mobility of nodes in an ad-hoc network while
recharging it. In real-life settings a MC would have limited local knowledge about the
decentralized mobile ad-hoc network it traverses; i.e. the charger will only have infor-
mation on agents it encounters and no exact information on future events. Therefore,
our goal is to define traversal strategies that are applicable in such local knowledge
online settings.

Ensuing from the CTDP, let us consider the associated NP-hard problem of opti-
mizing the network life time in terms of maximizing the number of agents alive over
time. We go directly over to its online problem with global information about the
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agents and their attributes at the current time only. Further investigation of the offline
version of the problem in order to obtain an upper bound for the results of the online
optimization is not presented here due to lack of space. In fact, we intent to pro-
vide such a solution in our future work. However, we note that experimental results
extracted from our detailed simulation study demonstrate that our online heuristics
have sufficiently high performance (see Sect. 13.7). In addition, the consideration of
the online problem offers valuable insights on optimization aspects when informa-
tion on the future positions of agents is missing. This insight is then used to define a
distributed local knowledge strategy which also has to act online.

13.5 The Weighting Function

As the MC traverses the network area, it needs a way to prioritize the agents in terms
of visiting them for recharging. This prioritization will take into consideration several
network aspects that affect the evolution of the network over time. For mobile ad-hoc
networks we identify these aspects to be:

1. the energy need E;’“d := Enq — E; (with E; indicating residual energy) of each
agent A;

2. the mean energy dissipation rate A; of each agent A;

. the mobility level ./, of each agent A;

4. the euclidean distance d; of each agent A; from the MC

(O8]

However, each one of these aspects is measured in different units and has different
ranges. Therefore, the Weighting Function (see below) considers their normalized
values. We multiply by the factor 100 in order to simplify arithmetics as these values
will be used as basis for exponents (see below).

e we normalize the energy needs over the maximum energy an agent may store;
.o fneed Emax—Ei
ie. Eﬂee c— Zmax i, 100
i max

e we normalize the dissipation rates over Ayq,;i.€. A; := x/\_ - 100

e we normalize the mobility levels over the maximum mobﬁaﬁy level Ayax;

; 7i . M
1.€. %;(i) = % - 100

e we normalize the distances over the maximum distance possible in the network
area d,, . (e.g. if £2 is a rectangle then d,,,, is its diagonal); i.e. d; := di - 100

Given these normalized values, the MC will assign a weight to each agent via a
Weighting Function W* whose generic form is defined as:

W*: o > RE: Wi (EFD* )P (ML) (d) (13.1)
The higher the weight assigned to an agent, the higher priority it will have during

the charging traversal of the MC. The use of the exponents enables us to fine-tune
the significance of each network aspect by adjusting the value of the corresponding
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exponent. The monotony of W;* with respect to each network aspect will help us
define the sign of each exponent. In this context we denote that

1. the higher the current energy need Ei”“d of agent A;, the higher the value of W*
2. the higher the mean energy dissipation X;, the higher wr

3. the higher the mobility level .4, ;(i) of agent A;, the smaller W}

4. the higher the distance d; of A;, the smaller the value of WE.

While the rationale for relations 1 and 2 is intuitively straight forward, rules 3
and 4 capture the abilities of the MC to react in a timely manner to spatio-temporal
dynamics of the network. In the online problem even if the MC has global knowledge,
we assume that it cannot infer the exact future positions of the agents; instead the
MC has to make decisions based on a “snap shot” of the network at the current time.
Rule 3 supports the idea that the smaller the mobility level of an agent the more likely
that in the near future the agent will still be in close vicinity to its current positions.
Hence, the incentive for the charger to start travelling towards the direction of such
an agent is to be successful in actually reaching the agent and charging it. A similar
motivation can be used to reason on rule 4 concerning the distance of an agent to the
charger; the closer an agent is, the more likely that the MC will reach the agent in
the near future.

In the light of the previous discussion the final generic form of the Weighting
Function (assuming that all exponents are positive) is:

(Epety ()P

W: o — R(T; W, — —
(%X(,‘))y(di)a

(13.2)

As mentioned before, the exponents in the generic form of W enable us to investigate
the relationship and importance of individual attributes with respect to the charging
process. In order to define the exact numerical values for each exponent, in this chap-
ter we adopt the One-Factor-At-A-Time (OFAT) methodological approach (see e.g.
[22]); i.e. varying the value of the exponent of one of the attributes at the time, while
fixing the others to a base value in order to evaluate the impacts on the performance
of the MC.

Experimental findings indicate that the uniform consideration of all network as-
pects (i.e., all exponents equal to one) already lead to good results in our MC traver-
sal strategies (see details in Sect. 13.7). Fine tuning via more sophisticated methods
would only further increase the already high efficiency of the proposed traversal
strategies.

13.6 Traversal Strategies for the Mobile Charger

We now discuss five traversal strategies for the Mobile Charger that are qualitatively
different in terms of the assumed level of knowledge that the MC has on the network.
The first one is a zero-knowledge deterministic space-filling strategy. The second
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one is a zero-knowledge randomized strategy. The third and fourth ones are online,
complete-knowledge centralized strategies integrating the node Weighting Function
defined above. The last strategy is a reactive one that is based on local network
information gathered by the agents in a distributed way.

In terms of network knowledge, complete-knowledge strategies are the most pow-
erful strategies for the MC. At any given moment, the MC is aware of the exact dis-
tribution of the agents over the area £2 and is therefore able to choose its trajectory
accordingly towards maximizing the number of nodes alive over time while consid-
ering the delay between the time of computing positions and the arrival time of the
MC in the online setting. Such recharging schemes have the strong assumption that
the agents are able to periodically propagate data regarding their position and energy
needs to the MC; e.g. over the Internet. The MC is assumed to have the required
computational power in order to be able to perform the necessary calculations.

13.6.1 The Space-Filling Strategy (SPF)

This zero-knowledge deterministic traversal strategy consists in having the MC to
systematically sweep the network area in such a way that no overlaps occur. In
particular, according to this strategy the MC is moving along the one dimension
of £2 until it reaches its border. Then, it takes a U-turn shifted by a distance of
2R;, along the second direction. When the entire network area has been covered the
process is repeated. This traversal strategy guarantees that eventually all network sub-
regions will be covered by the MC and in uniform agent distributions it is expected
to have a satisfactory performance. However, in heterogeneous distributions where
big numbers of agents are located in confined sub-regions (i.e. the social hotspots)
significant latencies in inter-charging times are expected.

13.6.2 The Random Walk Strategy (RAND)

This is a zero-knowledge randomized traversal strategy for the MC. Given its current
position, the MC chooses the direction of its next move uniformly at random from
[0, 27r] and the distance to be covered uniformly at random from [0, 2R;,,,]. This
strategy assumes zero-knowledge on the network and the distribution of the agents.
Therefore, like the SPF, it is characterized by the absence of any overhead as the
agents maintain a passive role, simply waiting to encounter the MC in order to be
recharged. Moreover, this strategy probabilistically guarantees that eventually all the
sub-regions of the network will be visited by the MC, although it may infer long
waiting periods for the agents among consecutive charges, particularly for highly
heterogeneous topologies.
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13.6.3 Global Knowledge ILP Strategy (GK-ILP)

Initially the Mobile Charger is placed at a random position in the network area 2.
At each round, given the current positions of all the agents in £2 and the current
values of their network attributes (i.e. £ f“d, X, ///(';C), d;), the MC is able to compute
the exact location it should visit (or move towards to) at the current time. The MC
could do so by finding the center of the circle of radius Rj,, which encircles the
agents that cumulatively have the highest node weights with respect to the Weighting
Function. By the design of the Weighting Function, the cumulation of the node
weights correctly prioritizes the various areas with respect to demand for being
charged. The corresponding non-linear problem formulation is as follows:

max, Z W B; (13.3a)
di=(x—x)2+0i-nNH"? Vi (13.3b)
Rlow+(l _ﬂl) Mzd, Vi (1330)
Bi € {0, 1} Vi (13.3d)

In the problem formulation the i’s are the indices of the agents A; € </, W,
indicate their weights, B; are binary decision variables, d; the distance of the agents
to the MC at position (x, y), x; and y; are the position coordinates of the agents,
and M is a very large constant. In (13.3b) we compute the distances of the agents
to the MC. In (13.3c) we make sure that if §; = 1 (i.e., if the weight of agent A; is
considered in the objective function) then Ry, > d;.

To create an ILP, we approximate d;. Instead of a circle with radius R;,,,, we look
for a rectangle whose sides are at most of length R;,,, and whose center (x, y) is the
position of the MC:

 max, Z Wi Bi (13.4a)
d; > |x; — x| Vi (13.4b)
di > |yi — yl Vi (13.4¢)
Riow +(1—=p)-M=>d; Vi (13.4d)
Bi € 10,1} Vi (13.4e)

In the above equations the constraints (13.4b) can be replaced by linear equa-
tionsd; > x; —x and d; > —(x; — x). Corresponding replacements can be made for
(13.4c¢) resulting in an ILP. By solving this ILP, the MC is able to identify the rec-
tangle that maximizes demands and move towards its center. The MC is updating its
directions using the ILP with updated information at each time step.

Note that even for relatively big and dense network instances the ILP can be solved
in reasonable amount of time.
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13.6.4 Global Knowledge Tessellation Strategy (GK-TS)

In this traversal strategy the MC is initially deployed at a random position inside
the network area 2. First, the MC virtually tessellates the network area in square
tiles of the same size. In order to minimize overlaps in the charging areas the pivot
of the tessellation is chosen to be equal to 2R;,,. Then on each round, given the
current positions of all the agents in the £2 and the current values of their attributes,
the MC assigns weights to each agent via the Weighting Function and computes the
aggregated weight for each tile by summing the weights of the agents located in that
tile. Finally, the MC chooses to move towards the center of the tile with the highest
cumulative weight.

13.6.5 The Reactive Local Knowledge Strategy (RLK)

This is a local knowledge traversal strategy that exploits local information collected
distributively. The agents overtake an active role in collecting local network infor-
mation and informing the MC on the current demands of their neighbourhood (we
assume that Rj,, and the communication range of the agents, although not equal,
are of the same order). This way the MC is able to identify and serve stressed areas
of the network as well as to react to changes of the network topology under a more
realistic and efficient distributed scheme.

More specifically, each agent periodically collects information regarding the net-
work attribute values of its neighbouring agents; i.e. each agent poles its one-hop
neighbours on their energy needs, their average energy dissipation rate and their
mobility levels. Then this information is used to assign to each neighbour a weight
via a modified Weighting Function that does not take in consideration the distance
to the MC. This is due to the fact that the agent is unaware of the actual location
of the MC. Instead, the agent associates the assigned weights to its current position
for future reference. The modified Weighting Function applied by an agent in the
GK-TS strategy is the following:

need 7
V- A + 7 i Ai
W:A->R;; Wi =
1
M,

(13.5)

Eventually, the agent stores in its memory and ferries a tuple consisting of the
cumulative weight of its current neighbourhood and the coordinates of the position
where this weight was measured. As each agent is moving inside the network area,
the quality (in terms of accuracy) of the measurements degrade over time due to
the dynamics of the network, such as the mobility of the agents. In order to address
this issue we introduce the following ageing mechanism. At every round each agent
updates the carried tuples by multiplying the stored aggregated weight with a con-
stant g € [0, 1]. Therefore, after T rounds the corresponding value will have been
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Table 13.1 Structure of the tuple each agent maintains.

Variable name Description

tuple.x % X coordinates of the measurement location
tuple.y % Y coordinates of the measurement location
tuple.weight % Modified weight of the measured location

multiplied by a factor of g7 and will be a percentage of the initial weight. The lower
the value of ¢ is set, the more aggressive the reduction over time of the weight stored
in the tuple.

On another aspect, as the agent traverses the network, it periodically collects local
network information and stores them in tuples in its memory. As new tuples are being
created, at each round the agent re-evaluates the already existing ones and compares
them to the new tuples. Low weight entries are replaced by higher weight entries
once the storage space limit of the agent has been reached. An agent carries stored
tuples and opportunistically delivers it to the MC once it encounters it. Table 13.1
shows the structure of the tuple that each agent maintains.

The MC is initially placed at a randomly chosen position inside £2. As the MC
traverses the network, it receives and saves tuples from each agent it encounters.
Then, the MC uses the information provided in order to solve the ILP introduced in
the latter subsection thus adjusting its trajectory correspondingly at each time step.

The presented reactive, local knowledge traversal strategy introduces a communi-
cation overhead to the network as the agents need to exchange information with each
other. However, this overhead is rather small, thus not yielding significant energy
consumption for the agents. Further, we note that information regarding network
areas with high agent density and/or high energy needs (such as social hotspots) will
be carried by the agents for a longer time period and will traverse a longer distance
into the network. Finally, the distributed nature of this strategy makes it scalable and
applicable in more realistic settings.

13.7 Performance Evaluation

13.7.1 Simulation Set-Up

We evaluate the performance of the five traversal strategies by conducting extensive
simulation studies in Matlab 2015. We conduct simulations with three different sizes
for £2; (a) 50 x 50 and (b) 100 x 100 where in each setting 100 agents are deployed.
‘We make this choice as it provide us with qualitatively different sizes and densities
of the network in which the agents are distributed enabling us to better study the per-
formance of each heuristic. In terms of speed of movement, we set the mean agent
speed for each mobility level to be (all numbers are in space units over time units)
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Mpork = 25 Mpaix = 4; Mpic = 8; Myen = 16 and the speed of the MC M Cy, =10.
Mobility levels are assigned to the agents u.a.r., thus leading each one to correspond
to approximately 25 % of the population. We also set the maximum and initial energy
for each agent to be E,,,, = 3000 units of Energy. At each round of simulation, the
amount of energy that each agent dissipates follows a Poisson distribution whose
mean value for each agent is chosen independently and u.a.r. in [20, 80] units of
Energy. We study both homogeneous and heterogeneous placements. In the hetero-
geneous placements three social hotspots are considered each on in different network
subregion with a bias factor of: 0.45; 0.15; 0.15 accordingly. Note that the agents are
attracted towards the hotspots; they do not move directly to them. For each setting
we simulate the network for 500 rounds. Each simulation is repeated for 60 itera-
tions and we compute the mean values for each metric; results demonstrate strong
concentration around the mean (evaluated via the standard error over the mean).

13.7.2 Preliminary Evaluation of the Weighting Function

Before running the simulations for the evaluation of each strategy we turn to the task
of finding appropriate parameter settings for the attribute exponents in the Weighting
Function introduced in Sect. 13.5. We employ the simple One-Factor-At-A-Time
(OFAT) methodology: varying the parameter values of the exponent of one of the
attributes while fixing the others to a base value in order to evaluate the impacts on
the simulation outputs (see e.g. [22]). OFAT has the advantage of being relatively
easily conducted and, as it will turn out, over relatively few trials will provide settings
which result in sufficiently high performance. We will leave a more sophisticated
analysis of the exponent parameter settings for future work claiming that this would
only ameliorate the our findings. For the evaluation of the exponents we measure the
performance of varying parameter settings when employing the Global Knowledge
ILP Strategy as this strategy employs the base version of the Weighting Function and
in terms of adjusting the traversal strategy of the MC may, out of all of the presented
strategies, best exploit the added value of Weighting Function.

We first evaluated different values for the E™*“¢ exponent with values ranging
from 1 to 10 (keeping the other exponents at 0). Figure 13.4a shows the percentage
of alive nodes over the number of rounds for different exponents of E"“? ina 50 x 50
area with a homogeneous agent distribution. We observe that the more we increase
the value of the E"*? exponent the less alive nodes we have in the area. Similar
results are achieved for 100 x 100 area and 150 x 150 area. This can be explained
by how the Weighting Function assigns values with respect to the exponents: the
higher the exponent of E"*? is, the higher the weight distance between two agents,
even if their actual energy needs are similar. For instance, for value 10, consider two
nodes: one with energy need equal to 2 and one with energy need 2.5. These would
end up in receiving weights 1024 versus 9537. In a network with several nodes the
MC integrating the Weighting Function with high exponents might focus too much
on some few individual nodes.
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Fig. 13.4 Evaluation of exponents using the GLK-ILP strategy

As E"¢°d is the indicative factor for a the survivability of an agent, we conducted
tests for evaluating the exponents of pairs of { E"*?}x {Dissipation, Mobility, Dis-
tance}. Similarly to the tests on using only the E"¢*“ exponent, the results were
changing with respect to changes of the E"*“? exponent only. As such we run tests
for evaluating all the exponents by keeping the E"**? exponent at 1. The results can
be seen in Fig. 13.4b. Considering the relatively high performance, we used for our
strategies evaluation the exponents in a uniform manner (i.e. all exponents equal to 1).

13.7.3 Evaluation of Traversal Strategies

13.7.3.1 Evaluation Metrics

Percentage of Alive Nodes. In this metric we examine the percentage of alive agents
each traversal strategy is able to achieve in a given amount of rounds. We note here
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that a fully charged agent with highest possible dissipation rate in the absence of
the MC will die in 12 rounds. This metric is a good indicator of whether a strategy
manages to provide energy to the network where and when is needed.

Energy Distribution. In this metric we examine the energy distribution to the
agents by the MC in percentiles over time. In particular, we tessellate the percentage
of agents that have residual energy in the ranges of: (0-20 %), (20-40 %), (40-80 %),
(80-100%). We take some samples of the network in terms of energy distribution
and we examine the % of the agents that lie in each of the ranges.

Distance Coverage. In this metric we examine the cumulative distance covered
by the MC in the network. This metric although it is not directly correlated with
the operation of the network itself, it can lead to useful conclusions regarding the
charging process and the efficiency of the route that the MC is following. In addition,
this metric is associated to relevant movement costs of the MC.

13.7.3.2 Results for Percentage of Alive Nodes

Homogeneous Agent Distribution. Figure 13.5 depicts the percentage of alive nodes
(survivability of the network) in an homogeneous agent distribution for a (a) 50 x 50
and (b) 100 x 100 area £2. We observe in the subfigure (a) that the GK-ILP strategy
outperforms the other ones, as expected. This is due to the knowledge the Mobile
Charger has and its ability to best exploit the Weighting Function. The second best
strategy is the Random Walk of the Mobile Charger and this is due to the nature
of the homogeneous area and the fact that the random walk probabilistically will
eventually visit the entire area. Comparing the RAND to the Space-Filling strategy,
it distributes “more evenly” the probabilities of visiting all the subareas. The SPF
strategy comes third since the MC is sweeping the network and thus some sub-areas
are left without being charged until the MC will revisit them in the next iteration.
The GLK-TS performs even worse. This may be explained by the limitation of the
positions the MC can visit when this strategy is applied, i.e. it may only visit the
centres of the tiles of the tessellation. In the case where nodes are positioned towards
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Fig. 13.5 Percentage of alive nodes over 200 rounds in homogeneous setting
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the edges of the tiles, the MC will not have the chance to fully charge these nodes
in one round. We observe that in the homogeneous set-up, the RLK strategy has the
poorest performance: the MC has limited information about the agents and they are
equally distributed over the area 2. We observe that in all settings of 50 x 50 and
100 x 100, the strategies follow the same trend. The differences of the strategies in
comparison to the topologies lie in the absolute values of % of alive nodes they are
able to achieve. In a bigger area with the same MC the distances are longer thus the
MC does not have enough speed and sufficient time to keep a high % of overall alive
nodes.

Heterogeneous Agent Distribution. Figure 13.6 depicts the % of alive nodes in
an heterogeneous agent distribution for a (a) 50 x 50 area §2 and (b) 100 x 100 area
£2. In the heterogeneous setting the GLK-ILP strategy is again clearly the best in all
topologies, as expected. In the 50 x 50 area the GK-TS and the RAND have almost
identical behaviour but in the 100 x 100 area the RAND performs much worse. This
is explained as follows: since the distribution of the agents in the area is done in a
heterogeneous manner and there are three hotspots, when the overall area is small,
the MC manages to cover a sufficient area thus charging a relative high number
of agents. On the contrary, when the area is relatively big, the random walk of the
MC does not manage to cover sufficiently neither the whole area nor the hotspots.
The RLK strategy in the 50 x 50 area performs weaker again, even though much
better in relation to all of the other strategies and much better than the SPF strategy
in terms of maintaining the agents alive. However in a larger area, its performance
increases quite significantly, i.e. in the 100 x 100 area the RLK strategy performs
similarly well as the GK-TS although it is only employing local knowledge collected
while traversing the network. At the same setting the performances of both zero-
knowledge strategies, SPF' and RAND, drop significantly. Lastly, we observe that
the SPF strategy maintains the least number of agents alive in both topologies and
specifically it is following a “wave charging” every time it is passing through the
hotspots.
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13.7.3.3 Results for Energy Distribution

Homogeneous Agent Distribution. Figures 13.7 and 13.8 show the energy distribu-
tion in percentiles in the homogeneous 50 x 50 and 100 x 100 areas. In general we
observe that the performance of all the strategies is stable over time. In the 50 x 50
area the GK-ILP performs clearly better than all the other protocols, not only with
respect to number of nodes alive, but also regarding the percentage of nodes with
high energy level. Regarding the performance w.r.t. energy distribution, GK-ILP is
followed by RAND, than GK-TS and than SFP. The reactive protocol RLK is outper-
formed by the other protocols and has the highest number of nodes with relatively
low energy level. This is due to RLK focusing on nodes with highest needs to be
recharged first. While traversing the network it also charges other nodes on the way,
but its main goal is to successfully keep as many as possible nodes alive. When
looking at the 100 x 100 area, we note that even though the GK-ILP performance
in terms of number of alive nodes is much better than the other strategies, its energy
distribution percentiles are only slightly better. The SFP, RAND and GK-ILP have
relatively high values for nodes with energy levels higher than 40 % .

Heterogeneous Agent Distribution. Figures 13.9 and 13.10 show the energy
distribution in percentiles in the heterogeneous 50 x 50 and 100 x 100 areas re-
spectively. In the 50 x 50 area, again the GK-ILP performs best, followed by RLK,
GK-TS and RAND which here perform all similar like with more than 60 % of the
nodes having energy level equal or higher than 40 %. The SFP protocol performs
worst with up to about 60 % of nodes with less than 40 % energy level for 500 rounds.
For the 100 x 100 area, we observe that the GK-ILP manages to both keep a high
number of nodes alive and hold a relatively even distribution over them. The RAND
has a performance similar to the homogeneous setting but compared to the non-naive
strategies, it performs much worse. Moreover, we observe that similarly to the per-
formance of the number of alive nodes, the RLK and GK-TS perform equally good;
i.e. both are being successful in keeping a relatively high number of nodes at high
energy levels.

13.7.3.4 General Findings

Conclusively, for a homogeneous distribution of agents, our simulation results sug-
gest that when the knowledge of the MC is limited, as in most real world applica-
tions for mobile ad-hoc networks, it may be advisable to employ a naive, low-cost
Random Walk strategy. In the heterogeneous setting, experimental results suggest an
outstanding suitability of our local knowledge RLK strategy when the area of interest
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Table 13.2 Cumulative distance (units of space) covered by the MC in 500 rounds in 100 x 100
area 2

Strategy Homogeneous Heterogeneous
SPF 10800 10800
RAND 12000 12000
RLK 4271 2982
GLK-TS 6553 5387
GLK-ILP 10692 8933

is relatively large. In addition, Table 13.2 shows the cumulative distance traveled by
the MCin a 100 x 100 area £2 over 500 Rounds in homogeneous and heterogeneous
setting. We observe that the MC, in our RLK strategy both in homogeneous and in
heterogeneous setting, is traveling the least distance. This is a significant result given
that RLK performs also very well in terms of keeping the a high number of agents
alive.

13.8 Conclusions

In this chapter we addressed the Wireless Recharge Problem in mobile ad-hoc net-
works characterized by diverse and unpredictable spatio-temporal dynamics. First,
we defined the charging model and then utilized the notion of social attraction in
order to better capture human mobility in our mobility model. We evaluated the
performance of five qualitatively different traversal strategies for the MC; a zero-
knowledge deterministic space-filling strategy, a zero-knowledge randomized strat-
egy, two complete-knowledge centralized strategies and a local distributed knowl-
edge reactive strategy. Our findings indicate that in homogeneous topologies the
added value of the network information is degraded. However, in heterogeneous
topologies strategies utilizing local network knowledge can outperform more pow-
erful schemes if they efficiently exploit their knowledge.

In future research we aim at investigating more diverse topologies of the network
area, more accurate mobility models as well as coordination schemes among multiple
Mobile Chargers. In fact, our aim will be to efficiently coordinate the Mobile Chargers
so as their effect on the network to be at least super-linear with respect to their number.
Finally, we will also employ more detailed evaluation methods for further fine tuning
the Weighting Function.
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Chapter 14
Recharge Scheduling with Multiple Mobile
Chargers

Cong Wang, Ji Li, Fan Ye and Yuanyuan Yang

Abstract This chapter studies the important research scheduling problem for
wireless charging in wireless sensor networks. We first present a distributed protocol
that can collect energy information from the network on demand. For scalability,
the protocol divides the network into hierarchical levels, selects head nodes on each
level and establishes routing paths to the heads. Mobile Chargers (MC) send recharge
requests to reveal their current locations. Energy information messages then utilize
the established routing paths to get back to the MCs. Based on the gathered energy
information, our objective is to minimize energy cost for the MCs during movements
and make sure no sensor depletes battery energy. We formulate the problem into an
optimization problem by capturing both battery capacity from the MCs and dynamic
lifetime from sensors. Since the problem is NP-hard, we present a three-step adaptive
algorithm. The algorithm first partitions energy requests according to their locations.
Then it constructs Capacitated Minimum Spanning Trees to capture charger’s battery
capacities. Finally, the algorithm calculates recharge routes for each tree based on
node’s lifetime. Simulation evaluations have demonstrated that the algorithm can
successfully maintain perpetual operation of the network.
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14.1 Introduction

Equipped with wireless charging coils, mobile chargers (MCs) can move around
sensing the field and recharge nodes via wireless energy transfer [1-9]. An impor-
tant problem of recharge scheduling—when and which MCs should recharge which
nodes and in what order—critically impacts the lifetime and performance of the net-
work. Since it takes nontrivial time (60-80 mins) to recharge a commercial Ni-MH
battery [10], a sequence of a few hundreds of nodes may take several days. The
energy information gathered prior to a recharge tour may be outdated so it is neces-
sary for the MCs to request updated energy information during operation. Thus, for
effective recharge schedules, the timely, efficient, and scalable gathering of energy
information from nodes and its delivery to MCs are challenging problems. Instead of
letting nodes report their energy to the base station only after a long time, a scalable
energy information aggregation protocol enables the MCs to gather energy status in-
formation continuously from sensors on demand. Since the MCs are moving among
different locations, successful delivery of energy information to the MCs requires
building routing paths in run-time. We first propose a distributed communication
protocol for the MCs to request energy information on demand.

In the second step, based on the latest energy information collected, we present an
adaptive recharge scheduling algorithm for multiple MCs. It contains the following
steps: (1) partition energy requests according to their location distributions using the
k-means algorithm [11] (2) build Capacitated Minimum Spanning Tree (CMST) [12]
to capture MCs’ battery capacities and (3) improve recharge routes by classifying
nodes based on their lifetimes. It is worth mentioning that location-based partitioning
of energy requests can make sure that the MCs only move in confined regions, so long
distance movement back and forth through the entire field can be avoided. For the
second step, construction of CMST ensures that the total energy demands are within
MC’s recharge capacity. It also forms a subset of nodes that are closer to each other
to facilitate the computation of recharge routes. In the last step, for nodes in each
tree, we first compute an initial route using any algorithm for the Traveling Salesmen
Problem. Then we iteratively insert nodes with limited lifetime into the route and
make sure node’s lifetime constraint is not violated for each insertion. Next, let us
present the energy information gathering protocol first.

14.2 Related Work

Extensive research efforts that apply wireless charging to renovate traditional design
of battery-powered WSNs are sought in [1-9]. In [6], the impact from wireless
charging on routing and sensor deployment is studied. In [4], a greedy algorithm
is designed to find a recharge sequence to maximize the lifetimes of sensor nodes.
In [3], a joint consideration of wireless charging and message routing in the network
is considered to improve network utility and lifetime. In [9], an MC is used for both
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Fig. 14.1 Illustration of network components and divisions

wireless charging and data collection to reduce system cost. A utility maximization
problem is formulated and cross-layer optimization is performed. In [5], a near-
optimal solution that utilizes one MC to recharge all sensor nodes is provided. In [7],
an online algorithm is developed to schedule multiple MCs to recharge sensor nodes.
In [8], the recharge capacity and actual moving cost of the MCs are considered in the
recharge scheduling problem. In [1], batteries are allowed to be partially filled and
various recharging schemes that require different levels of knowledge are explored.
In [2], deployment problems of wireless chargers are studied to extend network
lifetime. These works are the pioneering steps to adopt wireless charging in WSNs.
In the following sections, we build such a wireless rechargeable sensor network from
scratch and describe various components in the network.

14.3 Energy Information Gathering Protocol

14.3.1 Network Division

For scalability and efficiency, the network is divided into several areas and each
area is further divided recursively as shown in Fig. 14.1. In practice, the division can
be based on geographical coordinates or connectivity among nodes. For simplicity,
we use geographical coordinates for determining the boundaries of different areas
here in this chapter. Some new subareas are generated by each division which also
increases the number of levels in the network. The process continues till the bottom-
level subareas are small enough (contains several tens of nodes or less). Figure 14.1
gives an example of a two-level network with two areas (solid lines). Each area is
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further split into two subareas (dashed lines), where each subarea on the second level
contains 10-20 sensor nodes.

Then we assign network address prefix for different subareas in a hierarchical
manner. Figure 14.1 shows an example of assignments for different subareas. The
firstlevel areas are “1”” and “2,” and the second level areas are “1/1,” “1/2,72/1,72/2.”
Each subarea is identified by its unique hierarchical address. Nodes have IDs which
are identified by the addresses of their bottom-level subareas plus identifiers. For
example, “1/1/2” is node “2” in subarea “1/1.” Note that nodes beyond the intended
subarea will not receive message propagation. That is, as an example, for messages
in the second-level subareas, nodes in area “1/1” will not receive messages from
“1/2.” In this way, we can confine the scope of message propagation rather than
flood messages in the entire network to reduce overhead.

14.3.2 Head Election

After the network areas and their addresses have been configured, the first step is
to elect a head node for each area. The election starts from the bottom level and
propagates all the way up to the top level. For robustness, node with the highest
energy level should be elected as the head node. Since nodes have about the same
energy level at initialization, any one of them can become a head node. Although it is
trivial to do in a centralized manner (simply select a random node as the head), head
election in distributed wireless sensor networks may require a little more efforts.
It is done by generating a random number x at each sensor i. If x is larger than a
predetermined number threshold, the node will send out a head election message in
its subarea with the field of maximum value x,,,, set to x, and I D,,,, pointed to its
own ID. Then it waits for head election messages from other nodes in the area.

A node receiving such a head election message compares the x,,,, in the message
with x,,,,, at its local memory. If its local record is larger, the message is discarded.
Otherwise, the sensor updates its local record to the x,,,, in the message, sets I D,
to that in the message, and forwards the message to its neighbors except the node that
sent this message. As the propagation finishes, the node with the maximum random
number x wins the head election and all the nodes in this subarea record the node as
the head.

After the head elections on the bottom-level are over, new heads then contend
to become heads on the (/ — 1)-th level (for a network of / levels). Similarly, they
send out new head election messages in the (I — 1)-th level subareas with their
generated random number x and IDs. Nodes receiving the messages conduct the same
comparisons as the bottom-level nodes and forward the messages to their neighbors.
After the head nodes are elected at the (/I — 1)-th level, the process continues to the
(I — 2)-th level and so on until the top-level head node is elected.

Different from the bottom-level, starting from the (I — 1)-th level to the top,
nodes do not discard messages with x smaller than their local copies. For building
intermediate routing tables through the subareas, these messages are propagated
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in the respective subareas. Each node will have an entry for the child-head in its
subarea by pointing to the neighboring node where the head election message has
come first. Any duplicate copies arrive later will be discarded. The purpose of this
step is to establish routing entries for energy request messages to reach lower level
child-heads. For the top-level head nodes, the head election messages are propagated
throughout the entire network. Later on, when energy information is requested by
the MCs, the intermediate nodes will use these routing entries to reach the destined
head node.

In summary, head nodes form a head hierarchy throughout all network levels. Note
that such network-wide message propagation is performed only at the initialization
stage. During operations, head nodes are responsible for managing activities, energy
information of their designated subareas. Since they usually handle more traffic
loads and computations, they may consume energy faster than other nodes. Once a
head node is about to deplete its battery energy, a new head node should be elected
to maintain operations of the head hierarchy, which will be discussed later in this
section.

14.3.3 Energy Request Propagation

After the head hierarchy is constructed, the MCs send energy request messages to poll
sensors that need wireless charging. In contrast to head elections, energy request is
propagated in a top down manner. The MCs perform recharge of a subarea by sending
out energy request. For example, an MC can request all the energy information from
subarea “1/2” by properly setting the destination address to “1/2” for the energy
request. Upon receiving an energy request, the intermediate nodes use the routing
entries established during top-level head election and forward it to the designated
top-level head nodes. At the same time, an intermediate node also sets up a routing
entry pointing to the neighbor where the energy request message is received. These
entries can be used later on for guiding the returning energy information messages
back to the MCs.

To reduce traveling cost of the MCs and maximize their utility, we need to avoid
duplicate selections of nodes in the same subarea from different MCs. Since prop-
agation of energy information also consumes energy, we let the MC with the least
number of hop count to receive a head node’s energy information. A field that records
the number of hop count is set in the energy request message and is increased by one
after each intermediate node. If more than one energy request messages are received
at the top-level, an intermediate node updates its routing entry to the neighbor that
carries the smallest hop count. Then the aggregated energy information from the head
can follow these directions to reach the requested MCs. Since the MCs’ locations are
constantly changing after each recharge, the routing entries should be updated each
time by new energy request messages. After an intermediate node forwards energy
information in the top-level area, it deletes corresponding routing entries.

fan.ye@stonybrook.edu



336 C. Wang et al.

After the top-level head receives an energy request message, it looks up the
destination address and generates a new energy request message to its destined child-
heads. For example, if the requested subarea is “1/2,” the top-level head sends out
a new energy request to its child-head in subarea “2.” If the requested area is the
entire subarea of “1,” it sends out new energy requests to all its child-heads in the
subordinate subareas. Similarly, these messages can follow the routing entries set up
earlier during head selections to reach the destined child-heads. Intermediate nodes
also establish returning routing entries for directing energy information from child-
heads to their parent heads. This process is repeated down the head hierarchy until
the heads at bottom-level are reached. Different from the upper-levels, heads on the
bottom-level flood their respective subareas with energy request messages. In this
way, all the nodes in the requested areas will receive the energy request from the
MCs.

14.3.4 Energy Information Propagation

Once a sensor node (not head node) receives a bottom-level energy request, it re-
sponds with its energy information by including its ID and estimated lifetime in the
message. Using the routing entries established during the head election, such energy
information messages are aggregated at the bottom-level heads.

To reduce redundancy, we can delegate the head nodes some responsibilities to
filter out nodes that do not need recharge. A recharge threshold (e.g., 20 %) is pre-
configured at the head nodes so that any nodes reported with energy higher than the
threshold will not be aggregated toward the upper level. If a node’s energy is less
than the recharge threshold, its energy information along with ID and lifetime are
stored into an aggregated energy message and sent to its parent head. The parent head
may have requested energy from several subareas so it waits until receiving all the
energy information messages from its child-heads, aggregates all the information and
forwards to its parent head. The process is repeated recursively until the requested
MC at the top-level is reached. Then the MC examines all the energy information
and follows the recharge scheduling algorithm to perform wireless charging.

To keep track of real-time energy status in the network, the MCs may send out new
energy requests after it finishes recharging every node. However, it also increases the
overhead, delay and energy consumptions in the network. Therefore, we can relax
this constraint by reducing the frequencies of such energy request, i.e., send out
energy request only at the time when energy on sensors has changed dramatically
(e.g., after charging a few tens of nodes). Figure 14.2 gives a pictorial illustration
of a network with two levels. After an energy request message is sent by an MC,
energy information from the requested area is converged from the bottom level and
forwarded to the MC.
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Fig. 14.2 Propagation of energy request and information in the network

14.3.5 Maintenance of Head Hierarchy

We have mentioned earlier that a head node may deplete its energy faster than other
nodes due to more traffic loads and computations. In this case, a new head is needed
immediately. During each round of energy information gathering, the head node
aggregates energy information from all its subordinate subareas so it knows local
energy situations and which node has the highest energy. In fact, since head nodes
on the upper-levels are elected among the bottom-level head nodes, any head node
is always the head of its own bottom-level subarea. We do not need to initiate the
head election process again. Instead, we can simply appoint the node with the highest
energy as the new head by sending out a head appointment message in the bottom
levels. Then the new head will flood a head declaration message in its subarea to
establish routing entries. The new head on the bottom-level then triggers a new head
election process in the (I — 1)-th level subarea. New head selection messages with
current energy levels from the heads are sent. Node with the maximum energy is
elected as a new head for the (I — 1)-th level subarea. In case if it is the same head,
the process stops. Otherwise, a new process of head selection is triggered in its upper
level subarea until either the same head is selected or the top level is reached.

14.3.6 Summary

We now summarize how the protocol routes different messages briefly. First, routing
entries are established during the head election process so that the energy request
messages can be sent from parent head nodes to child ones. Second, the propagation
of energy request messages from the MCs, or from parents to child-heads, establishes
relevant routing entries for later return of energy information messages from top-level
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heads or child-heads. In the next section, we describe how to schedule several MCs
for wireless charging efficiently.

14.4 Recharge Scheduling with Multiple Mobile Chargers

After discussing the protocol that can help the MCs gather energy information effi-
ciently, in this section, we schedule multiple MCs for recharge. Our objective is to
maintain perpetual operation of sensors. In other words, no sensor will deplete its
battery energy. In addition, a set of practical constraints should be considered. The
first constraint comes from the energy cost of the MC itself because it also consumes
energy for wireless charging and moving. An oversight of such constraint may cause
impractical schedules where the MCs deplete energy en route, become stranded and
unable to return the base station. Further, it overestimates MC’s recharge capabil-
ity and node’s lifetime since it also takes time for the MCs to return and replace
their batteries. The second constraint is imposed by nodes’ dynamic battery lifetime.
The MCs should follow an effective schedule to resolve all energy requests before
their battery deadlines expire. In the meanwhile, the MCs should also save as much
moving energy as possible to keep the energy overhead low. Therefore, an inter-
esting question here is that under limited battery capacity, which nodes should the
MCs recharge in what order and how to coordinate recharge among different MCs
efficiently such that all the sensors are alive?

After some analysis, we can see that the difficulty of the problem lies in achieving
conflicting goals. On one hand, the goal to keep the network running pushes the MCs
to recharge as many sensors as possible which may cause a significant amount of
energy expenditures during movement. On the other hand, the desire to reduce cost
requires the MCs to minimize traveling distances in order to save energy cost. An
ideal solution should achieve a good balance between these two aspects. Next we
show that the recharge scheduling problem can be formulated into a Vehicle Routing
Problemwith Capacity and Battery Deadlines (VRP-CBD) [13]. The Vehicle Routing
Problem (VRP) is a combinatorial optimization problem that finds an optimal set of
routes for a fleet of vehicles to traverse through a set of customer locations and satisfy
their demands.

14.4.1 Problem Formulation

The recharge scheduling problem is defined in the following. Given a set of MCs
< ={1,2,...,m} and a set of energy requested for recharge 4" = {1,2,...,n}(n
is the total number of energy requests), we formalize the problem in the following.
Consider a graph G = (V, E), where V; (i € /) is the location of node i to be
visited by an MC, and E is the set of edges. We add a vertex Vi as the starting
position of vehicle a. Each edge E;; is associated with a traveling energy cost ¢;;,
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which is proportional to the distance between nodes i and j. During operations,
MCs have recharge capacity C, which is less than or equal to full capacity C;, and
it determines the maximum number of nodes that can be recharged in each round.
Each sensor node i has lifetime L; and energy demand d; (demand equals sensor’s
battery capacity C, minus its residual energy). A; specifies the arrival time for an
MC at sensor node i.

We introduce two additional decision variables x;’j for edge E;; and y;, for vertex
V;. The decision variable xfj is 1 if an edge is visited by MC a. Otherwise, itis 0. The
decision variable y;, is 1 if and only if node i is recharged by MC a. Otherwise, it
is 0. u; is the position of node i in the recharging path. Our objective is to minimize
the total traveling cost of sensors while guaranteeing either the recharge capacities
of MCs are not exceeded or no sensor node depletes battery energy.

m n

P1: minZZicuxi‘; (14.1)

a=1 i=1 j=1

Subject to
dxg=laes (14.2)
j=1
Dxu= xmj=lkes (14.3)
i=1 j=1
D divia+ DD cijxl <Coaed (14.4)
i=1 i=1 j=1
D va=liies (14.5)
a=1
Ai<LiieN (14.6)
xf; €0, 14, j € N aeS (14.7)
via €{0,1};i € N ,ae. S (14.8)
l<u <n;ieN (14.9)

ui—uj+ My —m)xij; <n,—m—1i,je N i#]
(14.10)

In the above formulation, constraint (14.2) states that the recharge tour starts at
initial location O for each MC.! Constraint (14.3) ensures the connectivity of the
path and every sensor is visited only once. Constraints (14.4) and (14.5) guarantee
MC’s recharge capacity is not exceeded and each sensor is visited by only one MC.

I'The initial locations are usually the last node visited in the previous recharge tour. If the MC has
returned to the base station for battery replacement. The initial location is the base station.
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Constraint (14.6) guarantees an MC arrives at a sensor node before its battery deadline
expires (within lifetime). Constraints (14.7) and (14.8) impose decision variables x;;
and y;, to be 0—1 valued. Constraints (14.9) and (14.10) eliminate the subtour in the
recharge routes, which are formulated according to [14].

Obviously, the problem is NP-hard if we consider the original Vehicle Routing
Problem [13] as a special case with unlimited vehicle capacity as well as unspecified
visiting deadlines. A direct solution to the problem is not very common so we review
some of the previous works that have partially solve the problem.

A great amount of research efforts have been devoted in the context of Vehicle
Routing Problem with either vehicle capacity or battery deadline constraints. The
Capacitated Vehicle Routing Problem states that a number of vehicles with a fixed
capacity start from a depot to visit client locations and the objective is to minimize
the total traveling distance of the vehicles [15]. In [16], the Vehicle Routing Prob-
lem with Time Windows is studied. For each client location, there is an associated
time window such that the vehicle should visit the location within the interval gov-
erned by the start and end of the time window. A local search algorithm based on
k-exchange mechanism is proposed and computation for checking feasibility of the
time constraint is also studied. Although these works have tried to solve the prob-
lem by considering only a single constraint from Eq. (14.4) or (14.6), combining
them together is definitely more challenging and makes the problem much more
complicated.

The nature of the problem makes any attempt to use standard optimization tech-
niques [17] not practical in a wireless environment. This is because these methods
usually deal with datasets from static inputs and the optimization is done offline by
a one-time effort. Nevertheless, in wireless sensor networks, the pattern of energy
consumptions is usually dynamic which depends on tasks, duty cycles, communica-
tions, or even external events. As a result, the input to our optimization problem is
more dynamic than that most existing works have considered. Finally, the existing
techniques require high computation power from a central controller whereas energy
information is gathered by MCs in a distributed manner. It is more desirable to im-
plement online calculations on the MCs. Therefore, our objective is to develop an
algorithm that is suitable to the wireless environment. Next, we design an adaptive
algorithm step by step to address all the issues in problem formulations.

14.4.2 Recharge Scheduling Algorithm—An Adaptive
Algorithm

14.4.2.1 Adaptive Network Partitioning

In the first step, an MC requests sensor nodes for energy information based on the
protocol discussed in Sect. 14.3. Then based on the locations of energy requests, the
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MC partitions the network into m regions. The partitioning requests are disseminated
to other MCs via long range radios (e.g., 802.16 WiMax).

For efficient network partitioning, we use the well-known K-means algorithm [11].
The K-means algorithm can adaptively organize the subsets of nodes into different
regions and minimize their square sums of distances regarding to the centroid of each
region. After the partition, MCs only need to take care of energy requests in their
selected regions. In this way, MCs will move within confined scope in the network
and avoid long distance movements.

For each region, the K-means algorithm minimizes the intra-region square sum

of internode distance,
S=> > ln? —u?)? (14.11)

j=1i=1

in which ||nfj ) w9 ? is the square of distance between a node n; in region j to
the region’s centroid 1 (represented by the mean of x, y coordinates from all the
nodes in the region). The process of partitioning is described in the following.

First, the MC selects a number of m sensor nodes with the minimum lifetime
from all the nodes to be the initial centroid. Note that since the number of regions
is equivalent to the number of MCs m. The initial number of centroids is set to m
here. Then we assign each node to its closest centroid till all the nodes have been
associated with a centroid. The next step is to update the centroid locations, so we
recalculate their coordinates by taking the mean from all the x and y coordinates.
This process is repeated until the centroids no longer change. The final centroid of
each region represents a virtual point that has the minimal square sum of distances
to all the nodes in the region. Then the MCs can use this point as the starting location
for the recharging route.

14.4.2.2 Capacitated Minimum Spanning Trees

After the first step, m regions are generated and each MC only works within its
region to resolve energy requests. In the second step, we further look for a subset of
nodes such that all their energy demands plus the moving cost among them do not
exceed MC’s recharge capacity (Eq. 14.4). In the meanwhile, since our objective is to
minimize traveling cost for the MCs, we want to find subsets of nodes that are closer
to each other. It suggests find the Capacitated Minimum Spanning Tree (CMST)
[12] in which the MC’s recharge capacity is reflected by the capacity of the tree and
constructing minimum spanning trees can facilitate finding minimal moving cost. In
other words, CMST makes sure that sensor nodes close to each other are placed in
the same tree which will be covered by the same recharge route.

The optimal solution of CMST requires examinations of all possible trees and
pick the one with the lowest cost. The size of the problem grows exponentially with
the number of nodes. An efficient algorithm proposed by Esau-Williams (EW) finds
a suboptimal solution very close to optimality in polynomial time [12]. The EW
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algorithm falls into the category of “saving algorithms” that is similar to the well-
known Clarke—Wright algorithm [18] for the Vehicle Routing Problem. In principle,
the EW algorithm merges any two subtrees when there is a “saving” in the total cost
of two merged trees.

However, there are some challenges to apply the original EW algorithm directly
in our problem. First, while determining whether two subtrees can be merged, only
energy demands from sensors are accounted whereas the traveling costs are not.
Second, multiple CMST could be generated depending on the energy of the MCs.
Which trees should the MCs pick ? We extend the original EW algorithm to overcome
these limitations.

To solve the first problem, we utilize a deterministic upper bound developed in
[19] for the shortest path problem. For a rectangle of side length a, b and n nodes, a
loose upper bound is /2(n — 2)ab + 2(a + b). If the sensing field is a square with
side length L and MC’s moving cost e, J/m, the moving energy of n nodes is bounded
by (v/2(n — 2) + 4) Le,.. For the second extension, when several trees are generated,
the tree with maximal ratio of total energy demand to edge cost is selected. In this
way, we can maximize the utility of limited resources on MCs by improving energy
efficiency in the network.

Next, we explain the extended EW algorithm. A distance matrix is introduced
to maintain costs of tree nodes and facilitate the computation process. Each MC
computes CMST independently in its region by updating its own distance matrix.
Denote recharge subset .4, with n, nodes for MC a (|J_; Az = .4"). In the EW
algorithm, an important trade-off function t; for each node in its recharge set .1, is
defined as, t; = min(cg.')) — c(()‘;) and j € P;, where P; is the neighboring set of node

i, min(cfj) ) finds the minimum cost from node i to its neighbor j in P; and c(()?) is
the cost from node i to the MC’s starting position. Recall that we can set the starting
locations to be the centroid output from the K-means algorithm, which is also the
root of the CMST. The trade-off function evaluates whether it has more cost savings
to merge subtrees of nodes i and j. Positive #; indicates that the MC enjoys less cost
to directly travel from the root to node i. In this case, merging subtrees of nodes i
and j is not preferred. The value of negative #; indicates how much it can be saved
by merging subtrees of i and j. In each iteration, the most negative trade-off value
yields the most savings.

After all the trade-off values have been computed, we search through all ¢; (Vi =
1,...,n,) and look for the most negative trade-off value. Assume #; is the most
negative trade-off and j is k’s minimum cost neighbor. To capture the constraint in
Eq. (14.4), if the sum of energy demands from the subtrees of k and j plus upper
bound of their traveling costs is less than MC’s energy, we merge the subtrees of
k and j since we can cover the subtrees of k and j without violating the capacity
constraint. Since merging k£ and j has resulted in a lower total traveling cost to k,
direct connection from the root to reach k has higher cost and should be avoided. So
we remove the edge from node k to the root by setting c((;,? in the distance matrix to
00.
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The next step is to update the minimum cost of the newly merged tree to the root.
It is done by updating the minimum cost in the distance matrix from the tree to the
root by setting the value to min(cé‘;)), where i is the node in the newly merged tree.

If merging subtrees of k and j violates MC’s recharge capacity, we need to restrict
any further actions to merge j to k and these two trees should be covered by the MC in
two separate runs. Then we recompute the trade-off function #; to search for the next
neighboring node that results in minimum trade-off until the next valid neighboring
node j is found and merged to the existing trees. The iteration continues until all the
trade-offs become nonnegative. That is, no more saving can be made.

After the CMST has been generated, the MC selects a tree with the highest ratio
between energy demand and sum of tree’s edge cost. Then it will utilize the route
improvement algorithm to form the shortest recharging path among the tree nodes.
After an MC finishes recharging nodes in a tree, it checks whether its energy falls
below an energy threshold. If so, it returns to the base station for battery replacement.
Algorithm 4 summarizes the extended EW algorithm.

Algorithm 4: Extended Esau-Williams algorithm

Input : recharging node set .#;, distance matrix D'®, recharge capacity C,,
demand of nodes d;, i € .4;.
QOutput: CMST nodes need to recharge.

1 Initialize t“ < 0, weight of tree, C‘“ = 0;
2 while 1 < 0 do

3 | Find neighbor m; of i results min cost, rrrlninD(“) (i, m;). Compute trade-off
value list ti(”) = DD, m;) — DY, 1),
4 | Find k and j resulting most negative trade-off value,
k <~ min(t(“)), J o« my;
1
5 | while (N, is not accepted) and (all ti(a) < 0)do
6 Add new nodes N,.,, < k + j if not exist in current trees;
7 if weight of merging subtree of N,., < C, then
8 Add N, to corresponding tree i, update cumulative weight of
corresponding tree i, Ci(“). Declare N, is accepted.
9 else
10 update D@ (k, j) < oo. Search for next min cost neighbor for ,
my < rrr}linD(”) (k, my);
k
11 Recompute trade-off for , t,E“) = DD (k, my) — D@ (1, k). Declare
Nyew rejected.
12 end if
13 | end while

14 end while
15 Select a tree results maximum energy efficiency.
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14.4.2.3 Improve Recharge Routes

Based on the CMST obtained in each region, next we want to further improve the
recharge routes and make sure the MCs arrive before sensors’ battery deadlines. It is
not difficult to see that the total time span for recharging all the nodes in the CMST
is bounded by the sum of their recharge time. A trivial case is that all the nodes have
lifetime much larger than such time span (total recharge time). We can simply use
an algorithm for the Traveling Salesman Problem to find the shortest route. During
operation, there could be some nodes with lifetime less than the total recharge time.
If we disregard their lifetime and still use the shortest route, they might deplete their
battery energy before an MC arrives. Therefore, we need to expedite their recharge by
placing these nodes at advantageous positions in the recharge sequence. The details
of the algorithm design are explained in the following.

Let us denote the nodes from CMST by a recharge node set A, @ (A @ C _4,).
First, we classify nodes into two categories according to their lifetimes. If a node’s
lifetime is larger than the total recharge time, we claim this node to be feasible and
form a feasible node set e/Vf(“). These nodes can be placed anywhere in the recharge
sequence. Otherwise, a node requires expedited service to meet its battery deadline.
We denote such a set of nodes as a prioritized set JV,,(“) (</Vf(“) U JVP(“) = @),

Second, we use a Traveling Salesman Problem algorithm to find the shortest route
as the initial sequence ¥ among nodes in the feasible set .4/, @ For example, the
O'(n*) nearest neighbor heuristic algorithm is easy to 1mplement where n is the
number of nodes. Then we insert nodes from the prioritized set Jig(“) into ¥ one by
one. For each insertion, we make sure the lifetime constraints in Eq. (14.6) for all
the nodes in the prioritized set still hold. We sort the nodes in JK,(“) in a descending
order of residual lifetimes and denote the sorted sequence as §2. We insert these
nodes starting from the first node §2; with the maximal lifetime. Let A; denote the
arrival time of the MC at the i-th node in the shortest path ¥, i = {1, 2, ..., niﬁ’)}.

To insert the j-th node £2; from §2 into ¥, we first find position 2, in ¥ such that
Ay, < lgj and A, 41 > lgj where l_(zj is £2;’s lifetime. We call m, the temporary
maximum position to insert £2;. It indicates the maximum number of nodes in ¥ that
can be recharged before node §2; depletes its battery.

Then we need to further narrow down the maximum position to insert £2; by
considering the remaining | £2| — j nodes. Because it is possible that all the remaining
nodes are inserted before £2;, we look for a position to accommodate all possible
insertions such that £2; can still meet its battery deadline. We look for the maximum

a na

position m such that A,, < A,,, — Z:l = i and Appy > Ay, — ziin t;, where
t; is the recharge time of £2;. At this point, the maximum position m represents the
rightmost position §2; can be inserted in an extreme case if all remaining nodes are
later inserted before §2;. For £2;, we can find a position for minimal cost insertion
up to position m in the recharge sequence. This position is selected as the final
insertion position for £2; and a new sequence ¥ is generated. We remove §2; from
£2 and consider the next node in £2 until §2 is exhausted. During insertion, it is also
possible that there is no position available to insert a node from £2 to ¥. It means
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no matter where the node is placed in the sequence, it will still deplete its battery.
In this case, we can insert the node at the beginning of the recharge sequence to
minimize the time duration when nodes are not functional. Table 5 gives a summary
of the recharge route improvement algorithm.

Algorithm 5: Route improvement algorithm
Input : CMST .4/ lifetime /; and recharge time #;,i € .49, distance
matrix D@, feasible set L/i(f(“).
Output: Resultant recharge sequence ¥'.
1 Compute shortest path in the feasible set, ¥ <« TSP(J?(“)). Sort JI/[,(“) ina

descending order of lifetime as £2;
2 Initialize i < 1, last step node position k < 00;
3 while 2 # ¢ do
4 | Find temporary max position m, in ¥ such that A,,, <l and A, 11 > lg;;

. . . .. 4
5 | Find the max insertion position m such that A,, < A,,, — ZZ’:i 41t and
»

Am+1 > Am, - Z;j.»,_l ks
6 | if Cannot find m > 0 then
7 | | Insert node £2; at the beginning of ¥
8 | else
9 Set minimum cost ¢,,;, < 00;
10 for x from 0 to m do
11 Insert node £2; into ¥, get temporary sequence ¥,. Calculate cost
¢« YWD, j+ 1y
12 if ¢ < ¢,i, then
13 ‘ U <« W, Cpin < C, k < x.
14 end if
15 end for
16 | end if

17 i <1+ 1,update 2 < 2 —i;
18 end while
19 Return recharge sequence ¥, minimum cost Cy,;p;

14.4.2.4 Complexity Analysis

Finally, we analyze the complexity of our algorithms. The K-means algorithm re-
quires ' (mnc) time in which c represents the number of iterations until convergence
[11]. For calculating the CMST, in the worst case, there is only one MC to handle
all n nodes. For the extended EW algorithm, finding the minimum trade-off value
requires (n> + 2n) iterations at the outer loop. In the inner loop, the worst case is
that for a node with the minimum trade-off value, every minimum cost neighbor is
rejected due to capacity violations so a total number of n iterations are required.
Thus, the time complexity is &'(n?).
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For the route improvement algorithm, a typical TSP algorithm such as nearest
neighbor requires &'(n?) time. Sorting nodes’ lifetimes requires ¢'(n log n) time. In-
serting nodes into the established route requires ¢'(n?) time. Hence, the total time
complexity of route improvement algorithm is ¢'(n?). In sum, the total time com-
plexity of the adaptive algorithm &' (mnc + n?) time. For n much larger than m and
¢, the time complexity is dominated by @' (n?).

14.4.3 A Running Example of the Algorithm

We show an example of the algorithm in Figs. 14.3, 14.4, 14.5, and 14.6. During
operation, a snapshot of energy requests is presented in Fig. 14.3 and three MCs

Fig. 14.3 Snapshot of
energy requests

Fig. 14.4 Adaptive network
partition of energy requests

Example: Snapshot of Energy Request
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Fig. 14.5 Generate Capacitated Minimum Spanning Trees (Step I1)
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cooperate to recharge these nodes. Figure 14.4 shows an adaptive partition of the
network into three regions using the K-means algorithm. Then each MC computes
its CMST in a distributed fashion as shown in Fig. 14.5. Next, each MC calculates
an improved recharge route on the selected tree shown in Fig. 14.6.

14.5 Performance Evaluation

The adaptive algorithm is evaluated in a discrete event-driven simulator. A number
of N = 500 sensor nodes are uniformly randomly deployed over a square sensing
field with side length L = 150 m. All sensors transmit at the same power level with
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fixed transmission range d, = 15 m. The total battery recharge time is 78 mins as
modeled from [10]. Each MC is equipped with a 12V battery. At the speed of 1 m/s,
the current draws from the battery is 4 Ah. Thus, the moving energy consumption is
e; = 48 J/m. We vary the number of MCs m from 2 to 5. The simulation is set to run
for 4 months time.

For comparison, we compare the performance of the adaptive algorithm with
the simplest approach we can think of, which is a greedy algorithm. The algorithm
basically directs the MCs to their next available node with the closest distance. When
the MC’s energy falls below a predetermined threshold, it returns to the base station
for battery replacement and then resumes recharge in the same fashion.

14.5.1 Nonfunctional Nodes

First, we evaluate the number of nonfunctional nodes in Figs. 14.7 and 14.8. When
a sensor node depletes its battery energy, it becomes nonfunctional until recharged.

Let us examine the performance of the greedy algorithm first. When m = 2, the
number of nonfunctional nodes surges dramatically around 18 days to nearly 90 %
until it decreases and stabilizes between 20 and 30 % at 40days. Similar phenom-
enon is observed for m = 3. This is because nodes at the closest locations may not be
those that require immediate recharge. For m = 2-5, it is observed that there is per-
sistently more than 5 % nonfunctional nodes. In contrast, the adaptive algorithm has
more stability. When m = 2, 3, the huge spike disappeared. For m = 5, the adaptive
algorithm can maintain perpetual network operation by reducing the nonfunctional
nodes to zero. This is because of the additional step in our algorithm to capture
sensors’ battery deadlines.

Fig. 14.7 Evolution of Percentage of Nonfunctional Nodes — Greedy Algorithm
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Fig. 14.8 Evolution of
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14.5.2 Energy Consumption and Replenishment

Next, we present the evolution of energy consumption versus replenishment to gain
some insights of energy evolution in the network. We illustrate the energy changes
using the adaptive algorithm in Fig. 14.9 and trace the evolution of energy consumed
and replenished when m = 2, 4. From the previous results, we can tell m = 2 cannot
sustain network operations. Thus some nodes continuously deplete battery and no
longer consume energy, which causes the drop in energy consumption at the very
beginning. Since the recharge capability from the two MCs has put an upper limit
on the energy consumption, the two curves reach an equilibrium and converge after
30days. For m = 4, we also observe that when there is a drop in energy consumption,

Fig. 14.9 Trace of energy Evolution of Energy Consumption and Recharge
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Fig. 14.10 Trace of Cumulative energy consumption vs. recharge
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whereas the energy replenishment correspondingly jumps up, which represents MCs
acting effectively in response to battery depletions.

We also show the cumulative energy evolution in Fig. 14.10. For better obser-
vations of the gaps and intersections between curves, we plot simulation time for
40days. If the energy replenishment curve is above the consumption curve, more
energy has been refilled into the network than consumed, and vice versa. Form = 2,
the energy consumption curve is above the energy replenishment curve. A gap is
observed at the first 10days, indicating energy replenishment can barely keep up
with consumptions and we have perceived similar results in Fig. 14.7.

In contrast, with m = 4, the energy consumption curve stays above replenishment
until the two curves first cross each other around 6 days. This is because from the
very beginning, more energy is consumed than replenished. Around 6days, a few
nodes have depleted energy and stopped consuming more, which brings down the
consumption curve. The replenishment curve stays above the consumption curve until
the next crossing around 20 days. Therefore, the evolution of network energy shows
that m = 4 here is a threshold case since energy consumption and replenishment are
almost equivalent to each other in the network.

14.5.2.1 Nonfunctional Durations

Figures 14.11 and 14.12 compare the percentage of duration that nodes are nonfunc-
tional regarding their locations. For the greedy algorithm, the peak value of 20 % time
in nonfunctional status is observed whereas the adaptive algorithm yields much less
results (around 6 %). The adaptive algorithm also spreads nonfunctional durations
across the field while the spikes of the greedy algorithm are highly concentrated
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Fig. 14.11 Durations for Percentage of Nonfunctional Time—Greedy Algorithm
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around cluster head areas. This is because nodes close to cluster heads consume
energy much faster whereas the greedy algorithm only recharges the nearest node in
each step and has no measure for battery deadlines. In contrast, the adaptive algo-
rithm considers battery deadlines explicitly so its duration of nonfunctional nodes is
significantly less than that of the greedy algorithm.

14.5.3 Operating Energy Cost

Finally, we evaluate the moving energy cost of MCs. Figure 14.13 compares the aver-
age moving cost of each MC for the greedy and adaptive algorithms. Whenm = 1-3,
the adaptive algorithm consumes more energy on the MCs. This is because it takes
care of nodes that require recharging more actively whereas the greedy algorithm
only searches for the nearest nodes for recharging. When m = 4-5, network partition
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Fig. 14.13 Comparison of Evaluation of moving energy cost
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is more effective with smaller divided regions so movements of the MCs are confined
in smaller regions. This brings down the movement energy of MCs for the adaptive
algorithm to the same level as the greedy algorithm.

14.6 Conclusions

In this chapter, we consider the important recharge scheduling problem of multi-
ple MCs. We first propose a communication protocol to realize distributed energy
information gathering on demand. Based on the energy information collected, we
formulate recharge scheduling problem into a Vehicle Routing Problem with Ca-
pacity and Battery Deadline constraints, which is NP-hard. We propose a three-step
adaptive algorithm that systematically captures the recharge capacity and battery
deadlines while minimizing traveling costs. Finally, we evaluate and compare the
proposed algorithm to a trivial greedy algorithm by extensive simulations. The re-
sults indicate that the adaptive algorithm provides much better stability by reducing
the number of nonfunctional nodes and has similar energy cost compare to the greedy
approach.
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Chapter 15
Distributed Coordination Protocols
for Wireless Charging in Sensor Networks

Adelina Madhja, Sotiris Nikoletseas and Theofanis P. Raptis

Abstract In this chapter, we investigate the problem of efficient wireless power
transfer in wireless sensor networks where special mobile entities called Mobile
Chargers, traverse the network and wirelessly replenish the energy of sensor nodes.
The methods we present are distributed and use limited network information. More
specifically, we propose four new protocols for efficient wireless charging while
addressing key issues such as the identification of what are good coordination
procedures and what are good trajectories for the Mobile Chargers. Two of our pro-
tocols (DC, DCLK) perform distributed, limited network knowledge coordination
and charging, while two others (CC, CCGK) perform centralized, global network
knowledge coordination and charging. As detailed simulations demonstrate, one of
our distributed protocols outperforms a known state-of-the-art method, while its
performance gets quite close to the performance of the powerful centralized global
knowledge method.

15.1 Introduction and Contribution

As wireless and portable mobile devices become pervasive, charging batteries for
these devices has become a critical problem. Current battery charging technologies
are dominated by wired technology, which requires a wired power plug to be con-
nected to an electrical wall outlet. Existing wireless sensor networks are constrained
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by limited battery energy at a sensor node and can only remain operational for a
limited amount of time. To prolong network lifetime, there have been many research
efforts at all layers, from topology control, physical, MAC, and all the way up to
the application layer. Despite these intensive efforts, the lifetime of a wireless sensor
network remains a performance bottleneck and is perhaps the key factor that hinders
its wide-scale deployment.

The technology of wireless power transfer lead the way towards a new paradigm
for wireless sensor networks; the Wireless Rechargeable Sensor Networks. Such
networks consist of sensor nodes that may be either stationary or mobile, as well as
few mobile nodes with high energy supplies. The latter, using wireless power transfer
technologies are capable of charging sensor nodes. This way, the highly constrained
resource of energy can be managed in great detail and more efficiently. Another
important aspect is the fact that energy management in Wireless Rechargeable Sensor
Networks can be performed passively from the perspective of sensor nodes and
without the computational and communicational overhead introduced by complex
energy management algorithms. Finally, Wireless Rechargeable Sensor Networks
allow energy management to be studied and designed independently of the underlying
routing protocol used for data propagation.

The Problem. Let a Wireless Rechargeable Sensor Network comprised of sta-
tionary sensor nodes and special mobile entities called the Mobile Chargers. The
Mobile Chargers have significant (yet finite) energy supplies, that are much larger
than those of each sensor node, and are thus capable of charging the sensors in the
network. We design and evaluate efficient protocols for the Mobile Chargers’ coordi-
nation and charging procedures that improve energy efficiency, prolong the lifetime
of the network and also improve important network properties (such as the quality
of network coverage and the robustness of data propagation).

In particular, we view the Mobile Chargers’ coordination as a distinct procedure,
on top of the sensor nodes charging mechanism. Unlike other methods in the state of
the art, we do not couple the Mobile Chargers’ coordination neither with the sensor
nodes charging process nor with the underlying network energy information data
propagation. Actually, we perform efficient coordinated wireless power transfer in
a way which is agnostic of the network energy status, via adaptive techniques that
implicitly (based on the Mobile Chargers’ status) adapt to the network’s energy
evolution.

Remark. We note that, although the wireless charging problem might look similar
to other related research problems (such as aggressive data collection via mobile
sinks), it admits special features that necessitate a direct approach, while the opti-
mization of concrete trade-offs and the fine-tuning of design alternatives that arise
in wireless charging necessitate the distinct investigation of special protocol design
parameters.

Finally, we note that Mobile Charger optimization problems are (inherently) com-
putationally hard, e.g. in [3] we have formulated the wireless charging problem as the
Charger Dispatch Decision Problem—CDDP, and showed that it is .4 Z?-complete
(viareduction from the Geometric Traveling Salesman Problem, G-TSP; see e.g. [6],
p. 212).
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Our Contribution. While interesting research has been lately contributed to the
wireless charging problem and particularly to the scheduling of a single Mobile
Charger, most methods so far necessitate significant (in many cases even global)
network knowledge (e.g. it is assumed that the Mobile Charger knows the energy
levels of all sensors in the network) and the solutions are centralized. On the con-
trary, our methods are distributed, and use (at most) local network information.
Also, unlike other multiple Mobile Chargers state-of-the-art approaches that opt for
integration and coupling of the coordination and charging procedures, our methods
distinguish the network operations in three separate levels: the coordination proce-
dure, the charging process and the routing mechanism. We identify the necessity of
this demarcation as an efficient approach to the design of more detailed and better
fine-tuned charging protocols.

In particular, we propose and evaluate selected alternative strategies for efficient
charging in stationary Wireless Rechargeable Sensor Networks via multiple Mobile
Chargers. Our design provides concrete, different solutions to some key issues (and
the associated trade-offs) of wireless charging which we identify, most notably

1. assuming a number of Mobile Chargers in the network, in what way should they
coordinate,

2. given that the Mobile Chargers have coordinated, what are good trajectories for
the Mobile Chargers to follow.

More specifically, (a) we first distinguish two fundamental network operations,
Mobile Chargers’ coordination and node charging (b) taking into account the
capability of both centralized and distributed processing we design selected Mobile
Chargers’ coordination alternatives that efficiently split the network area and assign
subregions to the Mobile Chargers (c) assuming different levels of network knowledge
we design different charging traversal strategies employed by the Mobile Chargers
in their region of interest.

We provide four new coordination and charging protocols based on their network
knowledge (from global to local and to the absence of knowledge) and their process-
ing ability (from distributed to centralized). The CC and DC protocols perform
centralized and distributed coordination respectively with no network knowledge,
the DCLK protocol performs distributed coordination with local knowledge and the
CCGK protocol performs centralized coordination with global knowledge. Actually,
we view the CCGK protocol as a kind of performance upper bound to which the two
distributed, partial knowledge protocols are compared with.

15.2 Related Work and Comparison

Recently there has been much research effort in the field of Wireless Rechargeable
Sensor Networks using a single Mobile Charger. In [11], the authors build a proof-
of-concept prototype using a wireless power charger installed on a robot and sensor
nodes equipped with wireless power receivers and carry out experiments on the pro-
totype to evaluate its performance in small-scale networks of up to ten nodes. In [13],
the authors introduce the necessary and sufficient conditions such that the wireless
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charging problem can be studied as an optimization problem, with the objective of
maximizing the ratio of the Mobile Charger’s vacation time over the network trav-
eling time. In [2, 3], the authors study the impact of the charging process to the
network lifetime for selected routing alternatives by proposing protocols that locally
adapt the trajectory of the Mobile Charger to several network properties. In [17], the
authors co-locate the mobile base station on the Mobile Charger and minimize the
energy consumption of the entire system while ensuring none of the sensor nodes
runs out of energy. All above works are advancing the topic, but do not address the
capability of a network to support more than one Mobile Chargers. Such a capability
could be vital for the lifetime prolongation of large networks that consist of several
thousand nodes (and thus their maintenance is not feasible using one single Mobile
Charger).

On the other hand, in the field of Wireless Rechargeable Sensor Networks using
multiple Mobile Chargers there has been limited research effort. In [18] the authors
introduce collaborative mobile charging, where Mobile Chargers are allowed to
charge each other (in our case, the model is different since we do not address Mobile
Chargers charging each other). They investigate the problem of scheduling multiple
Mobile Chargers which collaboratively charge nodes over one-dimensional wireless
sensor networks, to maximize the ratio of the amount of payload energy to overhead
energy, such that no sensor runs out of energy but in contrast to our work, they restrict
their algorithms only in line-graphs. In [4], the authors consider the minimum num-
ber of Mobile Chargers problem in a general two-dimensional network so as to keep
the network running forever. They partition the sensor nodes in subsets such that
any Mobile Charger, at each own period, visits its corresponding sensors, charges
them and then gets back to the base station to charge its own battery. In [9], the
authors use Mobile Chargers for energy replenishment of robots in robotic sensor
networks. Observing the discrepancy between the charging latency of robots and
charger travel distance, they propose a tree-based charging schedule for the charger,
which minimizes its travel distance without causing the robot energy depletion. They
evaluate its performance and show its closeness to the optimal solutions. In [10] and
[15] the authors nicely leverage concepts and mechanisms from NDN (Named Data
Networking) to design energy monitoring protocols that deliver energy status infor-
mation to Mobile Chargers in an efficient manner. They interestingly study how to
minimize the total traveling cost of multiple Mobile Chargers while ensuring no
node failure and derive theoretical results on the minimum number of mobile vehi-
cles required for perpetual network operations. They present a sophisticated heuristic
algorithm and conduct simulations to demonstrate the effectiveness and efficiency of
the proposed design but in contrast to our approach, they propose only one charging
scheme of simple charger coordination and node selection procedures, i.e. they do
not really elaborate on the coordination aspect. Also, unlike our work, in both above
approaches, the chargers’ coordination is performed centrally and not distributively.
That may not be considered realistic in large-scale networks as it introduces high
communication overhead (i.e. every charger has to propagate its status over large
distances) and does not scale well with network size. We have chosen to compare
with the protocol presented in [15], for comparison fairness in terms of similar model
assumptions.
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15.3 The Model

Our model features three types of devices: stationary sensors, Mobile Chargers and
one stationary Sink as illustrated in Fig. 15.1. We assume that there are N sensors of
wireless communication range r distributed at random in a circular area (we investi-
gate two cases, uniform distributions and nonuniform distribution) <7 of radius R and
K Mobile Chargers initially deployed at the center of their area, i.e. at coordinates

(x,y) = (; cos (%(Zj - 1)) , g sin (%(2] - 1)))

of the circular area (dots in Fig. 15.2a), where j = 1, 2, ..., K. Since the protocols
run for a long time and the initialization happens only once, the initial position of the
Mobile Chargers is not a crucial parameter, i.e. it could be the center of the circular
area as well. The Sink lies at the center of the circular area. In our model we assume
that the Mobile Chargers do not perform any data gathering process.

We denote by E|,, the total available energy in the network. Initially,

Eiotal = Esensors + Epc (tinir)

where E.,srs 1S the amount of energy shared among the sensor nodes and E y;¢ (1)
is the total amount of energy that the Mobile Chargers have and may deliver to the
network by charging sensor nodes. The maximum amount of energy that a single
node and a single Mobile Charger may store is E},y, . and Ej¢ respectively. Energy

is split among the sensor nodes and the Mobile Chargers as follows:

max — __ Esensors d E™x — EMC(tinit)
— an MC = —K

sensor —

& Sensor node

ﬂ Mobile Charger

=== Data transmission

Sink

e

Fig. 15.1 The network
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uy

(a) Slices. (b) Sectors.

Fig. 15.2 Network division in Slices and Sectors (in DCLK)

In our model, the charging is performed point-to-point, i.e. only one sensor may
be charged at a time from a Mobile Charger by approaching it at a very close distance
so that the charging process has maximum efficiency. The time that elapses while
the Mobile Charger moves from one sensor to another is considered to be very small
when compared to the charging time; still the trajectory followed (and particularly
its length) is of interest to us, since it may capture diverse cost aspects, like gas or
electric power needed for Mobile Charger’s movement. We assume that the charging
time is equal for every sensor and independent of its battery status.

We assume a quite heterogeneous data generation model. Each sensor node
chooses independently a relative data generation rate A; € [a, b] (where a, b con-
stant values) according to the uniform distribution % [a, b]. Values of 4; close to a
imply low data generation rate and values close to b imply high data generation rate.
The routing protocol operates at the network layer, so we are assuming appropriate
underlying data-link, MAC and physical layers. We refer to [5, 7] for greedy, single
path, underlying routing protocol.

To transmit a k-bit message, the radio expends E; (k) = &;4ns - k and to receive
a k-bit message, the radio expends Eg (k) = &€r¢cy - kK Where &;,4,5 and €., are con-
stants. As usual, the power needed to transmit a message at distance d is roughly d¢
where 2 < ¢ < 6 is a constant; for simplicity we take ¢ = 2.

Placement heterogeneity. We virtually divide the network into 2R /r co-centric
rings and 27 /¢ Slices. A Sector is defined as the intersection of a specific ring and
Slice. For example, in Fig. 15.2a the network is divided into eight Slices (¢ = 7 /4)
and Fig. 15.2b illustrates the separation of a Slice into Sectors. In this figure, the Slice
contains five Sectors, resulting in a total of 40 Sectors in the network. We consider
random instances of the following quite general model of nonuniform deployment:
Denote by S;; the Sector corresponding to the intersection of Slice i and ring j as
shown in Fig.15.2b. Let b > 1 be an arbitrary constant. Each Sector S;; chooses
independently a number J;; € [1, b] according to the uniform distribution Z[1, b].
We will refer to the number 6;; as the relative density of Sector S;;. Values of d;;
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close to 1 imply low relative density and values close to b imply high relative density.
By combining the knowledge about the total number of sensors in the network N,
together with the relative density d;; and the area A;; of every Sector, we compute
the number of nodes n;; deployed in Sector §;; by the following formula:

N

nij = Ay Ony
Zi’,j’ Ay Gy

where N = >, . n;;. Finally, we scatter n;; nodes in the area corresponding to Sector
S;;. The fraction of the actual densities of two Sectors §;; and S is exactly

Aij dij

A,’j (Si/j’

Furthermore, if all Sectors have the same relative density (i.e. d;; = d/j, foralli’, j'),
we get the uniform deployment. An example of nonuniform network deployment is
shown in Fig. 15.13.

15.4 Demarcated Protocol Phases

In contrast to other known works, we split the charging process in two phases, the
coordination phase and the charging phase. The demarcation of the Mobile Chargers’
operations in phases allows us to focus on each aspect separately and fine-tune the
protocols more precisely.

Coordination Phase. A Mobile Charger’s energy is consumed a s it replenishes
the energy of the sensor nodes. The energy dissipation rate among Mobile Chargers
may not be the same, since the nonuniform generation rate of events can eventually
lead to stressed network regions and burden some Mobile Chargers more than others.
For this reason, the Mobile Chargers periodically communicate with each other and
deal out their charging regions fairly (for example, a weaker Mobile Charger in terms
of energy should be assigned to a smaller network region). This coordination process
can be achieved either in a centralized or a distributed manner.

In the centralized case, the coordination is performed using information from all
K Mobile Chargers. We assume that the calculations for this type of coordination
are performed by a computationally powerful network entity, e.g. the Sink. Cen-
tralized coordination is generally more powerful than distributed coordination, thus
centralized protocols’ performance serves as an upper bound on performance which
the distributed methods are compared to. In the distributed case, a Mobile Charger
is informed about the status of its neighboring Mobile Chargers resulting in a more
secluded coordination between close Mobile Chargers.

Charging Phase. Charging traversal alternatives have been widely studied in the
case of a single Mobile Charger. In our approach, where the Mobile Charger’s oper-
ation is dual, we give emphasis to the amount of knowledge possessed by protocols
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in terms of locality. In order to appropriately design the charging phase of a proto-
col we distinguish the protocol’s knowledge amount among global knowledge, local
knowledge, no knowledge and reactive knowledge.

In the case of global knowledge, we suppose that a Mobile Charger can use infor-
mation from all over the network (sensor nodes and other Mobile Chargers). Such
an amount of knowledge makes the Mobile Charger powerful but it may be unreal-
istic in large networks and do not scale well with network size. On the contrary, in
the more realistic case of local knowledge, a Mobile Charger is allowed to use lim-
ited information derived from its neighborhood. We consider a Mobile Charger to be
“blind” when it has no knowledge on the network and thus cannot use a sophisticated
charging method. The reactive knowledge is a special case of real-time acquisition
of global knowledge, by receiving messages from a subset of nodes while the infor-
mation refers to all set of nodes. Note that the amount of knowledge can also be
diversified in the coordination phase, among the Mobile Chargers.

15.5 The Protocols

We present four new Mobile Chargers protocols and another, state-of-the-art protocol
([15]) that we compare with. Protocol’s details are presented in short in Table 15.1.

15.5.1 Distributed Coordination Protocol DC

Coordination phase. The DC protocol performs distributed coordination among
Mobile Chargers and assumes no network knowledge. We split the network area in
Slices as shown in Fig. 15.2a and assign one Slice per charger. Angle ¢; corresponds
to the central angle of jth Mobile Charger’s Slice. The Mobile Chargers distributively
define their Slice boundaries (i.e. the two radii that define the Slice), according to
the size of the region each one can handle, w.r.t. their energy status. Each Mobile
Charger can shift its right and left Slice boundaries resulting in either a widening or
a shrinkage of the region of interest. This task is performed distributively and each
region boundaries change is determined through a cooperation of each pair of adjacent
Mobile Chargers. A boundary change of j’s region is expressed as a change of ¢;.

Table 15.1 Protocol phase details

Protocol Coordination Phase Charging Phase

DC Distributed No knowledge

CcC Centralized No knowledge
DCLK Distributed Local knowledge
CCRK [15] Centralized Reactive knowledge
CCGK Centralized Global knowledge
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(a) Before the coordination. (b) During the coordination. (¢) After the coordination.

Fig. 15.3 Distributed coordination

Figure 15.3 depicts the coordination procedure. More specifically, Fig. 15.3a depicts
the region of the Mobile Charger j before the coordination phase. Figure 15.3b
depicts the angle’s change after the communication with the left and right neighbors
(A¢§. and A¢’; respectively) during the coordination phase. Figure 15.3¢ depicts the
new angle i.e. the new region of the Mobile Charger after the coordination phase.

The coordination process uses two critical Mobile Chargers’ parameters for def-
inition of the region of interest, the Mobile Charger’s current energy level E; and
the Mobile Charger’s energy consumption rate since the last coordination p;. The
changes A(;S’ and 4¢} of ¢; for the Slice’s left boundary and for the Slice’s right
boundary are defined by the Algorithms 6 and 7 respectively.

Algorithm 6: The change A(ﬁ‘lj of ¢; for the Slice’s left boundary
Illpllt H Ejfl, Ej, Pj—1,Pj

1 if min{E;, E;_1} = E; then

2 ‘ A¢l[] ¢j ‘P/ l —pjl

max{p;_1,p;}

3 else
1 lpj—1—pjl
4 ‘ Aqs _qu I max/p, 1.9}
5 end if
Output: A¢;

The new angle (denoted by ¢) is computed as ¢} = ¢; + 4 ¢5 + 4¢". Note that,
between two adjacent Mobile Chargers j; and j,, the change of their common Slice
boundary (i.e. the common radii) is 4 (;S;l =—4 gb;z so that the Mobile Charger with
the lower energy level provides its neighbor with a portion of its region of interest.
Also, it is their energy level that determines which charger should reduce its region of
interest and the energy consumption rate that determines the size of the reduced area.
The size of the angle change is not computed by considering the energy levels of the
two chargers because energy consumption rate shows how quickly will this energy
level be reduced. For example, if p; is high then j’s Slice is critical, causing a rapid
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Algorithm 7: The change A¢’; of ¢; for the Slice’s right boundary

Input : Ej, Ejt1, pj, pj+1
1 if min{Ej, Ej+1} = Ej then
2 ‘ A(ﬁ? =—¢;- lpj=pj+il

max{p;,pji1}
3 else
r_ o _lpi=pjsil
4 ‘ 49} = ¢j+1 max{p;,pj11}
5 end if

Output: 4 ¢;

reduction of E;, independently of its current level. The above angle computations
are performed simultaneously by all Mobile Chargers.

Charging phase. During this phase, Mobile Charger j traverses the network
region it is assigned to (Slice defined by angle ¢;) and charges the corresponding
sensor nodes. The CC protocol assumes no knowledge on the network. For this reason
the path followed by the Mobile Charger is restricted to several naive alternatives
(some presented in [3]). In our approach we use a “blind” scanning of the region
where the Mobile Charger starts form the Sink and traverses an exhaustive path until
it reaches the boundaries of the network area. The advantage of this movement is
that due to its space filling attributes, the Mobile Charger covers the whole Slice
and almost every node is charged, until the energy of the Mobile Charger is totally
depleted. On the other hand, due to lack of knowledge, this movement is not adaptive,
i.e. it does not take into account differences of the energy depletion rates of the
network area caused by the underlying message propagation.

15.5.2 Centralized Coordination Protocol CC

The CC protocol performs centralized coordination among the Mobile Chargers and
assumes no knowledge on the network. In particular, the coordination process is able
to use information from all Mobile Chargers (energy status, position, etc.), but is
agnostic of the underlying network and sensor nodes attributes (energy status, posi-
tion, etc.). This approach virtually partitions the network elements in two completely
separate levels, the Mobile Chargers level and the sensor nodes level.
Coordination phase. Each Mobile Charger is assigned to a network region. Since
the initial Mobile Charger’s deployment coordinates are

(x,y) = (g cos (%(Zj - 1)) , g sin (%(2,’ _ 1)))

where j = 1,2, ..., K, we can split the network area in Slices, as shown in
Fig. 15.2a (example for K = 8 Mobile Chargers), with one charger assigned to each
Slice. When the coordination process is initialized, the region of each charger is
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computed. Each Mobile Charger should be assigned to a region of size analogous to
its current energy level, so that the energy dissipation among the Mobile Chargers is
balanced. In order to compute the size of the region of Mobile Charger j, it suffices
to compute the central angle ¢; corresponding to the Mobile Charger’s Slice. In
particular

K
E:
¢ =21 - K—j, where Z¢j =2x.
Z_i:l Ej j=1
Charging phase. Since this protocol operates under the no knowledge assump-
tion, the charging phase follows the same pattern with the DC protocol (Slice
scanning).

15.5.3 Distributed Coordination Local Knowledge Protocol
DCLK

The DCLK protocol performs a distributed coordination phase and uses local knowl-
edge to perform the charging phase.

Coordination phase. The coordination phase follows the same pattern with the
coordination phase of DC protocol (distributed ¢; angle computation).

Charging phase. The DCLK protocol operates with local knowledge assumption.
The Slice corresponding to Mobile Charger j is divided into k Sectors S;; of the
same width as shown in Fig. 15.2b. Mobile Charger j prioritizes its Sectors w.r.t.
high number of sensor nodes with low level of residual energy.

Definition 15.1 E;’}(’” is the lowest nodal residual energy level in the Sector S .

Definition 15.2 E;”,f"“’ is an energy level close to E ;”,f":

max

. . E
Ef = BT+ 6 i, 92O,
ik

Definition 15.3 N(S};) is the number of nodes in Sector S;; with residual energy

min Jjk .
between E7i" and E,, ., .

min+A4
E

N(Sx)= D, N

e=E"
where N (e) is the number of nodes with energy level e.

Charger j charges Sector S, which maximizes the product

max {N(S;) - (Egis, — ERM}-
J
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The intuition behind this charging process is the grouping of nodes in each Slice
and the selection of a critical group. A critical group is a Sector containing a large
number of sensor nodes that require more energy than other nodes throughout the
network.

15.5.4 Centralized Coordination Reactive Knowledge
Protocol CCRK ([15])

The CCRK protocol acquires global knowledge in exchange for some in-network
message aggregation. The Mobile Chargers obtain the most up-to-date energy infor-
mation from sensor nodes and make decisions in real time. The energy information
is aggregated by several special nodes in the network that act as representatives of
partitioned network regions. We denote by S the number of the representative nodes.

Coordination phase. Mobile Chargers communicate with each other to know
their positions. To avoid conflicts where multiple Mobile Chargers choose the same
node for charge, the Sink stores and updates the availability of each node. The
procedure is similar to that for shared memory access in operating systems, e.g. see
[14], p. 125. The Sink maintains a 0 — 1 valued node list. Once a sensor node is
chosen, its value is set to 1 (locked). Otherwise, it is 0. The value should be changed
back from 1 to 0 when a Mobile Charger finishes charging that node. A Mobile
Charger can simply communicate with the Sink, exclude nodes already selected by
other Mobile Chargers, and notify the Sink of the status of nodes it chooses.

Charging phase. Two important metrics impact the charging order between node
i and node i’: the traveling time between node i to node i’, and their residual lifetime
L; and L. If node i’ has a small L;» such that it would be dead if a Mobile Charger
charges node i first, node i’ should be visited first. In this protocol we use a weighted
sum of traveling time from current node i to next node i’ and the residual lifetime of
node i,

wipr = f - tiy + (1 —B) - L.

w;;r is used to decide which node i’ to charge next. A sensor node with a smaller
weighted value should be visited at a higher priority. When f = 1, the algorithm
reduces to nearest node selection that the Mobile Chargers always charge the closest
node first regardless of battery deadlines; when f = 0, it picks the node with the
earliest battery deadline first regardless of the traveling distance.

15.5.5 Centralized Coordination Global Knowledge Protocol
CCGK

The CCGK protocol, similar to the CC protocol, performs centralized coordination.
However, the assumption of global knowledge on the network further extends the
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Mobile Chargers’ abilities. For this reason, it is expected to outperform all other
strategies that use only local information, thus somehow representing a performance
bound. The global knowledge assumption would be unrealistic for real large-scale
networks, as it introduces large communication overhead (i.e. nodes and Mobile
Chargers have to propagate their status over large distances).

Coordination phase. Instead of using the same coordination process with the CC
protocol, we integrate the global knowledge assumption in the coordination phase. As
aresult, the network is not partitioned in two separate levels (Mobile Chargers, sensor
nodes) and the Mobile Chargers are allowed to use network information during this
phase. Each Mobile Charger is assigned to a network region. The region of interest
of Mobile Charger j is a cluster of nodes. Node i belongs to the cluster of Mobile

Charger
dist;; E;
j'=argmin{{1+ —* ANY (2= L2
j 2R EVE

where dist;; is the distance between node i and Mobile Charger j and E; the residual
energy of Mobile Charger j (E; > 0).In other words, anode selects a Mobile Charger
which is close and has high amount of energy. If a Mobile Charger’s energy level is
low, it may not be able to charge the node. Also, if the distance between the node and
the Mobile Charger is long, then the Mobile Charger will waste a lot of energy for
movement. Moreover, because of long distance, the traveling time is long too and
thus, the node may die before the Mobile Chargers arrives to its position.

The two factors of the product are normalized. That is to avoid elimination of the
product from one possible zero factor, which may result in prioritizing the wrong
Mobile Charger . For example for anode i if there is a Mobile Charger j that has no
energy then the factor 4 Emm would be zero and the node would choose to belong to
its cluster (since is chooses the Mobile Charger with min product). In contrast, when
the factor is of the normalized form 2 — E , then the value of the factor would be
2 (maximized) and thus the node would av01d this Mobile Charger . For the distance
factor the normalization is used in order to avoid the product to be eliminated as
well. Thus, between two Mobile Chargers that are close to the node, the latter should
choose the Mobile Charger with higher battery supplies.

Note that the centralized computation of the Mobile Charger’s region in the CCGK
protocol is more powerful compared to other methods, since it uses information about
the distance among every Mobile Charger with every node.

Charging phase. The global knowledge charging phase that we suggest uses
energy and distance in a ranking function. In each round the Mobile Charger moves
to the sensor in the corresponding cluster, that minimizes the product of each node’s
energy times its distance from the current position of the Mobile Charger. More
specifically, in each moving step the Mobile Charger j charges node

i"=argmin{ {1+ distij 1+ E;
- 2R Enex,,
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where E; is the residual energy of sensor node i. In other words, this protocol prior-
itizes nodes with low energy and small distance to the Mobile Charger. Both of the
two factors have the same weight in the product, i.e. there is no any dominant factor.
The Mobile Charger computes the product for each node (in its cluster) and selects
to charge the one which minimizes the product.

15.6 Cost Analysis

There are three kind of costs that are responsible for energy dissipation of the Mobile
Chargers, the movement cost, the charging cost and the communication cost.

15.6.1 Movement Cost

Movement cost refers to the amount of energy that Mobile Chargers dissipate for
movement in order to charge sensor nodes. We assume that Mobile Chargers have
only one energy pool which is used both for movement and for charging.

In our simulations, we have not taken into account the movement cost directly, i.e.
we do not calculate how much energy is spent for movement but we have calculated
how much distance has each Mobile Charger traveled, which provides an estimation
of the cost. More specifically, using the same assumptions for the Mobile Chargers
with that in [16] (i.e. they carry high density battery packs (12A, 5V) and weight
201bs) and the battery calculator in [1] we provide in Fig. 15.4 an estimation of the
energy spent for the Mobile Chargers’ movement throughout the network for all
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(a) Uniform deployment. (b) Non-uniform deployment.

Fig. 15.4 Energy spent for Mobile Chargers’ movement over time
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protocols for both uniform and nonuniform network deployment. The DC and CC
protocols which have a naive charging phase (slice scanning) spend high amount of
energy for movement. In contrast, the CCGK and CCRK protocols which minimize
the distance traveled also minimize the movement cost.

15.6.2 Charging Cost

Charging cost refers to the amount of energy dissipated to charge sensor nodes. This
cost can be distinguished in two kinds, the beneficial charging cost which is the
energy obtained by sensor nodes and the wasted charging cost which is the energy
wasted because of losses due to wireless power transfer technology. In this work
we assume that there is no any energy loss during the charging procedure and the
charging cost equals to beneficial energy cost.

15.6.3 Communication Cost

Communication cost refers to the amount of energy dissipated by a Mobile Charger
in order to get informed about the energy status of the sensor nodes. This cost depends
on two quantities. The first one is the number of messages that Mobile Chargers send
and receive and the second one is the distances between the sensor nodes and the
Mobile Chargers since the message transmission cost is analogous to the square of
their distance.

The communication cost is based both on coordination and on charging procedure.
An analysis of the communication cost of our proposed protocols is provided below.

15.6.3.1 Communication Cost Analysis of CCGK protocol

Coordination phase. The Mobile Chargers are informed about the energy status of
all sensor nodes. In this case, the number of messages of each Mobile Charger is
O (N) and the total number of messages is O (K N). Also, the transmission distances
between a Mobile Charger and a node may vary (€ [0, 2R]) A relevant small-scale
example of eight nodes and eight Mobile Chargers is depicted in Fig. 15.5a.

Charging phase. Each Mobile Charger receives messages about energy status
of each node that belong to its group and thus, the total number of messages is
O(N). The transmission distances are relatively small, since it is a factor that affects
the cluster construction. Figure 15.5b depicts an example according to the charging
phase of the protocol.
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Fig. 15.6 Messages of DCLK protocol

15.6.3.2 Communication Cost Analysis of DCLK protocol

Coordination phase. Each Mobile Charger communicate with its two adjacent
Mobile Chargers. Thus, the total number of transmitted messages is O (K). Also, the
distances between the adjacent Mobile Chargers are relatively small as depicted in
Fig.15.6a.

Charging phase. Each Mobile Charger is informed about the energy status of
the sensor nodes that belong to its Slice at each time period. The expected amount
of nodes in each Slice is % since there are K Slices, one for each Mobile Charger.
Thus, the total number of messages is O (K %) = O(N). However, this number of
messages is not transmitted at each time slot as in CCGK but at each time period.
In order to provide local knowledge, Slice size should be small enough. Considering
that the network radius is R, we assume that in local knowledge the distance between
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anode and a Mobile Charger should exceed this value. Since there are K Slices, each
Slice has an central angle A = 27” (in radians). The length of an arc of a central angle
Ais € = % = RA. Thus, the distance is £ = R 27” In order to ensure that the
maximum node-charger distance in each Slice is at most R, the following inequality
should hold:

2
£§R:>R?7[5R:K22n.

As a result, the distances in local knowledge are in [0, R]. Figure 15.6b depicts the
communication distances between the nodes and the Mobile Chargers in charging
phase.

15.6.3.3 Communication Cost Analysis of CC protocol

Coordination phase. Each Mobile Charger sends to the Sink its available energy and
receives the value of its angle. The number of messages is O (K) and the distances
are in [0, R].

Charging phase. The Mobile Chargers obtain no network knowledge and perform
“blind” scanning. Thus there is not any communication cost.

15.6.3.4 Communication Cost Analysis of DC protocol

Coordination phase. Each Mobile Charger communicates with its two adjacent
Mobile Chargers. Thus, the number of transmitted messages is O(K). Also, the
distances between the adjacent Mobile Chargers are relatively small.

Charging phase. The Mobile Chargers obtain no network knowledge and perform
“blind” scanning. Thus there is not any communication cost.

15.6.3.5 Communication Cost Results

It is clear that the lower the knowledge level is, the lower the communication cost
becomes, since both the number of messages and the distances between nodes and
Mobile Chargers are reduced. Thus, in our simulation results we can make useful
conclusions about protocols, e.g. if two protocols achieve the same performance on a
specific metric, the protocol with lower knowledge level is considered more efficient.

We conducted simulations to verify the above analysis on the number of messages
that are sent and received by the Mobile Chargers. Figure 15.7 depicts the amount
of messages that are spent by all Mobile Chargers throughout our simulations for
both uniform and nonuniform network deployment. As shown in this figure, the DC
and CC protocols which use no network knowledge achieve the lower number of
messages sent throughout the simulation. The CCGK protocol achieves higher num-
ber of messages than the DCLK protocol since each Mobile Chargers communicates
with each sensor node in the coordination phase. Also, the cost of each message is
higher because the distances between nodes and chargers are larger.
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Fig. 15.7 Number of messages over time

15.7 Experimental Evaluation

The simulation environment for conducting the experiments is Matlab 7.11. The Sink
is placed at the center (x, y) = (0, 0) of the circular deployment area. The number
of sensors is set to 2000 and the number of Mobile Chargers to 6. We simulate
experiments of 4000 generated events. For statistical smoothness, we apply several
times the deployment of nodes in the network and repeat each experiment 100 times.
For each experiment we simulate large numbers of data propagations and the average
value is taken. The statistical analysis of the findings (the median, lower and upper
quartiles, outliers of the samples) demonstrate very high concentration around the
mean, so in the following Figures we only depict average values. Since the N sensors
are uniformly distributed in the circular area .o/ of radius R, we apply a well-known
connectivity threshold, in order to maximize the probability that the produced random
instances are connected. More strictly, since &/ C 2, an instance of the random
geometric graphs model 4(%Zy; r) is constructed as follows: select N points Zy
uniformly at random in <. The set V = 2 is the set of vertices of the graph and
we connect two vertices if their Euclidean distance is at most r. In [8, 12] it is shown
that the connectivity threshold for 4 (Zy; r) is

InN
Te =4/ —.
TN
We consider random instances of ¢ (Zy; r) of varying density, by selecting
[cln N
r =
TN
for different values of ¢ > 1, which guarantees that the produced random instance
is connected with high probability.
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We focus on the following performance metrics: (a) alive nodes over time, that is
the number of nodes with enough residual energy to operate, during the progress of
the experiment, (b) connected components over time which indicates the number of
strongly connected components of the network graph throughout the experiment (c)
routing robustness and average routing robustness, in terms of the nodes’ average
alive neighbors during the progress of the experiment, (d) coverage aging, that is
the average coverage number (number of sensors having the point in their range) of
1000 randomly selected points in the network over time and (e) distance traveled
per Mobile Charger and total distance traveled by all Mobile Chargers.

We design energy efficient protocols for both uniform and nonuniform network
deployments. Our main goal is to manage the available energy efficiently. In all
simulations that are performed in this section, we assume that the energy is dissipated
only for charging purposes, i.e. we do not take into consideration the movement and
communication cost. The total energy of the Mobile Chargers is transferred to sensor
nodes through our proposed recharging protocols.

15.7.1 Uniform Network Deployment

15.7.1.1 Protocols’ Impact on Network Properties

(1) The application of charging protocols results in a great reduction in the overall
death rate of the network (in terms of alive nodes over time), as shown in Fig. 15.8a.
The CCGK as expected outperforms all other protocols and rather serves as an upper
bound of their performance. The power of CCGK comes from the great amount of
knowledge it assumes and from the robust centralized coordination of the Mobile
Chargers. The DCLK protocol, with limited network knowledge is an efficient dis-
tributed alternative, since it manages to achieve a performance close to the upper
bound and outperform the reactive CCRK protocol. CC and DC protocols which
assume no network knowledge are outperformed by other protocols. Note that the
upward curve of the DC protocol after 1500 generated events indicates a temporary
starvation, after which the Mobile Chargers revive some of the dead nodes when
passing by areas with high amounts of dead nodes.

The CCGK protocol achieves the lowest death rate since it computes which node
to charge next based on both its distance from the node and on the energy status of the
node. In contrast, CC and DC protocols use just the distance property for the relevant
choice, so the weak nodes that are also far away from the Mobile Charger may deplete
their energy. DCLK protocol separates each Slice into Sectors and the Mobile Charger
chooses to charge the nodes of the most critical Sector. This procedure may incur
higher traveling distance since it may change Sectors more often than the CCGK
protocol which minimizes the covered distance each time (see Fig. 15.12).

(i) Routing robustness is critical for wireless sensor networks, as all data col-
lected have to be sent to the Sink. Path breakage occurs frequently due to node failure,
mobility or channel impairments, so the maintenance of a path from each node to
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Fig. 15.8 Various metrics for uniform deployments

a control center is a challenging task. A way of addressing the routing robustness
of a wireless sensor network is by counting the number of its alive neighbors over
time for each node. This can be seen as an implicit measure of network connectivity.
For our protocols, the average number of alive neighbors is depicted in Fig. 15.8b. A
more detailed evolution of the network’s routing robustness is depicted in Fig. 15.9.
The average routing robustness follows the same pattern as the death rate of nodes
in the network. This is natural, since more dead nodes in the network result in loss
of neighbors for each node. In Fig. 15.9 we can see that in the no charger case the
black bar (representing number of neighbors <7) is increasing, while the white bar
(number of alive neighbors > 16) is rapidly decreasing. On the other hand, CCGK,
CCRK and DCLK protocols achieve reliable routing robustness.

(iii) Similar to the routing robustness, the number of strongly connected graph
components is an overall measure of connectivity quality in a wireless sensor net-
work. Disconnected components are unable to communicate with each other and
support efficient data propagation, resulting in high data delivery failures. A strategy
of improving data delivery latency is the maintenance of a small number of connected
components in the network. High numbers of components may lead to isolation of
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Fig. 15.9 Routing robustness for uniform deployments

critical nodes, thus loss of important information. Figure 15.8c depicts the evolution
of the number of network components throughout the experiments. As we noted ear-
lier, DC and CC protocols lead to a higher node death rate in comparison to CCRK
and DCLK protocols, a fact that results in early disconnections and sharp increase of
connected components. The powerful CCGK maintains a single strongly connected
component for much longer.
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(iv) Point coverage problem regards the assurance that some selected points in the
network are covered by an adequate number of sensors and is an important aspect in
numerous wireless sensor networks functionalities (e.g. localization, tracking, etc.).
A point that is covered by k sensors is called k-covered. In Fig. 15.10 we can see the
coverage aging of 1000 randomly selected points scattered throughout the network.
We examine how many points are <2-covered, 2-covered, 3-covered and > 3-covered
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for 4000 generated events. Each bar in the plot represents a number of the covered
points. In the no charger case, the number of <2-covered points is increasing in
contrast to the number of >3-covered points that is decreasing. CCGK, DCLK and
CCRK protocols improve the network coverage by reducing the rate that the coverage
of >3-covered points is decreasing. The absolute difference of the number of <2-
covered and >3-covered points, between different time instances, is not increasing
quickly, compared to the no charger case.

15.7.1.2 The Impact of Knowledge

An important fact that comes up from the observation of the aforementioned metrics
is that the CC and DC protocols are outperformed by their improved alternatives,
CCGK and DCLK. The CC protocol, which uses a strong, centralized computation
in order to calculate the regions of interest for the Mobile Chargers, is outperformed
even by the DCLK protocol that employs distributed computation (but assumes more
knowledge on the network). This leads to the conclusion that the nature of the coor-
dination procedure is less significant than the design of the charging traversal, when
the latter relies on a greater amount of knowledge. Of course, when assuming the
same amount of knowledge, the coordination procedure is still important (e.g. CC
vs. DC).

Also, the comparison between CCGK and CCRK protocols enlightens us about
the size of the impact for acquiring knowledge on the network w.r.t. energy cost. The
CCRK protocol is provided with global knowledge on the network but (in contrast
to CCGK) the information maintenance relies on an underlying message propaga-
tion mechanism which is dissipating node and charger energy. As shown by the
experimental evaluation, the degradation from global knowledge to local knowledge
assumption (DCLK) is more efficient than a costly acquisition of global knowledge.
This is why, although in our simulations we do not calculate the communication cost
between the Mobile Chargers and the nodes, we calculate the cost of the node-to-node
communication. This cost is similar to the one introduced by the underlying rout-
ing protocol that is used by the nodes for data propagation. However, in the CCRK
protocol, the representative nodes communicate with the nodes in their group more
frequently, in order to collect their important status information and thus, they are
dissipating their energy with a higher rate. This may lead to a higher node death rate,
higher number of connected components, etc. This communication overhead is the
reason of the worse CCRK performance compared to DCLK.

15.7.1.3 Traveling Distance
Traveling distance of the Mobile Chargers indirectly reflects the efficiency of the
coordination procedure and the charging process. Although the investigation of

traveled distance does not display the impact on crucial network parameters, it
can lead to useful conclusions about the balance of the Mobile Chargers activity.
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Also, traveling distance can be associated with relevant cost for movement as pre-
sented in Sect. 15.6.1.

Figure 15.12 depicts the total distance traveled by all (six) Mobile Chargers in the
network. It is clear that CCGK, CCRK and DCLK protocols achieve the required
charging process by traveling less distance than DC and CC protocols. Figure 15.11
is comprised of five piecharts, one per protocol. A piechart consists of Slices, the
size of which is proportional to the distance traveled by the corresponding Mobile
Charger. We observe that in contrast to DC and CC protocols, CCGK, CCRK and
DCLK protocols achieve balanced distribution of traveled distance among the Mobile
Chargers.

15.7.2 Nonuniform Network Deployment

We examine the performance of our protocols in networks where the deployment of
the sensor nodes is nonuniform (follows the heterogeneous placement described in
Sect. 15.3). This scenario is more realistic in large scale, real-life, sensor networks.
The protocol’s performance over the various metrics share some similarities with the
uniform case.

15.7.2.1 Protocol’s Impact on Network Properties

(i) Alive nodes over time. As shown in Fig. 15.14a, the most powerful protocol,
CCGK, still outperforms all other protocols. Furthermore, the number of alive nodes
in the DCLK protocol decreases with a very low rate indicating that the protocol’s
charging process that partitions the Slices into Sectors and charges the nodes of
the most critical Sector, achieves a balanced energy consumption between the sensor
nodes. The DC protocol, which assumes no network knowledge and has a distributed
coordination procedure, achieves the worst performance, which in the nonuniform
case is even worse, since it is quite close to the no charger protocol. Also, the number
of alive nodes in the CC protocol is much higher than in the DC protocol. Since both
protocols are not using any knowledge, the difference in their performance is due to
the coordination procedure, which in CC is centralized and in DC is distributed.

(ii) Routing Robustness. The average routing robustness, as shown in Fig. 15.14b,
follows the same pattern with the lifetime of the network, indicating that the higher the
level of knowledge is, the more reliable the provided routing robustness becomes. In
Fig. 15.15, a detailed evolution of the routing robustness is provided. The no charger
case results in the worst performance (the black bar increases rapidly) as the number
of generated events is increasing. In contrast, the CCGK protocol achieves the best
performance since it maintains high robustness. DCLK and CCRK protocols also
achieve high robustness by maintaining a high number of alive neighbors (>12-alive
neighbors as well as > 16-alive neighbors) and a low increase on black bar (which
represents <7-alive neighbors).
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(iii) Strongly connected components. This metric is the one affected the most by
the nonuniform node deployment. As shown in Fig. 15.14c, the difference between
the protocols’ performance is similar to the uniform case, i.e. the order of the protocols
based on their performance is the same. Four of the protocols begin to increase the
number of connected components after some time (and not earlier as in the uniform
case) but they achieve similar number of components at the end of the simulation.
This indicates that the number of components increases with higher rate. Also, the
CCGK, CCRK and DCLK protocols begin to increase the number of components
earlier than in the uniform case (and with a higher rate).
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(iv) Point coverage. In the nonuniform network deployment, there may be some
parts of the network that are more sparse than others and the points belonging in
these areas will be uncovered earlier, i.e. there will not be any alive nodes to collect
their generated data. As shown in Fig. 15.16, the three protocols that assume large
amount of network knowledge, manage to keep a high point coverage level, i.e. the
black bar depicting the number of points covered by < 7 nodes is not increasing with
a high rate. More specifically, the CC and CCRK achieve better performance than
in the uniform case. In contrast, DC and no charger are not able to maintain good
coverage levels and increase the black bar rapidly. The increase on the DC protocol
is higher than the corresponding increase in the uniform case.

15.7.2.2 Impact of Knowledge

The following observation in the uniform case is also valid in the nonuniform
case. The higher the amount of knowledge is, the better the protocol’s performance
achieved (for the same coordination procedure). This is natural since protocols with
higher knowledge amounts exploit more efficiently the network resources.
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In the nonuniform case, (similarly to the uniform), when using the CC and DC proto-
cols that are not exploiting any network knowledge, there are some Mobile Chargers
that cover much longer distance than others. As shown in Fig. 15.17 the total distance
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Fig. 15.16 Coverage aging for nonuniform deployments

traveled by all Mobile Chargers for each protocol, is higher that the corresponding
distance traveled in the uniform network deployment. Despite the fact that the nodes
are nonuniformly deployed, the distribution of the total distance traveled among all
Mobile Chargers is quite similar to the corresponding distribution of the uniform
case. As is shown in Fig. 15.18, the CCGK, CCRK and DCLK protocols perform a
more balanced distribution of total traveled distance between the Mobile Chargers
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than the CC and the DC protocols. As we can see, CC and DC not only lead to an
unbalanced distribution of traveled distance among the Mobile Chargers (Fig. 15.18)
but also have larger traveled distance compared to other protocols (Fig. 15.17).

15.7.2.4 Summary of Differences Between Impact on Uniform and
Nonuniform Node Deployment

We compared the protocols both on networks with uniform node deployment and on
networks with nonuniform node deployment. The simulation results demonstrated
that the protocols’ performance on the various metrics on the two networks have a
lot of similarities. In general, in most metrics the ordering of the protocols by their
performance is the same. Differences exist mostly on the exact values of the metrics.
More specifically, the differences in each metric are the following. In the alive nodes
over time metric, the CCRK protocol achieves better performance in the nonuniform
case than in the uniform one throughout almost the whole experiment. After that,
the death rate is very high. Also, in this time interval it outperforms the DCLK
protocol while in the uniform case the DCLK always achieves a better performance.
In the average routing robustness metric, the differences are the same as with the
previous metric since these two metrics are related. In the routing robustness metric,
the DC, DCLK and CC protocols show great differences. In the nonuniform case, the
DC and DCLK achieve inefficient routing robustness while the CC achieves better
performance. In strongly connected components metric (nonuniform case), the no
charger and DC protocols improve their performance since they keep one connected
component for long time. In contrast, in the uniform case, the same protocols increase
the number of connected components since the beginning of the experiment. Unlike
the above protocols, the CCGK, CCRK and DCLK protocols, start to increase the
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number of components earlier than in the uniform case. Furthermore, in the point
coverage metric, in the nonuniform case, the DC protocols increase the uncovered
points with a higher rate compared to the uniform case. On the contrary, the CC and
CCRK protocols, manage to keep more nodes alive to cover the points than in the
uniform case. Comparing the distance traveled metric, in the nonuniform case all
protocols cover longer distance than that in the uniform case. Also, in the uniform
case the CCGK protocol has covered the shortest distance while in the nonuniform
case the CCRK has the shortest traveled distance. Finally, on the distribution of total
traveled distance between Mobile Chargers there is not any remarkable difference
between the performance on the two types of node deployment.

15.7.3 Conclusion

In this work we have studied the problem of efficient wireless power transfer in
Wireless Rechargeable Sensor Networks. In such networks, Mobile Chargers traverse
the network and wirelessly replenish the energy of sensor nodes. We first identify and
investigate some critical issues and trade-offs of the Mobile Chargers configuration
(1) what are good coordination procedures for the Mobile Chargers to perform and
(i1) what are good trajectories for the Mobile Chargers to follow. In contrast to most
current approaches, we envision methods that are distributed and use limited network
information. We propose four new protocols for efficient charging assuming different
levels of network knowledge (from global to local and no network knowledge), and
different processing (from centralized to distributed).
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Chapter 16

Minimizing the Service Cost of Mobile
Chargers While Maintaining the Perpetual
Operations of WRSNs

Wenzheng Xu and Weifa Liang

Abstract The wireless energy transfer technology based on magnetic resonant
coupling has been emerging as a promising technology for lifetime prolongation
of wireless sensor networks, by providing controllable yet perpetual energy to
sensors. As a result, we can employ mobile chargers (i.e., charging vehicles) to
charge sensors with wireless energy transfer when the mobile charger approach
lifetime-critical sensors. It is however very costly to dispatch mobile chargers to
travel too long to charge sensors since their mechanical movements are energy-
consuming too. To minimize the operational cost of wireless sensor networks, in
this chapter we study the deployment of multiple mobile chargers to charge sensors
in a large-scale wireless sensor network so that none of the sensors will run out of
energy and aim to minimize the service cost of the mobile chargers. Specifically,
we study the problem of minimizing the total traveling distance of mobile chargers
for a given monitoring period, and the problem of deploying the minimum number
of mobile chargers to replenish a set of lifetime-critical sensors while ensuring that
none of the sensors will run out of energy, respectively. For the former, we propose
a novel approximation algorithm with a guaranteed approximation ratio, assuming
that the energy consumption rate of each sensor does not change for the given mon-
itoring period. Otherwise, we devise a heuristic algorithm through modifications to
the approximation algorithm. Simulation results show that the proposed algorithms
are very promising. For the latter, we develop an approximation algorithm with a
provable performance guarantee, and experimental results demonstrate that the solu-
tion delivered by the proposed approximation algorithm is fractional of the optimal
one.
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16.1 Introduction

The limited battery capacities of sensors obstruct the large-scale deployment of

wireless sensor networks (WSNs). Although there are many energy-aware approaches
developed in the past decade to reduce sensor energy consumptions or balance energy
expenditures among sensors [ 1-8], the lifetime of WSNs remains a main performance
bottleneck in their real deployments, since wireless data transmission consumes sub-
stantial sensor energy. The wireless energy transfer technology based on magnetic
resonant coupling has been emerging as a promising technology for wireless sen-
sor networks, by providing controllable yet perpetual energy to sensors [9]. In this
chapter, we employ multiple mobile chargers (i.e., charging vehicles) to replenish
sensor energy in a large-scale WSN for a given monitoring period 7 so that none of
the sensors will run out of energy, where each sensor can be charged by a mobile
charger in its vicinity with the wireless power transfer technique. Since each sensor
consumes energy on data sensing, data transmission, data reception, etc., the sen-
sor may need to be charged multiple times during the monitoring period of T to
avoid its energy depletion. It is however very costly to dispatch mobile chargers to
travel too long to charge sensors since their mechanical movements are very energy-
consuming, or deploy too many mobile chargers to replenish sensors. To minimize
the network operational cost, in this chapter we study the deployment of multiple
mobile chargers to charge sensors in a large-scale wireless sensor network so that
none of the sensors will run out of energy, and aim to minimize the service cost of
mobile chargers. Specifically, we investigate two charging optimization problems:
the problem of minimizing the traveling distance of mobile chargers for a given
monitoring period [10, 11]; and the problem of deploying the minimum number of
mobile chargers to replenish a set of lifetime-critical sensors while ensuring that
none of the sensors will run out of energy, respectively [12, 13].

Most existing studies on sensor charging scheduling employ mobile chargers to
charge all sensors periodically [14-16], or charge only the sensors that will run
out of energy very soon [12, 13, 17-22]. One major disadvantage of these studies
is that the total traveling distance of the mobile chargers in the entire monitoring
period can be very long, which may not be necessary, as the energy consumption
rates of different sensors usually are significantly different. For example, the sensors
near to the base station have to relay data for other remote sensors, their energy
consumption rates thus are much higher than that of the others [23]. Therefore, the
naive strategy of charging all sensors per charging tour will significantly increase
the total traveling distance of the mobile chargers. Similarly, the charging strategy
that schedules the mobile chargers to charge only the life-critical sensors also suffers
from the same problem as these life-critical sensors may be far away from each other
in the monitoring area.

The long total traveling distance of mobile chargers can result in prohibitively
high energy consumptions of mobile chargers on their mechanical movements. It is
reported that the most fuel-efficient vehicle has an energy consumption of 600kJ per
km (i.e., 27kWh per 100 miles) [24] while the energy capacity of a regular sensor
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battery is 10.8 kJ [14]. This implies that the amount of energy consumed by the vehicle
traveling for one kilometer is equivalent to the amount of energy used for charging
as many as 55 (& 163% ]l‘(JJ) sensors. Since WSNs usually are deployed for long-term
environmental sensing, target tracking, and structural health monitoring [25-28],
the monitoring area of a WSN can be very large (e.g., several square kilometers)
[26, 29], the mobile chargers by the existing studies consume a large proportion of
their energy on traveling, rather than on sensor charging, thereby leading to a very
high cost of network operations.

Unlike existing studies that ignore the energy consumption of mobile chargers on
traveling for charging sensors, in this chapter we develop efficient charging schedul-
ing algorithms to dispatch multiple mobile chargers for sensor charging in a large-
scale WSN for a long-term monitoring period 7, so that not only none of the sensors
runs out of energy but also the total traveling distance of all the mobile chargers for
the monitoring period of T is minimized. As energy consumption rates of different
sensors may significantly vary, different sensors have different charging frequencies
during the period T, this poses great challenges for scheduling the mobile chargers,
which include

(1)  when should we activate a charging round to dispatch the mobile chargers to
replenish sensor energy?

(2) which sensors should be included in each charging round?

(3) given a set of to-be-charged sensors, which sensors should be charged by which
mobile charger?

(4) what is the charging order of the sensors assigned to each mobile charger?

In this chapter, we will tackle these challenges by first formulating a novel
optimization problem, and then devising an efficient approximation algorithm with
a performance guarantee and a heuristic algorithm for the problem, depending on
whether the energy consumption rate of each sensor is fixed or not for the given
monitoring period. On the other hand, most existing studies assumed that one mobile
charging vehicle will have enough energy to charge all sensors in a WSN, and the
proposed algorithms for vehicle charging scheduling thus are only applicable to
small-scale WSNs [10, 11, 14, 15, 22, 30, 31]. However, in a large-scale sensor
network, the amount of energy carried by a single mobile charging vehicle may not
be enough to charge all nearly expired sensors, as there are a large proportion of
life-critical sensors to be charged. Thus, multiple mobile charging vehicles instead
of a single one are needed to be employed. In this chapter, we will study the use of
minimum numbers of mobile charging vehicles to replenish energy to sensors for
a large-scale wireless sensor network such that none of the sensors will run out of
energy. We will adopt a flexible on-demand sensor charging paradigm that decouples
sensor energy-charging scheduling from the design of sensing data routing protocols,
and dispatch multiple mobile charging vehicles to charge life-critical sensors in an
on-demand way. Specifically, we assume that each mobile charging vehicle can carry
only a limited, rather than infinite, amount of energy. We will study a fundamental
sensor charging problem. That is, given a set of life-critical sensors to be charged
and the energy capacity constraint on each mobile charging vehicle, what is the
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minimum number of mobile charging vehicles needed to fully charge these sensors
in order to reduce the operational cost of the WSN, while ensuring that none of the
sensors runs out of energy? To address this problem, not only should the number of
charging vehicles be determined but also the charging tour of each mobile charging
vehicle needs to be found so that all life-critical sensors can be charged prior to their
expirations, where each vehicle consumes energy on charging sensors in its tour and
its mechanical movement along the tour.

There are two closely related studies on minimizing the number of deployed
charging vehicles [32, 33]. Specifically, Nagarajan and Ravi studied the distance
constrained vehicle routing problem (DVRP), in which given a set of nodes in a metric
graph, a depot, and an integral distance bound D, the problem is to find the minimum
number of tours rooted at the depot to cover all nodes such that the length of each tour
is no more than D [33]. For the DVRP problem, they presented a (O(log %), 14 ¢)-
bicriteria approximation algorithm for any constant ¢ with 0 < ¢ < 1, i.e., the algo-
rithm finds a set of tours that the length of each tour is no more than (1 + ¢)D,
while the number of deployed vehicles is no more than O(log %) times the minimum
number of vehicles. On the other hand, Dai et al. investigated the problem of deploy-
ing the minimum number of charging vehicles to fully charge the sensors, by making
use of the approximation algorithm in [33], assuming that all sensors have identical
energy consumption rates [32]. There are however two essential differences between
these two mentioned studies and the work in this chapter. First, the cost of each
found tour by the algorithms in [32, 33] may violate the travel distance constraint
on the mobile vehicles. In contrast, in this chapter the total energy consumption of
each mobile charging vehicle per tour cannot exceed its energy capacity /E. Other-
wise, the vehicle cannot return to the depot for recharging itself. Also, a constant
approximation algorithm for the minimum number of mobile chargers deployment
problem is devised. Second, the study in [32] assumed that all sensors have identical
energy consumption rates. Contrarily, this chapter does not require that all sensors
have identical energy consumption rates and the energy consumption rates of dif-
ferent sensors may be significantly different. Therefore, the proposed algorithms in
the two mentioned studies cannot be applicable to the problem in this chapter. New
approximation algorithms need to be devised, and new algorithm analysis techniques
for analyzing the approximation ratio need to be developed, too.

The main contributions of this chapter can be summarized as follows. We first
formulate a novel service cost minimization problem of finding a series of charging
scheduling of multiple mobile chargers such that the total traveling distance of the
mobile chargers for sensor charging is minimized. We also formulate a minimum
number of mobile chargers deployment problem while maintaining the perpetual
operations of sensors for a given monitoring period, subject to the energy capacity
constraint on each mobile charger. We third propose an approximation algorithm for
the service cost minimization problem with a provable approximation ratio if energy
consumption rates of sensors are fixed during the monitoring period. Otherwise,
we devise a heuristic solution through modifications to the approximate solution.
Furthermore, we develop an approximation algorithm with a provable performance
guarantee for the minimum number of mobile chargers deployment problem. We
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finally conduct extensive experiments by simulations to evaluate the performance
of the proposed algorithms. Experimental results demonstrate that the proposed
algorithms are very promising. To the best of our knowledge, they are the first approxi-
mation algorithms for scheduling multiple mobile chargers to charge
sensors within a given monitoring period for the service cost minimization
problem and the minimum number of mobile chargers deployment problem.

The rest of this chapter is organized as follows. Section16.2 introduces
preliminaries. Sections 16.3 and 16.4 propose efficient approximation and heuristic
algorithms for the service cost minimization problem and the minimum number of
mobile chargers deployment problem, respectively. Sections 16.5 and 16.6 evaluate
the performance of the proposed algorithms. Section 16.7 concludes this chapter.

16.2 Preliminaries

In this section, we first introduce the network and energy consumption models, then
introduce notations and notions, and finally define the problems precisely.

16.2.1 Network Model

We consider a wireless sensor network consisting of n sensors, which are randomly
deployed in a two-dimensional space. Let V be the set of sensors. Each sensorv; € V
generates sensing data with a rate of b;(¢) (in bps) at time ¢, and it is powered by a
rechargeable battery with energy capacity B;. There is one stationary base station in
the network. We assume that there is a routing protocol for sensing data collection
that relays sensing data from sensors to the base station through multihop relays.
For example, each sensor uploads its sensing data to the base station via the path
with the minimum energy consumption. Figure 16.1 illustrates such a wireless sensor
network. Assume that the entire monitoring period is T (T typically is quite long, e.g.,
several months, even years). Since each sensor consumes energy on data sensing,
processing, transmission and reception, it requires to be charged multiple times for
the period of T to avoid its energy depletion.

We employ g wireless mobile chargers to replenish energy to sensors in the net-
work, where mobile charger [ is located at depot r;, 1 < [ < g. Without loss of gener-
ality, letR = {ry, r2, ..., 4} be the set of depot locations of the ¢ mobile chargers. To
determine charging trajectories of the ¢ mobile chargers, we define a weighted, undi-
rected graph G = (V U R, E; w), where for any two distinct nodes (sensors or depots)
uandvin V U R, there is an edge e = (u, v) € E between them with their Euclidean
distance being the weight w(e) of edge e. Assume that each mobile charger has a
full energy capacity /E and a charging rate u for charging a sensor, and the charger
travels at a constant speed s. We further assume that the mechanical movement of the
charger is derived from its energy as well. Let 1 be the energy consumption rate of
each charger on traveling per unit length. Each time mobile charger / is dispatched
to charge some sensors, it always starts from and ends at its depot r; for recharging
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Fig. 16.1 A rechargeable wireless sensor network

itself or refuelling its petrol. In other words, each charging tour of a mobile charger
[ in G is a closed tour including depot r;. For any closed tour C in G, denote by
w(C) the weighted sum of the edges in C, i.e., w(C) = ZeeE(C) w(e). We consider
a point-to-point charging, i.e., to efficiently charge a sensor by a mobile charger,
the mobile charger must be in the vicinity of the sensor [34] and the sensor will be
charged to its fully capacity.

We assume that the duration of the g mobile chargers per charging round that
includes the time for charging sensors and their traveling time is several orders of
magnitude less than the lifetime of a fully charged sensor. The rationale behind
the assumption is as follows. Once a sensor is fully charged, its lifetime can last
from several weeks to months until its next charging, since the sensor energy can be
well managed through various existing energy conservation techniques, e.g., duty
cycling [35]. On the other hand, the ¢ mobile chargers can collaboratively finish a
charging round within a few hours, since sensor batteries can be made with ultra-fast
charging battery materials [36]. For example, in 2009, scientists from MIT imple-
mented an ultra-fast charging, in which a battery can be fully charged within a few
seconds [36]. We thus envision that ultra-fast charging batteries will be commercial-
ized in the near future and will be widely used for smartphones, sensors, electric
vehicles, etc. Therefore, we ignore the time spent by the ¢ mobile chargers per
charging round. Note that [22, 37, 38] also adopted the similar assumption.
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16.2.2 Energy Consumption Models

Each sensor will consume energy on data sensing, data transmission, and data recep-
tion, and the energy consumption models for these three components are shown in
Egs. (16.1), (16.2), and (16.3), respectively [23].

Piense = A X by, (161)
Pre = (Bi + padf) x ", (16.2)
Pre =y x b, (16.3)

where b; (in bps) is the data sensing rate of sensor v;, bl.Tx and bfx are the data
transmission rate and the reception rate of sensor v;, respectively, dj; is the Euclidean
distance between sensors v; and v;, « is a constant that is equal to 2 or 4, and the
values of other parameters are as follows [23].

A =60x 107 J/b,
Bi =45 x107° J/b,
B> =10 x 1072 J/b/m?, whena =2,
or B =1x 107 J/b/m*, whena = 4,
y =135 %107 J/b.
The residual lifetime of each sensor v; € V at time ¢ is defined as [;(¢) = RpE_zg) ,
where RE;(t) and p;(¢) are the amounts of residual energy and energy consumpltion
rate of v; at time ¢, respectively. The base station keeps a copy of the energy depletion
rate p;(¢) and the residual energy RE;(t) of each sensor v; € V.

We assume that each sensor is able to monitor its residual energy RE;(#) and
estimate its energy consumption rate p;(¢) in the near future through some prediction
techniques such as linear regressions. We further assume that the energy consumption
rate of each sensor does not change within a charging round, or such minor changes
can be neglected as the duration of a charging round usually is short (e.g., a few
hours). But the energy consumption rate of each sensor is allowed to change at a
different charging round. Thus, each sensor can estimate its residual lifetime /;(f)
prior to the next charging round. Recall that for each sensor v; € V, there is a record
of its energy consumption rate p;(¢) at the base station, and this value is subject to be
updated if the energy consumption profile of the sensor in the future will experience
significant changes. To accurately measure the energy consumption rate of each
sensor, each sensor adopts a lightweight prediction technique to estimate its energy
consumption rate in the near future, e.g., a sensor can make use of a linear regression,
0i(1) = wp;i(t — 1) + (1 — w)p;(t — 1), where p; is the estimation and p; is the actual
value at that moment and w is a weight between 0 and 1 [39]. Let & > 0 be a small
given threshold. For each sensor v; € V, the updating of its energy consumption rate
is as follows. If | p;(#) — p;(t — 1)| < 6, no updating report from sensor v; will be
forwarded to the base station; otherwise, the updated energy consumption rate and
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its residual energy of v; that will be sent to the base station through a charging request
is issued by v;. The base station then performs the updating accordingly.

16.2.3 Notations and Notions

A charging scheduling of g mobile chargers is to dispatch each of the ¢ mobile
chargers from its depot to collaboratively visit a set of to-be-charged sensors in the
current round, and each charger will return to its depot after finishing its charging
tour. Assume that at time #;, let closed tours C; 1, Cj 2, ..., C; 4 be the charging tours
of the ¢ mobile chargers, where tour C;; of mobile charger / contains its depot 7
and 1 </ <gq. Let 6, ={C;1,Cj2, ..., Cj,} be the set of the g tours at time .
Notice that it is likely that some tours C;;s may contain none of the sensors, and
if so, V(C;;) = {r;} and w(C; ;) = 0. For the sake of simplicity, we represent each
charging scheduling by a 2-tuple (%, ¢;), where all sensors in tour C;; € ¢; will be
charged to their full energy capacities by mobile charger /, all the ¢ mobile chargers
are dispatched at time #;, and 0 < ; < T. Denote by V(C;;) and V(%) the set of
nodes in Cj; and €;, respectively. Then, V(%)) = U;’Zl V(C;p.

The charging cycle of a sensor v; € V is the duration between its two consecutive
chargings, and its maximum charging cycle t; is the maximum duration in which
it will not run out of its energy. Since different WSNs adopt different sensing and
routing protocols, different sensors may have different energy consumption rates and
different maximum charging cycles. If the energy consumption rate of each sensor
v; € V does not vary for the period of 7', denote by p; and t; its energy consumption
rate and maximum charging cycle, then 7; = %, where B; is the energy capacity of
sensor v; and the energy consumption rate p; of sensor v; usually is determined by
the data generation rate of the sensor and the sum of data rates from other sensors
that the sensor must forward to the base station [35]. It is obvious that sensors with
shorter maximum charging cycles need to be charged more frequently than sensors
with longer maximum charging cycles. Since each time the ¢ mobile chargers are
dispatched to charge a set of sensors, they will consume their electricity or petrol,
thereby incurring a service cost. We thus define the service cost of the ¢ mobile
chargers as the sum of their travel distances for charging sensors in the period of 7'

16.2.4 Problem Definitions

In this chapter, we investigate the problem of minimizing the traveling distance of
mobile chargers for a given monitoring period, and the minimum number of mobile
chargers deployment problem, which are precisely defined as follows.
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16.2.4.1 The Service Cost Minimization Problem

We note that not every sensor must be replenished in each charging round as the
energy consumption rates of different sensors may be significantly different. There-
fore, a naive strategy of charging all sensors per round will increase the service
cost substantially. Also, as some to-be-charged sensors and their nearest depots in a
large-scale sensor network can be far away from each other, it is crucial to schedule
the ¢ mobile chargers, by taking into account both the maximum charging cycles
and the geographical locations of the sensors. We assume that each of the ¢ mobile
chargers has enough energy to charge the sensors assigned to it in each charging tour
[14-16, 30].

Given a metric complete graph G = (V UR, E) with ¢ mobile chargers located
at g depots in R, a distance function w : E > R™, a monitoring period 7', and a
maximum charging cycle function t : V — R*, assume that the location coordi-
nates (x;, y;) € (X, Y) of each sensor v; € V are given. The service cost minimiza-
tion problem with fixed maximum charging cycles in G is to find a series of charging
schedulings (61, t1), (62, 1), . . ., (%,, t,,) of the g mobile chargers such that the total
length of all closed tours (or the service cost) is minimized, where p is a positive
integer to be determined by the algorithm. Specifically, the problem can be mathe-
matically formulated as follows.

P P q
minimize > w(%) = > > w(Cp). (16.4)
j=1

j=1 I=1

subject to the following conditions: That is, for each sensor v; € V, we have

1. the time gap between its any two consecutive charging schedulings (¢, #;,) and
(€;,. t;,) is no more than its maximum charging cycle t; (assuming that z;, < ¢;,),
i.e., tj —t;, < t1;, where sensor v; is contained in both charging schedulings %,
and ;, and there is no charging scheduling (%;, ¢;) such that sensor v; is contained
ingandt;, <t <t,;

2. the duration from its last charging to the end of period T is no more than t;,

where 6; = {Cj 1, Cj 2, ..., Cj 4}, Cj,; is the charging tour of mobile charger / located
atdepotr;, 1 <l <qg,and0 <t) <th <---<t, <T.

For this problem, we not only need to determine the number of rounds p to
schedule mobile chargers for sensor charging but also to decide which sensors to be
charged in which rounds and by which chargers. Intuitively, during the period of T,
if more rounds are scheduled, then there are less number of sensors to-be-charged in
each round. On the other hand, if less number of rounds is scheduled, there are more
sensors to-be-charged in each round. Our objective is to minimize the total traveling
distance of the ¢ mobile chargers for the p charging rounds. The challenge of this
optimization problem is to determine both p and the set of to-be-charged sensors in
each round in order to minimize the total traveling distance of ¢ mobile chargers. The
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service cost minimization problem is NP-hard, by a reduction from the well-known
NP-hard problem—traveling Salesman Problem (TSP), omitted.

So far, we have assumed that the maximum charging cycle of each sensor v; € V
in the entire period T is fixed. However, in reality, it may experience significant
changes over time, since the data rates of different sensors usually depend on the
specific application of a WSN, some sensors may be required to increase their data
rates for better monitoring the area of these sensors at some time while the others
may be required to reduced their data rates for saving their energy. For this general
setting, we define the service cost minimization problem with variable maximum
charging cycles as follows. Given a wireless sensor network G, a period 7', ¢ mobile
chargers located at g depots, the maximum charging cycle 7;(¢) of each sensor v; that
varies with time ¢, the problem is to find a series of charging schedulings of the g
mobile chargers such that the service cost of them is minimized, subject to that none
of the sensors runs out of energy for the period of 7.

We finally define a g-rooted TSP problem, which will be used as a subroutine for
the problems of concern. Assume that there is a set of to-be-charged sensors V< C V
at some time point. Given a subgraph G° = (VS UR, E°; w) of G with |[R| = ¢ > 1
and ¢ mobile chargers, the problem is to find g closed tours Cy, C», ..., C; in G¢
such that the total length of the ¢ tours, Z;’:l w(C), is minimized, subject to that
these ¢ tours cover all sensors in V¢, i.e., V¢ C U;’zl V(C)), and each of the g tours
contains a distinct depot in R. The g-rooted TSP problem is NP-hard as the classical
TSP problem is a special case of it when g = 1.

16.2.4.2 The Minimum Number of Mobile Chargers Deployment
Problem

We notice there is no need that every sensor must be charged at each round. Also,
sensor charging tours are not necessarily periodic, instead sensors should be charged
in an on-demand fashion. The rationale behind this is that in some applications such
as event detections, if there are no events happening in a monitoring area, sensors
usually perform duty cycling to save energy, thus they can run much longer than
keeping in wake up statuses. When an event does occur, the sensors within the event
region will keep in wake up statuses to capture the event and report their sensing
results to the base station, while for the sensors not in the event region, they continue
maintaining their wakeup-and-sleep duty cycling statuses, thus consuming much less
energy. It can be seen from this case that not all sensors in the network need to be
charged in each energy-charging round, only the sensors in the regions where the
event happened are needed to be charged.

Let /,,4¢ be the longest duration of a mobile vehicle tour for charging all sensors
in the network. Consider that all sensors in the network will be charged by only one
mobile charger. Then, /., should be no more than the sum of the time spent on

traveling and the time spent on charging sensors on its tour by a mobile charging
min{/E, Z‘,’,GVA B;}

vehicle. Thus, the value of [, is upper bounded as [, < LT% + P s
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where Lzgp is the length of a TSP tour including all sensors and the depot which
can be approximately found by applying Christofides’ algorithm [40], s is the travel
speed of the charging vehicle, /E is the battery capacity of the vehicle, B; is the
battery capacity of sensor v;, and p is the charging rate for sensors. In other words,
to ensure that none of the sensors fail due to its energy expiration, a sensor should
be charged when its residual lifetime is no greater than /..

We define the critical time point of a sensor as the time point that the sensor can
survive for the next /,,, time units. We say that a sensor v; at time ¢ is in a critical
lifetime interval if Iyx < [;(t) < o - [,yq, With a given constant « > 1, where /;(¢) is
the residual lifetime of sensor v; at time . Following the definition of the critical
lifetime interval, only the sensors within their critical lifetime intervals need to be
charged to avoid running out of their energy completely. Without loss of generality,
in the rest of this section, we assume that V is the set of sensors within their critical
lifetime intervals, i.e., Vi ={v; | vi € V, Lyax < [;(t) < & - Ly}, Where [;(f) is the
residual lifetime of sensor v; at time ¢. Clearly, V, C V.

We propose a flexible on-demand sensor energy-charging paradigm as follows.
We assume that there is only one depot r in the monitoring region, where there are a
number of mobile vehicles available to meet sensor charging demands. Each sensor
will send an energy-charging request to the base station for its energy replenishment
when its residual lifetime is below the critical lifetime /,,,,. The energy-charging
request contains the identity, the amount of residual energy, and the energy con-
sumption rate of the sensor. Once the base station receives a set of such requests
from the sensors, it then performs a scheduling to dispatch a number of mobile
charging vehicles to charge the sensors in the set, where a sensor v; at time ¢ is in its
critical lifetime interval if /., < [;(#) < « - L,,ux. Hence, the result of each schedul-
ing consists of the number of mobile charging vehicles needed, a closed tour for each
of the mobile vehicle, and the charging duration at each to-be-charged sensor node
along the tour. Finally, the mobile charging vehicles are dispatched from the depot
to perform charging tasks.

Given a rechargeable sensor network G = (V, E) consisting of sensors, one sta-
tionary base station, and a depot with multiple mobile vehicles, following the on-
demand sensor energy-charging paradigm, assume that at a specific time point, the
base station receives charging requests from the sensors within their critical lifetime
intervals. The base station then starts a new round scheduling by dispatching a certain
number of mobile charging vehicles to charge these sensors so that none of sensors
will run out of energy. Let V| be the subset of sensors in G to-be-charged (within their
critical lifetimes) in the next round (V; C V). Assume that for each sensor v; € Vi,
its energy consumption rate p; does not change during each charging round (or such
changes are marginal and can be ignored), and its residual energy RE; is given (at the
base station), the minimum number of mobile chargers deployment problem is to find
a scheduling of mobile charging vehicles to fully charge the sensors in V; by provid-
ing a closed tour for each vehicle, such that the number of mobile vehicles deployed
is minimized, subject to the energy capacity constraint /E on each mobile vehicle.
The minimum number of mobile chargers deployment problem is NP-hard, through
a reduction from the well-known NP-hard Traveling Salesman Problem (TSP).
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The rest is to define the p-optimal closed tour problem, which will serve as a
subroutine of the proposed algorithms for the minimum number of mobile chargers
deployment problem. Given a node and edge weighted complete metric graph G; =
(Vs, Eg; hyw), a root node r € V;, and an integer p > 1, where h : Vi > R=% and
w: E; — R>? (i.e., the node weight 2(v) of each sensor node v € V; is the amount
of energy to be charged to sensor v, and the edge weight w(u, v) of each edge
(u, v) € E, represents the amount of energy consumed by a mobile vehicle traveling
along the edge), the p-optimal closed tour problem in Gy is to find p node-disjoint
closed tours covering all nodes in Vi except the root r that appears in each of the
tours such that the maximum total cost among the p closed tours is minimized, where
the total cost of a closed tour is the weighted sum of nodes and edges in it.

16.3 Algorithms for the Service Cost Minimization Problem

In this section, we devise efficient algorithms for the service cost minimization prob-
lem. We first devises an algorithm for a g-rooted TSP problem in Sect. 16.3.1, which
will be served as a subroutine of the proposed algorithms. We then propose an
approximation algorithm in Sect. 16.3.2 and a heuristic algorithm in Sect. 16.3.3 for
the problem under fixed and variable sensor energy consumption rates, respectively.

16.3.1 Algorithm for the g-rooted TSP Problem

We propose a 2-approximation algorithm for the g-rooted TSP problem, which will
serve as a subroutine of the approximation algorithm for the service cost minimization
problem.

The basic idea of the algorithm for the g-rooted TSP problem is that we first find
g-rooted trees with the minimum total cost, and we then show that the total cost of
the g-rooted trees is a lower bound on the optimal cost of the g-rooted TSP problem.
We finally convert each of the trees into a closed tour with the cost of the tour no
more than twice the cost of the tree.

We start with the g-rooted minimum spanning forest (g-rooted MSF) problem:
given a graph G° = (VS UR, E°; w), ¢ = |R|, and w : E° > R™, the problem is to
find g trees Ty, T>, ..., T, spanning all nodes in V¢ with each tree containing a
distinct depot in R such that the total cost of the g trees, Zlqz | w(T}), is minimized.

For the g-rooted MSF problem, an exact algorithm is given as follows. We start by
constructing an auxiliary graph G, = (VS U {r}, E,; w,) from G° = (VS UR, E; w)
by contracting the g depots in R into a single root r: (i) remove the g depots in R
and introduce a new node r; (ii) for each r; € R, introduce an edge (v, r) € E, for
eachedge (v, r;) € E¢, wherev € V¢; (iil) w, (v, r) = min;{w(v, r;)}. We then find an
MST T of G,. We finally break T into g disjoint trees T, 15, . . ., T, by uncontracting
the roots in R. This uncontraction means that an edge (v, r) is mapped to an edge
(v, r1), where w, (v, r) = w(v, r;). Note that each tree T; roots at depot ;. The detailed
algorithm is presented in Algorithm 8.

fan.ye@stonybrook.edu



16 Minimizing the Service Cost of Mobile Chargers While Maintaining ... 401

Algorithm 8: g-rooted MSF

Input: G¢ = (VCUR, E¢;w), w: E° — R*,and g = |R|.
QOutput: a solution for the g-rooted MSF problem
1 Construct a graph G, = (V¢ U {r}, E,; w,) from G by contracting the g depots in R into a
single root r;
2 Find an MST T in G,;
3 Decompose the MST T into ¢ disjoint rooted trees Ty, T2, ..., T, by uncontracting depots in
R;

Lemma 16.1 There is an algorithm for the q-rooted MSF problem, which delivers
an optimal solution and takes O(n*) time, where n = |V¢ UR].

Proof Assume that trees T}, T5, ..., Tq* form an optimal solution to the g-rooted
MSF problem. We show that the solution consisting of trees T, 1>, . . ., T,, delivered
by Algorithm 8, is optimal. On one hand, since the g trees 71, 1>, ..., T, form a

feasible solution, then qu:1 w(T}) < ;1:1 w(T}). On the other hand, as each tree T}
contains adepotr; € R, we can construct a spanning tree 7" in graph G, by contracting
the ¢ depots into a single root r, and w(T’) = Z7=1 w(T}). As the MST T is the
minimum one, we have w(T) < w(T"). Since >/, w(T}) = w(T), D1, w(T)) =
w(T) <w(T’) < XL, w(T}). Therefore, >7_, w(T)) = D1, w(T}), i.e., the found
trees 11, 1>, ..., T, form an optimal solution to the problem. The time complexity
of Algorithm 8 is analyzed as follows. Constructing graph G, takes time O(E) =
O(n?). Finding the MST T in G, takes O(n?) time, while uncontracting the MST T
also takes time O(E®) = O(n?). Algorithm 8 thus runs in O(n?) time. O

With the help of the exact algorithm for the g-rooted MSF problem, we now devise
a 2-approximation algorithm for the g-rooted TSP problem in Algorithm 9.

Algorithm 9: g-rooted TSP

Input: G = (VCUR, E€;w), w: EC — R*, and g = |R).
Output: A solution ¢ for the g-rooted TSP problem
1 Find g optimal trees Ty, T2, . .., T, for the g-rooted MSF problem in G by calling
Algorithm 8;
2 For each tree 7}, double the edges in 77, find a Eulerian tour C,/ , and obtain a less cost closed
tour C; by shortcutting repeated nodes in Cl/. Let ¢ = {C1, Ca, ..., Cyl;

We show that Algorithm 9 delivers a 2-approximate solution.

Theorem 16.1 There is a 2-approximation algorithm for the g-rooted TSP problem,
which takes time O(|V° U R|?).

Proof Assume that closed tours C}, C3, ..., CZ form an optimal solution to the g-
rooted TSP problem in G€. For each tour C}', we can obtain a tree 7} by removing any
edge in C;'. Then, w(T}) < w(C}), 1 <1 < g.Itis obvious that trees T, T3, .. ., TL;
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form a feasible solution to the g-rooted MSF problem. As trees Ty, 1>, ..., T, form
the optimal solution by Lemma 16.1, >7_ w(T)) < >°1, w(T)) < >.I_, w(C)).
Also, we can see that the total cost of each found tour C; is no more than twice the
total cost of tree T}, i.e., w(C;) < 2w(T}). Therefore, >7 |, w(C)) < > 2w(T)) <
231, w(C}). The time complexity analysis is straightforward, omitted. (]

16.3.2 Approximation Algorithm with Fixed Maximum
Charging Cycles

In this subsection, we devise an approximation algorithm for the service cost mini-
mization problem, assuming that each sensor has a fixed maximum charging cycle.
We start with the basic idea behind the algorithm. We then present the approxi-
mation algorithm, and we finally analyze the approximation ratio of the proposed
approximation algorithm.

16.3.2.1 Overview of the Approximation Algorithm

Given a maximum charging cycle function: 7 : V + R" and a monitoring period 7,
if there is a series of mobile charger schedulings for T such that no sensor depletes its
energy, then we say that these schedulings form a feasible solution to the service cost
minimization problem, i.e., for each sensor v; € V, the maximum duration between
its any two consecutive chargings is no more than t;. A series of feasible charging
schedulings of the g mobile chargers is an optimal solution if the service cost of the
solution is the minimum one.

The basic idea behind the proposed approximation algorithm is to construct
another charging cycle function 7’(-) for the sensors based on the maximum charg-
ing cycle function 7 (-), by exploring the combinatorial property of the problem. We
construct a very special charging cycle function 7’(-) such that charging cycles of
the n sensors will form a geometric sequence as follows.

Let 7y, 12, . . ., T, be the maximum charging cycles of sensors vy, vy, . .., v, in the
network. Assume that 7y < 17, <--- < 1,. Let 7, 77, .. ., 7, be the charging cycles
of the sensorsand 7/ < tj’ if ; < 7;. We construct 7/(-) as follows. We partition the set
V of the sensors into K 4 1 disjoint subsets Vy, Vi, ..., Vg, where K = |log, ;—] s
and sensor v; € V with its maximum charging cycle t; is contained in Vj if 2k <
7; < 2817 Then, k = |log, Tl Letr) = 2%7,. We assign each sensor in V with the
identical charging cycle 2%t{ = 2¥7;. Consequently, the charging cycles of sensors
in Vo, Vi, ..., Vx are 71, 271, ..., 251y, respectively. We can see that the assigned
charging cycle 7/ of sensor v; is no less than the half its maximum charging cycle t;,
since )

1

5 5 T
r = oloegly o el 5 Yy e V. (16.5)

1
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16.3.2.2 Approximation Algorithm

Given the charging cycle function 7/(-), we can see that rj’ is divisible by 7/ for any
two sensors v; and v; if 7; < 7; and 1 < i < j < n. For simplicity, assume that the
monitoring period 7 is divisible by the maximum assigned charging cycle t,, let
T = 2mt) = 2m2X 7|, where m is a positive integer. Furthermore, we assume that
each sensor is fully charged at time ¢ = 0. The solution delivered by the proposed
algorithm consists of a series of schedulings of the ¢ mobile chargers. Specifically,
we first find a sequence of schedulings for a period 7,. Then, we repeat the found
schedulings for the next time period of 7,, and so on. We repeat the scheduling
sequence for period 7 no more than |7 /7, | — 1 = 2m — 1 times.

In the following, we construct a series of schedulings for a period 7, = 2K ;.
Recall that we have partitioned the sensor set V into K + 1 disjoint subsets
Vo, Vi, ..., Vg, and the charging cycle of each sensor in Vj is 2k, 0 <k <K.
We further partition the period 7, into 2K equal time intervals with each interval
lasting 7;, and label them from the left to right as the 1st, 2nd, .. ., and the 2Xth time
interval. Clearly, all sensors in V;, must be charged at each of these 2K time intervals;
all sensors in V| must be charged at every second time interval; and all sensors in Vj,
must be charged at every 2k time interval, 0 < k < K. That is,

Attime Ty, charge the sensors in V.

At time 27y, charge the sensors in Vy U V.

At time 37y, charge the sensors in V.

At time 47y, charge the sensors in Vo U V; U V.

Attime |, charge the sensorsin U poq 2t)=o Vi Where 0 < k < K',K’ = [log, j|,
and 1 <j < 2K,

At time 2K 7y, charge the sensors in UX |V, = V.

There are 2X charging schedulings of the ¢ mobile chargers and one charging
scheduling is dispatched at each time interval. Let 6; = {C; 1, C;2, ..., C;,} be the
set of closed tours of the ¢ mobile chargers at time interval j, where 1 <j < 2K,
Furthermore, it can be seen that in the 2% charging schedulings, there are 2K~!
identical charging schedulings with each only containing the sensors in Vj, there
are 2K-2 identical charging schedulings with each containing the sensors only in
Vo U V. In general, there are 28~!=* identical charging schedulings with each con-
taining the sensors only in Vo U Vi --- UV, 0 <k < K — 1. Finally, there is one
charging scheduling containing the sensors in Vo U V| ---U Vg = V. Denote by
D = {Di.1, D2, ..., Dy 4} the set of g closed tours for the g-rooted TSP problem
in the induced graph G[R U Vp - - - U V], which is delivered by Algorithm 9.
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The series of charging schedulings for a period t,, thus is (¢}, 71), ..., (€}, jT1).
..., (%»x, 2% 1)), where the 2-tuple (%;, jt1) represents that the ¢ mobile chargers
are dispatched at time j7; and the set of to-be-charged sensors is Uc; e, V (Cji) =
UG mod 29=0 Vs 0 < k < K, K" = [log, j|, and 1 <j < 2X. As a result, there are
p = 2m - 2K — 1 charging schedulings found for a period of T = 2mt, as follows.

(%’la Tl)a ERR) (%2’(—1’ (2K - l)f]), (%ZKv 2KT1)3
(Cgla Iy,l + Tl)v LR ((62’(717 tI; + (2K - l)tl)a (%2’(7 ry/l + 2Krl)7

(@1, @m = DT, + 1), ... (Grr, @m — D1, + Q2K = D1y,

Note that we do not perform a charging scheduling at time 7 = 2m7,, as there is
no such need at the end of period 7. The proposed algorithm is described in Algo-
rithm 10.

Algorithm 10: MinDis

Input: G = (V UR, E; w), maximum charging cycles  : V — R, g chargers, and a
monitoring period 7.
Output: A series of charging schedulings ¢ for period T
Let 71, 12, . . ., T, be the sorted maximum charging cycles of sensors vi, v, ..., v, in
ascending order;

—

llog, 7],
;

N~

For each sensor v;, let rl.’ =2
Partition sensors in V into K + 1 disjoint subsets Vp, Vi, ..., Vg, where sensor v; € Vj if

w

2ke = 2”0gz ’L;J‘L’l, 0 <k <K,and K = |log, %J' All sensors in V} have the same
charging cycle 2¢7/;

4 for k < 010 K do

5 Find g charging tours %, = {Dy,1, Dy 2, ..., Cj 4} in the induced subgraph

G[RU V- - - U V] by applying Algorithm 9;

6 end for

7 € < @; /* the solution */

8 /* Construct schedulings (%1, 11), ..., (%5, 2Ky #/

9 forj < 102X do

10 /* Find the charging scheduling ; of the ¢ mobile chargers at time t; = jt; */;

11 Let 6; = %, where k is the largest integer so thatj mod 2k = 0, where 0 < k < K’ and

K' = |log,jl;
12 | €<« UG,k
13 end for

14 for m' < 210 |T/z;] do

15 for j < 1 102X do

16 | €=¢U{(G,m 1,+1))
17 end for

18 end for

19 return %.
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16.3.2.3 Algorithm Analysis

In the following, we dedicate ourselves to analyzing the approximation ratio of the
proposed approximation algorithm. We start by showing that Algorithm 10 delivers
a feasible solution to the service cost minimization problem by Lemma 16.2. We
then provide a lower bound on the minimum cost of the problem by Lemma 16.3.
We finally derive the approximation ratio of Algorithm 10 based on the lower bound
in Theorem 16.2.

Lemma 16.2 Algorithm 10 delivers a feasible solution to the service cost minimiza-
tion problem.

Proof 1t is obvious that the solution delivered by Algorithm 10 is feasible, as the
charging cycle 7/ of each sensor v; € V in the solution is no more than its maximum
charging cycle 7;, i.e., 7/ < 7;. Thus, no sensors will die in the period 7. U

The following lemma provides a lower bound on the optimal service cost, which
bounds the service cost of the solution delivered by Algorithm 10.

Lemma 16.3 Given the sensor set partitioning Vy, Vi, ..., Vk based on the maxi-
mum charging cycles of sensors, each sensor in Vy is assigned with the same charg-
ing cycle 2€t), 0 < k < K. Let OPT be the service cost of an optimal solution
to the service cost minimization problem. Denote by 9 = {D,f’l,D,f’Q, e, D,*; q}
the optimal q closed tours for the g-rooted TSP problem in the induced graph
G[RU Vo UV U---U V], then OPT > m2X—*. w(Zy), assuming that T = 2mr,,
where w(Z¢) = >, w(Dj ), K = |log, 2], and0 <k < K.

Proof To show that OPT > m2K=Fk . w(Z), we partition the entire period T =
2mt) = 2m - 2K7; into m - 257 time intervals with each lasting time 7, = 2%*!7;.
Let (0, t], (tx, 28], ..., (G — D, jtel, ..., (m2K=* — Dtr, m25=*4] be these
m - 2X=% intervals, where time interval jistheinterval (G — 1) -fx,j %], 1 <j <
m - 2K=% Note that m2K %, = m2K—kpk+1¢ = T.

In the following, we first show that there is at least one time interval among the
m2K=* time intervals such that (i) the service cost of charging schedulings within
the interval is no more than # of the service cost OPT in the optimal solution;

(ii) each sensor in Uf:o V; must be charged at least once in this interval; and (iii) the
service cost within this interval in the optimal solution is no less than the cost w(%y)
of a feasible solution %} to the g-rooted TSP problem in graph G[RU Vo U - - - U Vj].

Since &} is the optimal solution to the g-rooted TSP problem, w(Z;) < w(%;) <
OPT

m2K—k*
Assume that an optimal solution consists of p charging schedulings (%7, 7).
(€5.6), ..., (‘5,,*, 1) with 0 <#f <--- <17 <T. Recall that OPT is the sum

of lengths of the p charging schedulings i.e., OPT = >"_ w(&*) =>"_ | >1,
w(C; ). We partition the p charging schedulings into m2K=F disjoint groups accord-
ing to their dispatching times, the charging scheduling ¢ isin group j if its dispatch-
ing time ¢} is within time interval j, i.e., 7 € ((j — D)#, jtx], where 1 <s < p and
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1 <j < m2X=* Denote by %, and w(%4;) the set of charging schedulings in group j and
the cost sum of charging schedulings in %, respectively, i.e., w(¥)) = > . e, w(€),

. K—k m2K-k K—k
1 <j < m2*~* Then, Zj:l w(%;) = OPT. Among the m2 groups, there must
be a group % whose service cost w(%;) is no more than nﬂ% of the optimal cost

OPT,1i.e.,
OPT

m2K—k’

w(¥) = (16.6)

We then show that each sensor in Uf:o V; must be charged at least once by
the charging schedulings in %; by contradiction. Assume that there is a sensor v; €
Uf:o V; which will not be charged by any charging scheduling in &;. Since v; €
Uf:o V;, its maximum charging cycle 7; must be strictly less than 2 - 2¢7; = 2¢*1
by inequality (16.5), i.e., T; < 25*!7;. On the other hand, as v; will not be charged by
any charging scheduling in ¢; while it is still survived, this implies that its maximum
charging cycle must be no less than the length # of the time interval, i.e., 7; >
tp = 2¥*17,, this results in a contradiction. Thus, v; must be charged by at least one
charging scheduling in ¥;.

We finally construct a feasible solution ¢y = {Cy 1, C2, . . ., Ci 4} to the g-rooted
TSP problem in graph G[RU Vy U --- U V;] based on the charging schedulings in
¢ such that the service cost w(%%) is no more than w(%}). Since each closed tour
in ¢; contains a depot r; € R, we partition the closed tours in & by the depot that
each tour contains. To this end, we partition tours in % into ¢ disjoint subgroups
G1.%2,...,9 4, where subgroup % ; includes all closed tours in &; that contains
depot r;, 1 <[ < g. For each subgroup %; ;, since each tour contains depot r;, the
union of all close tours in %;; forms a connected Eulerian graph. Then, we can
derive a Eulerian circuit C,L , from this Eulerian graph and W(Ck 1) = w(%] ). We
further obtain a closed tour Cj; including only nodes in RU Vo U --- U Vi once
from C D> by the removal of the nodes notin RU Vy U --- U V; and the nodes with
multiple appearances, and performing path shortcutting. Since edge weights satisfy
the triangle inequality, we have

w(Cr) <w(Ci) <w(&), 1<1=<q. (16.7)

Aseach sensorin Uf:o V; will be charged at least once by the charging schedulings
in¢%}, and tour Cy ; contains depot r;, we have Uf:o V; C U;Z:l V(Ci.1)- Then, all tours
in 6; form a feasible solution to the g-rooted TSP problem in graph G[RU V, U
U Vil Let Z; = {Dj ;. D . ..., D ,} be the optimal g tours. Then,

q q
D WD) < D" wCr). (16.8)
=1 =1

By combining inequalities (16.6), (16.7), and (16.8), the lemma then follows. [
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According to Lemmas 16.2 and 16.3, we show the approximation ratio of
Algorithm 10 by the following theorem.

Theorem 16.2 There is a 2(K + 2)-approximation algorithm for the service cost
minimization problem with fixed maximum charging cycles, which takes time
O(llog %an +%n), where Ty = max'_ {t;}, Ty = min’_ {zr;}, and K =
[log, :—TJ-

Proof By Lemma 16.2, Algorithm 10 delivers a feasible solution. The rest is to ana-
lyze its approximation ratio. Recall that the charging schedulings delivered by Algo-
rithm 10 for  period 7T =2mt, are: (61, 71),..., (%, 2K1),
(€, ‘L’n/ +1),..., (6, ‘L’,; +2KT1), ..., (&6, 2m — I)T,/,+Tl)7 o (Gx_q, Cm —
Dt + (2K — 1)1)). The total service cost during T then is

2K 2K 2K
Qm—1) D w@) + D w(@) <2m Yy w(@)). (16.9)
j=1 j=1 J=1

Recall that Z; = {Dy 1, Dk, ..., Di 4} is the set of g closed tours for the
g-rooted TSP problem in graph G[RU VU --- U V] delivered by Algorithm 9.
Let €(t)) = {(61, 1)), (62, 13), - .., (62, T}

From the construction of €'(t,,), we can see that there are 28 ~! % identical charging
schedulings in %'(r;) with each only containing the nodes in RU Vo U V; - -- U Vj.
Denote by w(Z) the cost of the charging scheduling &, where 0 <k < K — 1.
And there is one charging scheduling in €’(t;) containing the nodes in R U V, U

-+U Vg = RUV, denote by w(Zk) the cost of the charging scheduling Zx. We
then rewrite the upper bound on the service cost in Inequality (16.9) as

2K K—1
2mzw(<€j) = 2m(w(%Zk) + ZzK*I*kW(@k)). (16.10)
j=1 k=0

Denoteby ;" = {D} |, D 5, ..., D}, }the set of the optimal ¢ closed tours for the
g-rooted TSP problem in graph G[R U VO -U Vi]. Since 2 is an approximate
solution by Theorem 16.1, w(Z) < 2w(9*), 0 <k < K. Also, by Lemma 16.3,

w(Z;y) < 2L We have

K-1
2m(w(Zx) + D25 w( @)
k=0
OPT ‘& oPT
< dm(—— +Zz’( 1=k — k) = UK +2)0PT. (16.11)
The time complexity analysis is straightforward, omitted. (]
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16.3.3 Heuristic Algorithm with Variable Maximum
Charging Cycles

So far we have developed an approximation algorithm for the service cost minimiza-
tion problem, assuming that the maximum charging cycle of each sensor is fixed for
the given monitoring period. This assumption however sometimes may be restrictive
and unrealistic in some applications. In this subsection we devise a novel heuristic
algorithm by removing this assumption.

16.3.3.1 Heuristic Algorithm

Within the period 7', the energy consumption rates of sensors may dynamically
change over time, resulting in the changes of sensor maximum charging cycles even-
tually. Recall that the base station maintains the updated energy information of each
sensor, including its residual energy and energy consumption rate. Also, the sensor
sends an updating request of its energy information to the base station if the variation
of its maximum charging cycle is beyond a predefined threshold.

Assume that the base station receives the maximum charging cycle updatings
from some sensors at time ¢, this implies that the charging schedulings based on
the previous maximum charging cycles of these sensors may not be applicable any
more, otherwise these sensors will deplete their energy prior to their next chargings.
For example, assume that a sensor has changed its maximum charging cycle from a
longer one to a shorter one, it might be dead if the sensor is still charged according
to its previous longer charging cycle since the sensor now can last for only a shorter
cycle once it is fully charged.

The basic idea of the heuristic algorithm is as follows. When the base station
receives maximum charging cycle updatings, it checks whether the previous schedul-
ings are still applicable for these updated maximum charging cycles. If so, nothing
needs to be done. Otherwise, it recomputes a new series of schedulings, by first apply-
ing the approximation algorithm based on the updated maximum charging cycles,
followed by modifications to the solution delivered by the approximation algorithm.

Assume that the previous maximum charging cycle of sensor v; is 7;(t — 1) and
it was charged at a charging cycle /(¢ — 1) in the previous series of schedulings. At
time ¢, the base station receives the maximum charging cycle updating of sensor v;,
which changes from 7;(t — 1) to 7;(¢). The base station then checks the feasibility of
the previous schedulings as follows. If 7/(r — 1) < 7;(t) < 2¢/(t — 1), the previous
schedulings are still feasible as sensor v; will be charged with a charging cycle
/(t — 1) no more than its current maximum charging cycle 7;(r). Otherwise (7;(r) <
t/(t — 1) or 7;(r) > 27/(tr — 1)), we recompute a new series of schedulings based on
the updated maximum charging cycles since the previous schedulings are not feasible
any more (i.e., 7;(f) < t/(t — 1)), or though the schedulings still are feasible, they
are not optimal in terms of the service cost (i.e., 7;(f) > 2%/(t — 1)). In the following,
we recompute a new series of schedulings.
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We first invoke the proposed approximation algorithm based on the updated max-
imum charging cycles. Let T (), 72(f), . .., T,(¢) be the updated maximum charg-
ing cycles of the n sensors. Assume that residual lifetimes of the n sensors are
i 1(0), lz (1), . l (1), respectively. We further assume that the solution delivered by
the appr0x1mat10n algorithm based on the updated maximum charging cycles con-
sists of

(G1, 1+ T1(0), (Ga, t 4+ 251(D), ..., (Gax, 1t + 2521 (1)),
(G, t + T.(t) + 21(D), (Ga, t + T(6) +221(2)), ..., (Gox, t + T1(1) + 252, (1)),

(G, t +x7,(t) + T1(1)), ..., (€, t +xT,,(t) + yT1 (1),

where ¢ + x7T, (t) + yT1(t) < T, t +x7T,(t) + (y + D7, () > T, and x and y are pos-
itive integers. The most updated charging cycles of the n sensors in the solution are

(1), (1), . .., TL(t), where 7/ (1) = 21°% 2002, ().

Note that the solutlon dehvered may not be feasible as different sensors may
have different amounts of residual energy. This violates the condition of applying
the approximation algorithm, that is, all sensors must be fully charged initially. The
residual energy in SOmE Sensor v; may not support its operation until its next charglng
time r + 7/(1), i.e., l (r) < t/(1). Denote by V¢ the set of sensors with l ) < /().
We then schedule the moblle chargers to replenish sensors in V¢ to avoid their energy
depletion, through adding a new charging scheduling (%7, t) and modifying the
first 2K schedulings from (%), t + 7, (t)), (65, t + 2T,(1)), . .., (G, t + 257, (1)) to
(€.t +11(1), (65, t +27,(1)), ..., (Cox t + 2K2,(1)). Also, the charging schedul-
ings delivered by the heuristic algorithm after the first 2% schedulings are the same
as them delivered by the approximation algorithm. The rest is to construct the first
2K 41 charging schedulings.

Let V* = {v;|v; € V¢ & [;(t) < 7(¢)}, which implies that the residual lifetime of
each sensorin V/isless than 7, (f) and V,* € V“. We construct a scheduling (%, ), in
which all sensors in V,* will be charged at time z. We then, like the node set partition
in the approximation algorithm, partition the set V¢ \ V/ into K 4 1 disjoint sets

Vi, Vi, ..., V¢ according to their residual lifetimes, where K = [log, ;8] and a

sensor v; € V¢ \ V/ is contained in V! if 2k21(1) < l (t) < 2¥F12,(¢). Note that the
residual lifetime ll(t) of each sensor v; in V¢ at time ¢ is no less than 2%%,(¢) but no

greater than its charging cycle £/ (1), i.e., 257, () < L) < t/(r). To avoid the energy
depletion of sensor v;, we can add it into any one of the schedulings: {(%y, 1), (61, t +
21(0), (G, t +2%1(1)), ..., (Gx, t +25%,(r))}. However, to minimize the service
cost, we add sensor v; into a nearest scheduling %, The detailed construction of the
2K 4+ 1 schedulings is as follows.

We construct the 25 + 1 schedulings by iteratively invoking Algorithm 8 for the g-
rooted minimum spanning forest problem. Denote by V (‘K(k)) andV (%(H 1)) the con-
structed node sets of scheduling ‘5/ before and after 1terat10n k, respectlvely, where

0 <k < K. Note that 4" = {C(’?, . CE Yy and V(&) = UL, V(CT)). After

fan.ye@stonybrook.edu



410 W. Xu and W. Liang

K + 1 iterations, we let V(%)) = V(‘fj(KH)). We finally obtain scheduling €7 by
applying Algorithm 9 for the g-rooted TSP problem in the induced graph G[V (%j’)].
Consequently, each sensorin VU Vi U - - - U V¢ = V@ will be charged in time. Ini-
tially, let V(%3”) = V2 UR and V(%) = V (%)), where 1 < j < 2K At iteration
k (0 < k < K), we first construct an auxiliary graph G® = (V# UR®, E®; w®)
based on node sets V" and V(‘fo(k) ), V(‘gl(k) ) R V(‘Kz(kk ) ), where there is a root rj(k)
in R® representing node set V(‘fj(k)), 0<j<25andE® =V x VAUV x RV,
Then, |[R®| = 2F 4 1. For each edge (u, v) € V x V¢, w® (u, v) is the Euclidean
distance between nodes u and v. For each edge (u, rj(k)) € V& x RO, wh(u, rj(k) ) is
the smallest Euclidean distance between node # and nodes in V (‘Kj(k)). ‘We then obtain
2% 4+ 1 minimum cost rooted trees To(k), Tl(k), el Tz(f),
G® | where tree Tj(k) contains root rj(k) and 0 <j < 2F. Note that each sensor in
V¢ is contained in a tree Tj(k) and V! = V(Ték)) U V(Tl(k)) U.- U V(Tz(f)) —RW,
Then, the sensors in tree Tj(k) will be charged in scheduling (%7, ¢t + jz,(2)). To
this end, we let V(") = V(@) u v(T) — (O} if 0 < j < 2, otherwise
QF+1<j<2K, V(%j(kﬂ)) = V(‘Kj(k)). We refer to this heuristic algorithm as
MinDis-var.

by invoking Algorithm 8 on

Theorem 16.3 There is a heuristic algorithm for the service cost minimization prob-
2
lem with variable maximum charging cycles, which takes 0(%112 + TLn + gex)

min

time, where n = |V, Tyee = max_,{z;}, and 7, = min}_, {7;}.

16.4 Approximation Algorithm for the Minimum Number
of Mobile Chargers Deployment Problem

In this section, we propose a novel approximation algorithm for the minimum number
of mobile chargers deployment problem. We first detail a 5-approximation algorithm
for the optimal p-closed tour problem in Sect. 16.4.1, which serves as a subroutine of
the proposed algorithm. We then present the approximation algorithm in Sect. 16.4.2.

16.4.1 Algorithm for the p-optimal Closed Tour Problem

In this subsection, we devise a S-approximation algorithm for the p-optimal closed
tour problem in a node and edge weighted metric graph G(Vy, Ey; h, w). This algo-
rithm will be used as a subroutine for the minimum number of mobile chargers
deployment problem in Sect. 16.4.2. As a special case of the p-optimal closed tour
problem when p = 1 is the well-known TSP problem which is NP-hard, the p-optimal
closed tour problem is NP-hard, too. In the following, we start by introducing a
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popular technique to transform a tree into a closed tour in G,. We then introduce
a novel tree decomposition. We finally present an approximation algorithm for the
problem based on the tree decomposition.

16.4.1.1 A Closed Tour Derived from a Tree

We first introduce the technique that transforms a tree in G, to a closed tour by the
following lemma.

Lemma 16.4 Given a node and edge weighted metric graph Gy = (Vy, Eg; h, w)
with sets Vy and E of nodes and edges, h : Vy — R=% and w : E; — R>°, and the
edge weight follows the triangle inequality, let T = (V,, E7; h, w) be a spanning
tree of G4 rooted at r. Let C be the traveling salesman tour of G derived from
T through performing the preorder traversal on T and pruning, then the total cost
WH (C) of C is no more twice the total cost WH(T) of T, i.e., WH(C) < 2WH(T) =
Z(ZVEVS h(v) + ZeeET W(e))'

Proof Let H(X) be the weighted sum of nodes in X and W (Y) the weighted sum
of edges in Y. As the weighted sum W (C) of the edges in C is no more than
ZZeeET w(e), and the weighted sum H(C) of nodes in C is the same as the one
in 7. Thus, the total cost of C is WH(C) = W(C) + H(C) <2W(T)+ H(T) <
2(W(T)+ H(T)) =2WH(T). ([

16.4.1.2 Tree Decomposition

Given a metric graph G, = (V, Eg; h,w), let T = (Vy, Er; h, w) be a spanning tree
in G, rooted at node r and § > max,ey, {h(v), 2w(v, r)} a given value, then, both the
node weight i(v) of any node v € V; and the edge weight w(e) of any edge e € Er in
tree 7 are no more than 4, i.e., h(v) < § and w(e) < §. We decompose the tree into a
set of subtrees such that the total cost of each subtree is no more than 26 as follows.

Let (u,v) be a tree edge in T, where u is the parent of v and v is a child of u.
Also, let T, be a subtree of T rooted at node v. We perform a depth-first search on
T starting from the tree root r until the total cost of the leftover tree rooted at r is
no less than 24, i.e., WH(T,) < 26. Figure 16.2 demonstrates an example of the tree
decomposition procedure. Assume that node v is the node that is currently visited,
we distinguish into the following four cases.

Case 1. f WH(T,) < é and WH(T,) + w(u, v) < §, no action is needed, and the
tree decomposition procedure continues.

Case 2. If WH(T,) <6 and WH(T,) + w(u,v) > 5. Then, we must have
WH(T,) + w(u, v) < 28, since the weight w(u, v) of edge (u, v) is no more than
8. Anew tree T, U {(v, u')} is created with a virtual node u’ with h(u") = 0. Split the
subtree T, U {(v, 1)} from the original tree, see Fig. 16.2b.
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Fig. 16.2 An illustration of the tree decomposition

Case 3. If 6 < WH(T,) < 26, split the subtree 7, from the original tree and
remove edge (u, v) € Er from the original tree, see Fig. 16.2c.

Case 4. Letv{, V5, ..., v} be the k children of v. Let / be the maximum children
index so that § < Z]{:l (WH(TV;;) + w(v;, v)) < 28 with 1 <[ < k, then, a new sub-
tree U}zl(ijz: U {(vj?, v)}) rooted at the virtual node V' is created, which consists
of these subtrees with 2(v") = 0. Split off this subtree from the original tree, see
Fig. 16.2d.

As a result, a set of subtrees is obtained by the tree decomposition on 7, see
Fig. 16.2e. The number of subtrees is bounded by the following lemma.

Lemma 16.5 Given a spanning tree T = (Vs, ET; h, w) of a graph G, = (V, Ej;
h, w) with the total cost WH(T) and a value § > max,cv, {2w(r, v), h(v)}, the tree T
can be decomposedinto p subtrees Ty, T, ..., T, with WH(T;) < 28 by the proposed
tree decomposition procedure, | < i < p. Then p =< LWH(T)J

Proof Following the tree decomposition on 7', subtrees with the total cost in [§, 28)
are split away from 7 until the total cost of the leftover tree including root r is less
than 28. Suppose that T, T, . .., T, are the split trees with p > 2. From the subtree
construction, we know that § < WH(T;) < 25 for each i with 1 <i <p — 1. The
only subtree with the total cost less than § is 7),. Note that prior to splitting 7,,_i, the
total cost of the remaining tree is at least 28. Therefore, the average total cost of T},_;
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and T), is no less than 8. That is, the average total cost of all 7; is at least §. Thus,

p-8 <WH(T),ie.,p < %(T) Since p is an integer, p < L%(T)J. O

16.4.1.3 Algorithm for Finding p-optimal Closed Tours

Given a metric graph G = (Vy, E;; h, w) with root r and a positive integer p, we
now devise an approximation algorithm for the p-optimal closed tour problem in G
as follows.

Let T be a minimum spanning tree (MST) of G rooted at r. The basic idea
of the proposed algorithm is that we first perform a tree decomposition on 7 with
8 = max,ey {WH(T)/p, 2w(v, r) + h(v)} and we later show that § is a lower bound
on the optimal cost of the p-optimal closed tour problem. As a result, p’ subtrees are
derived from such a decomposition, and p’ closed tours are then derived from the p’
subtrees. We finally show that p’ < p and the maximum total cost of any closed tour
among the p’ closed tours is no more than 53.

Specifically, T is decomposed into no more than p’ edge-disjoint subtrees, except-
ing the root node r which appears in one of these subtrees. Let T, 1>, .. ., T,y be the
p’ trees obtained by decomposing T'. It can be observed that each T; contains at least
one real node and at most one virtual node, where a node v is a real node if h(v) # 0;
otherwise, it is a virtual node. As aresult, a forest % consisting of all the trees is found
through the tree decomposition, and the number of trees in .% is p’ < |[WH(T)/§]
and the total cost of each subtree is no more than 2§ by Lemma 16.5.

For each T; € .#, if it does not contain the root r, then, a tree 7} = T; U {(v;, r)}
rooted at r is obtained by including node r and a tree edge (v;, r) into 7;, where node
v; is anode in 7; and w(v;, r) = minyer,{w(v, r)}. The total cost WH(T?) of T} is

WH(Ti’) = WH(T;) +wW;,r) < 264+w;,r) < 2.58, asw(v;, r) <§/2.

Otherwise (7; contains node r), T = T; and WH(T}) = WH(T;) < 25. We thus
obtain a forest #' = (T, T, ..., Tp/,}. From the trees in .%’, p’ edge-disjoint closed
tours with each containing the root r can be derived. Let €’ = {C}, C}, .. ., C;,} be
the set of p’ closed tours obtained, by transforming each tree in .%’ into a closed
tour. For each C;, we have that WH(C}) <2- WH(T/) < 58 by Lemma 16.4. As
there are some Cs containing virtual nodes that are not part of a feasible solution
to the problem, a feasible solution can be derived through a minor modification to
the closed tours in %”. That is, for each le , if it contains a virtual node (as each
C{ contains at most one virtual node), a closed tour C; with a less total cost than
that of C! is obtained, by removing the virtual node and the two edges incident to
the node from C; through shortcutting, then WH(C;) < WH(C}) as the edge weight
follows the triangle inequality. Otherwise, C; = C;. Clearly, each of the p’ closed
tours Cy, Cy, ..., Cy roots at r. The detailed algorithm is described in Algorithm 11.
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Algorithm 11: Finding closed tours rooted at r with each having the bounded

total cost
Input: A metric graph G = (V;, Es; h, w), aroot r € Vi, and a given value
8 > maxyev, {h(v), 2w(v, r)}.
Output: a set of node-disjoint closed tours covering all nodes in Vi with the shared root r so
that the total cost of each tour is no more than 5§.
1 Let T be an MST of G and WH (T') be the total cost of T';
2 Let # = {Ty, Tz, ..., T,y} be the forest obtained by performing the tree decomposition on T
with the given value §;
3LetF ={T,T;,..., T1;} be a forest, where T/ = T; U {(r, v;)} is derived by adding root r
and an edge with the minimum edge weight between a node v; in 7; and r if r is not in 7;;
otherwise T/ = T, where 1 <i < p/;
4 Lets’ =(C|,Cy, ..., C[’),}, where closed tour C; is derived from 77;
5 Let4 = {Cy, Ca, ..., Cy} be aset of closed tours, where C; is derived by removing the
virtual node from le € ¢ if it does contain a virtual node. Otherwise, C; = C;;
6 return ¢.

16.4.1.4 Algorithm Analysis

In the following, we show that Algorithm 11 delivers a 5-approximate solution.
Specifically, we first show that Algorithm 11 delivers a feasible solution to the p-
optimal closed tour problem. We then show that the total cost of each closed tour in the
solution is no more than 5§. We thirdly show that § (= max,cy {WH(T)/p, 2w(v, r) +
h(v)})is alower bound on the optimal cost of the problem. Then, the total cost of each
closed tour in the solution delivered by Algorithm 11 is no more than 5§ < SOPT.
We finally analyze the time complexity of Algorithm 11.

Theorem 16.4 Given ametric graph G, = (Vi, Es; h, w) and an integerp > 1, there
is a S-approximation algorithm for finding p-optimal closed tours. The time com-
plexity of the proposed algorithm is O(|V;|?).

Proof We first show that Algorithm 11 delivers a feasible solution to the p-optimal
closed tour problem. Recall that T is an MST of G;. Since 6 = max,cy,{WH(T)/p,
2w(v, r) + h(v)}, § > max,ey,{2w(v, r), h(v)}. A solution ¥ which consists of p’
closed tours rooted at r can be obtained, by applying Algorithm 11 on 7', and

/

p

IA

\WH(T)/é8] = WH(T)/$

WH(T) WH(T)
= < = p, (16.12)
max,ey, {WH(T)/p, 2w(v, r) + h(v)} WH(T)/p

by Lemma 16.5. Thus, %’ is a feasible solution.

We then show that the total cost of each closed tour in % is no more than 58. As
each C; € ¢'isderivedfromaC; € ¢’,wehave WH(C;) < WH(C)) <2WH(T}) <
2-2.556 =56 by Lemma 16.4.

We thirdly prove that é is a lower bound on the optimal cost of the problem. Given
a node and edge weighted metric graph G, = (V, E;; h, w) with root r, an integer
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p > 1, partition the nodes in Vj into p disjoint subsets X;, X, ..., X,,, and let C; be
the closed tour containing all nodes in X; and the root r. The optimal partitioning is
a partitioning such that the maximum value max;<;j<,{WH (C;)} is minimized. Let
OPT be the total cost of the maximum closed tour in the optimal solution. We show
that § < OPT as follows.

Let CT, C3, ..., C, be the p closed tours in the optimal solution with the shared
root r. Then, WH(C}) < OPT. Let ¢; be the maximum weighted edge in C;. Then,
atree 7" = U_ CF \ UL_ {e;} rooted at r can be obtained by removing e; from each

=

tour C}. We then have

14 P
WH(T') = D> (WH(C)) —w(e)) = > WH(C) < p-OPT.  (16.13)

i=1 i=1

It can be seen that 7” is a spanning tree in G;. Since T is an MST of G, WH(T) <
WH(T"). We thus have

WH(T) - WH(T’)

< < OPT. (16.14)
p p

On the other hand, each node v € V; must be contained by one closed tour C; in
the optimal solution. Since tour C} contains node v and the depot r, then the total
costof Cf, WH(C}), is at least 2w(v, r) + h(v), Thus,

2w(v,r) +h(v) < WH(C]) < OPT, VveV,. (16.15)
Combing inequalities (16.14) and (16.15), we have

WH(T)

8 = max{ , 2w, r) +h(v)} < OPT. (16.16)

veVy

The time complexity analysis of Algorithm 11 is straightforward, omitted.  [J

16.4.2 Approximation Algorithm for the Minimum Number
of Mobile Chargers Deployment Problem

In this subsection, we provide an approximation algorithm for the minimum number
of mobile chargers deployment problem. As each mobile charger consumes energy
on traveling and charging sensors per tour, the total amount of energy consumed by
the mobile vehicle is bounded by its energy capacity /E.
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16.4.2.1 Algorithm

The basic idea of the proposed approximation algorithm is to reduce the minimum
number of mobile chargers deployment problem into a p-closed tour problem, by
bounding the total cost of each closed tour. A solution to the latter in turn returns a
solution to the former as follows.

Recall that we assume that the base station knows both the residual energy RE; and
the energy consumption rate p; of each sensor v; € Vj, and p is the wireless charging
rate of a mobile vehicle. Assume that there are sufficient numbers of fully charged
mobile vehicles available at the depot. Then, a mobile vehicle takes t; = %
time to charge sensor v; to its full capacity B; when it approaches the sensor. We thus
construct a node and edge weighted metric graph G, = (V;, E; h, w), where V; is the
set of sensors to be charged in this round. There is an edge in E between any two to-be-
charged sensor nodes. For each edge (1, v) € Ej, its weight is w(u, v) = n - d(u, v)
which is the amount of energy consumed by a mobile vehicle traveling along the
edge, where 7 is the energy consumption rate of a mobile vehicle for traveling per
unit length and d(u, v) is the Euclidean distance between sensor nodes u and v.

For each node v; € Vi, its weight h(v;) (= B; — RE; = i - 1;) is the amount of
energy needed to charge sensor v; to reach its full capacity B;. We assume that /E >
max,ecy, {2w(v, r) 4+ h(v)}; otherwise, there are no feasible solutions to the problem,
which will be shown by Lemma 16.6 later. The detailed algorithm is described in
Algorithm 12. We refer to this algorithm as NMV_without_Eloss.

Algorithm 12: Finding the optimal number of mobile vehicles and their closed
tours (NMV_without_Eloss)
Input: A metric graph G; = (Vy, Es; h, w), aroot r, and IE with
IE > max,cv, {2w(r,v) + h(v)}.
Output: p-node-disjoint closed r-rooted tours Cy, Cs, ..., C, covering all nodes in V; such
that WH(C;) < IE.
Let 7 be an MST of G,. Denote by W(T') and H (T') the total costs of the edges and nodes in
T, respectively;
if IE >2-W(T)+ H(T) then
One mobile vehicle suffices by Lemma 16.4; EXIT;;
end if
A < max,ey, 2w(v, r)};
if /[E/5 > A then
8 < IE/5; I*§ is the average subtree cost after tree decomposition*/;
else
§ «—
end if
Perform the tree decomposition using §. If there is a node v with 2(v) > §, then the node
itself forms a tree;

-

o N A R W

IE—A.
T

—
-

12 Let € = {Cy, C3, ..., Cp} be the solution by applying Algorithm 11 for the tree
decomposition on 7" with the given §;
13 return ¢ as a solution of the problem and p = |¢|.
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16.4.2.2 Algorithm Analysis

We analyze the approximation ratio of the proposed algorithm, Algorithm 12, and
its time complexity as follows. We start by Lemma 16.6, which says that there must
be a feasible solution to the problem if and only if /E > max,cy, {2w(v, r) + h(v)};
otherwise, there are no solutions to the problem. Thus, in the rest of our discussions,
we assume that /E > max,cy, {2w(v, r) + h(v)}.

Lemma 16.6 Given a metric graph G, = (Vy, Eg; h, w) and an energy capacity IE
of each mobile charging vehicle, there is a feasible solution to the minimum number
of mobile chargers deployment problem in G if and only if IE > max,cy, {2w(v, r) +
h(v)}, where r is the depot of charging vehicles.

Proof If IE > max,cy,{2w(v, r) + h(v)}, we can derive a feasible solution to the
problem, by dispatching one charging vehicle to charge only one of the n = | V|
sensors. Thus, n charging vehicles are deployed. On the other hand, assume that
there is a feasible solution € = {C), C, ..., C,} to the problem, where p charging
vehicles are deployed to fully charge the n sensors and C; is the charging tour of the
J-th charging vehicle with 1 < j < p. Itis obvious that WH(C;) < IEfor1 <j <p.
Consider a sensor v; € Vi such that v; = argmax,cy, {2w(v, r) + h(v)}. Let C; be
the charging tour containing sensor v; in the solution. Since tour C; must contain
sensor v; and depot r, the total cost of the tour, WH(C;), must be no less than
2wy, r) + h(vy),ie., WH(C;) = 2w(v;, r) + h(v;). Then, IE > 2w(v;, r) + h(v;) =
maXx,ey, {2w(v, r) + h(v)}. O

Theorem 16.5 Given a metric graph Gy = (Vy, E;; h, w) and the energy capacity
IE of each mobile charging vehicle with IE > maXx,cy,{2w(v, r) + h(v)}, there is an
approximation algorithm, Algorithm 12, with an approximation ratio of 8 for the min-
imum number of mobile chargers deployment problem in G if IE > 2A; otherwise,
the approximation ratio of the algorithm is 4(1 + hi) = O(1). The algorithm takes
O(|V,|?) time, where r is the depot of charging vehicles, A = max,cy, {2w(r, v)}, and
hoin = minver {h(V)}

Proof We first show that Algorithm 12 can deliver a feasible solution ¢ = {Cy, C5,
..., Gp}. Recall that A = max,cy,{2w(v, r)}, which is the maximum energy con-
sumption of a charging vehicle on one round trip between a sensor v and the depot
r in the sensor network. We distinguish it into three cases.

Case 1. If IE > 2 - W(T) 4+ H(T), then there is a closed tour C including all nodes
in V; derived from 7 and the total cost of C, WH(C) (<2 - W(T) + H(T) < IE by
Lemma 16.4), is no more than the energy capacity of a mobile vehicle /E. Hence,
one mobile charging vehicle suffices for charging all nodes in V.

Case 2. If IE/5 > A, then § = IE/5, and the total cost of each closed tour in the
solution is no more than 56 = IE by Theorem 16.4.
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Case 3. (IE/5 < A < IE). Following Algorithm 12, we set § = 'E Clearly,
w(v,r) < A/2foranynodev € V,since A = max,ey,{2w(r, v)}. Then, the total cost
of each closed tour C in the solution is analyzed as follows. (i) C contains only
one sensor node v € V;. The total cost of C thusis WH(C) = 2w(r,v) + h(v) < IE
by Lemma 16.6 and the input condition of the algorithm. (ii) C consists of multiple
sensor nodes and is derived from a tree 7;. Then, the total cost of tour C in the solution
iIsSWH(C) <2-25+w(vy,r) <4- % +2w(vg, r) < IE — A + A = IE, where
w(vo, r) = min,er,{w(v, r)} and T; is the tree from which C is derived. Thus, the
solution is a feasible solution of the problem.

We then analyze the approximation ratio of the proposed algorithm. Assume that
the minimum vehicles needed is p,,;,,. With a similar discussion in Theorem 16.4, a
lower bound on the value of p,,;, is

WH(T)
IE

Let p be the number of vehicles delivered by the proposed algorithm. We show
the approximation ratio by the following four cases.
Case 1. If I[E > 2 - W(T) + H(T), only one mobile vehicle suffices, and this is
an optimal solution.
— L\WH(T)/$] WHT)/5 _
Case 2. If IE/5 > A, we have § = IE/S. Then, - pnn < [WH(T)/,E] < WH/IE =
IE/5 = 5 by Lemma 16.5.

IE p_ IWH(T)/3) WH(T)/S
Case3.(IE/5 <A < IE/2) Wehave$ = £-4 Then, oo S T T = WD) /IE

=5 =45 = =i < o = 8 by Lemma 16.5, Eq. (16.17), and IE > 2A.

Case4.(IE/2 < A < IE). We have § = %. Let A, = min,ey, {h(v)}, which is
the minimum amount of energy for fully charging an energy-critical sensor v in the
sensor network. Then, IE > max,cy, {2w(r, v) + h(v)} = 2w(r,v;) + h(vi) = A +
h(vi) > A + hy,, Where v; = arg max,ey, {2w(r, v)}. The approximation ratio for

» \WH(T)/s] _ WH()/S _ IE _ 4IE _ A
Case 4 then is o= < /i = waaE = 5 = -4 = 40+ ) =40+

m) =4(1+ h:‘m) = O(1), as each of the to-be-charged sensors has consumed
a large portion of its energy already and h,,;, thus is proportional to the battery
capacity of each sensor, the ratio hi is usually a constant, where A is the maximum
energy consumption of a charging vehicle on one round trip between a sensor and
the depot r and h,,,;;, is the minimum amount of energy for fully charging an energy-
critical sensor. Therefore, the approximation ratio for Case 4 is a constant. Notice that
Case 41in practice rarely happens, since the energy capacity of a charging vehicle can-
not be used just for its travel without charging sensors, or its energy is only enough
to charge one or two sensors per tour.

In summary, the approximation ratio of Algorithm 12 is no more than 8 when
IE > 2A; otherwise (maxyey, {2w(w, r) + h(v)} < IE < 2A), its approximation ratio
is4(1 + h%) = O(1). The dominant time of Algorithm 12 is the invoking of Algo-

rithm 11, which takes O(] V;|?) time by Theorem 16.4. (I
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16.5 Performance Evaluation of the Algorithms
for the Service Cost Minimization Problem

In this section, we evaluate the performance of the proposed algorithms for the
service cost minimization problem through experimental simulations. We also study
the impact of important parameters on the algorithm performance, including network
size, data aggregation, and the ratio of the maximum data generation rate to the
minimum data generation rate.

16.5.1 Simulation Environment

We consider a WSN consisting of from 100 to 500 sensors in a 1,000m x 1,000 m
square area, in which sensors are randomly deployed. The base station is located at
the center of the square. The battery capacity B; of each sensor v; is 10.8kJ [14]. The
data sensing rate b; of each sensor v; is randomly chosen from an interval [b,,i,, bax],
where b,,;; = 1kbps and b,,,, = 10kbps [14]. The coefficient « in Eq. (16.2) is 2.
Furthermore, we assume that each sensor v; performs data aggregations on both
pass-by traffic and self-sensed data with a data aggregation factor 6, i.e., the data
transmission rate b/ of sensor v; is b!* = 6 - (b®* + b;), where b and b; are the
data reception rate and data sensing rate of sensor v;, respectively, and 6 is constant
with 0 < 6 < 1 [23]. The default value of 6 is 1.

There are 5 depots in the WSN (i.e., ¢ = 5) and there is a mobile charger at each
depot. To reduce the total traveling distance of the ¢ mobile chargers, one depot is
colocated with the base station, as the most energy-consuming sensors in a WSN
usually are close to the base station for relaying data from other remote sensors.
The rest of ¢ — 1 depots are randomly distributed in the area. The entire monitoring
period T is one year, which is partitioned into equal time slots with each lasting AT
(AT typically is much shorter than 7', e.g., AT is one month). We assume that the
data sensing rate b; of each sensor v; € V does not change within each time slot AT
Even if it does change within the time slot, the difference can be neglected.

To evaluate the performance of the proposed algorithms MinDis and
MinDis-var against the state-of-the-art algorithms, we implement three bench-
mark algorithms of sensor charging Periodic [14-16, 30], OnDemand, and
Partition of [19, 22], which are described as follows. In algorithm Periodic,
the base station periodically dispatches the ¢ mobile chargers to charge every sensor
in the network with charging period being 7,,;,. The charging tours of the g chargers
will be found by applying Algorithm 9. In algorithm OnDemand, each sensor sends
acharging request to the base station when its residual energy is below a given energy
threshold. Having received a set of such requests, the base station then dispatches the
q mobile chargers to charge the sensors whose estimated residual lifetimes are less
than a given threshold A/ with Al = t,,;,. The charging tours of the g mobile charg-
ers are finally obtained by applying Algorithm 9 for the g-rooted TSP problem in
the induced graph of the to-be-charged sensors. Finally, in algorithm Partition,
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the monitoring region is divided into ¢ subregions, in other words, the sensors in
the network are first partitioned into g disjoint sets Vi, V, ..., V, with each set cor-
responding to the sensors in its subregion, where a sensor v; is contained in set V;
if depot 7; is its nearest depot among the g depots. Then, the sensors in V; will be
charged by only the mobile charger located at depot r;, where 1 < j < g. Each sensor
v; € V; sends a charging request to the base station when it will deplete its energy
soon. Once receiving the request, the base station dispatches the mobile charger at
depot r; to charge a subset Vj’ of sensors of V; with the residual lifetime of each
Sensor in V]/ being less than a given threshold A}, i.e., Vj/ ={ilvieV,l < Al},
and the charging tour of the charger is a shortest closed tour visiting the sensors in
Vj’ and depot rj, where Al;=t/,, and 7/, is the shortest maximum charging cycle of

min min

sensors in set Vj, i.e., T,]ninzminv,-e\/j{ti}-
It must be mentioned that each value in all figures is the average of the results
by applying each mentioned algorithm to 100 different network topologies with the

same network size.

16.5.2 Performance with Fixed Maximum Charging Cycles

We first evaluate the performance of the proposed approximation algorithm MinDis
against algorithms OnDemand, Partition, and Periodic by varying network
size n, assuming that maximum charging cycles within 7 are fixed. Figure 16.3
shows that the service costs delivered by algorithms MinDis, OnDemand, and
Partition are much less than that by algorithm Periodic. For example,
Fig. 16.3 demonstrates that the service cost by algorithm MinDi s only about from 15
to 25 % of the cost by algorithm Periodic, and the costs by algorithms OnDemand
and Partition are from 19 to 28 % of that by algorithm Periodic. Also, it can
be seen from Fig. 16.3 that the proposed algorithm MinDis delivers a solution with
the least service cost of mobile chargers, while the service costs delivered by algo-
rithms OnDemand and Partition are almost identical and the one by algorithm
OnDemand is only marginal better than that by algorithm Partition, ranging
from 0.3 to 1.5 % improvement. In the following, we only compare the performance
of algorithms MinDis, OnDemand, and Partition, and omit the performance
of algorithm Periodic, since the service cost delivered by the algorithm is much
higher than that by the three algorithms.

‘We then examine the impact of the data aggregation factor 6 on the performance of
the three algorithms, by decreasing 6 from 1.0 to 0.1. Figure 16.4 clearly presents that
the service costs by algorithms MinDis, OnDemand, and Partition decrease
when 6 becomes smaller and the service costs by the three algorithms are almost
identical when 8 = 0.1. The rationale behind the phenomenon is that the data trans-
mission rates of sensors can be greatly reduced by a small data aggregation factor 0
while the sensor energy consumption on data transmission is usually the dominant
one [23]. As a result, the maximum charging cycles of sensors becomes longer with
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a smaller value of 6 and the service cost of mobile chargers thus is significantly
reduced.

We finally study the impact of the maximum data rate b,,,, on the algorithm
performance, by varying b, from 1 to 10 kbps when b,,;, = 1kbps. Figure 16.5
demonstrates that the service cost by algorithm MinDis is only from 79 to 82 %
of the service cost by algorithm OnDemand and their performance gap increases
when b,,,, becomes larger. Furthermore, Fig. 16.5 clearly shows that the service
costs by the three algorithms increase with the increase of b,,,,. This is because that
the energy consumption rates of sensors becomes higher when the maximum data
rates of sensors b,,,, increases. As a result, sensors must be charged more frequently,
which incurs more service cost of the mobile chargers.
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In the following, we omit the performance of algorithm Partition, since the
service costs by algorithms OnDemand and Part i tion are almostidentical, which
have already been shown in Figs. 16.3, 16.4, and 16.5.

16.5.3 Performance with Variable Maximum Charging
Cycles

We first investigate the performance of the proposed heuristic algorithm

MinDis-var against algorithm OnDemand with variable maximum charging
cycles. Figures 16.6 and 16.7 illustrate the performance of both algorithms, by vary-
ing network size n and the data aggregation factor 6, respectively. It can be seen that

Fig. 16.6 Performance of 1600 ‘ 1600
algorithms MinDis-var GO MinDis-var \
and OnDemand by varying 1400 A A OnDemand 1400
the network size when AT is
one month g 1200 1200
< 1000 1000
Z
O 800 800
(o}
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Q
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4004 400
200 [~ 200
1 1 1

0 0
100 200 300 400 500
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algorithm MinDis-var is still very competitive as it did under fixed maximum
charging cycles.

We finally study the impact of the dynamics of maximum charging cycles on
the algorithm performance, by varying parameter AT from 1 week (i.e., extremely
dynamic) to 10 weeks (i.e., rather stable). Figure 16.8 shows that the service cost
by algorithm MinDis-var decreases with the increase of the stability of the sen-
sor maximum charging cycles (a larger AT), while the service cost by algorithm
OnDemand almost does not change with the increase of AT. We also note that algo-
rithm MinDis-var significantly outperforms algorithm OnDemand even when
the maximum charging cycles are stable only in a short time slot AT (e.g., AT=
one week), which indicates that algorithm MinDis-var can quickly adapt to the
changes of maximum charging cycles.

Fig. 16.8 Performance of 300 300
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16.6 Performance Evaluation of the Algorithm
for the Minimum Number of Mobile Chargers
Deployment Problem

In this section, we evaluate the performance of the proposed algorithm for the mini-
mum number of mobile chargers deployment problem through experimental simula-
tions. We also investigate the impact of several important parameters on the algorithm
performance including the network size n, the variance of energy consumption rates,
the energy capacity /E of mobile charging vehicles, and the critical lifetime interval
parameter o.

16.6.1 Simulation Environment

We consider a wireless rechargeable sensor network consisting of from 100 to 500
sensors that are randomly deployed in a 500m x 500 m square. The battery capacity
B; of each sensor v; € V; is set to be 10.8 kiloJoules (kJ), by referring to a regular
NiMH battery [14]. A base station is located at the center of the square, and a depot
of mobile vehicles is colocated with the base station. The energy capacity of each
mobile charging vehicle /E ranges from 1,000 to 5,000 kJ. We assume that each of
them travels at a constant speed of s = 5m/s with energy consumption rate of n =
0.6kJ/m [15]. The energy-charging rate of each charging vehicle is u = SW [34].
The default value of « is 5.

We consider two different distributions of energy consumption rates of sensors:
the linear distribution and the random distribution. In the linear distribution, the
energy consumption rate p; of sensor v; is proportional to its distance to the base sta-
tion. The nearest and farthest sensors to the base station have the maximum energy
consumption rates p,,,, and the minimum energy consumption rates 0,,i,, respec-
tively, where p,,;, = 1 mJ/s and p,,,c = 10mlJ/s. The linear distribution models the
energy consumptions of sensors in WSNs where the main energy consumption of
sensors is on the data transmission and relays. Sensors close to the base station must
relay the sensing data for other remote sensors, thus consuming much more energy
than the others. Furthermore, by adjusting the energy consumption ratio of each sen-
sor from par tO Pmin, this model can be used to model data aggregations at relay
sensor nodes, i.e., a smaller ratio ’/’Jm—‘“ implies a higher data aggregation. On the other
hand, in the random distribution, the energy consumption rate p; of each sensor
v; € V; is randomly chosen from a value interval [oyn, Omax]- The random distribu-
tion captures the energy consumption of heterogeneous sensors. For example, video
camera sensors in multimedia sensor networks typically consume plenty of energy
on image processing [41]. Thus, the energy consumption rates of sensors in such
sensor networks do not closely correlated with the distances between the sensors and
the base station. We further assume that the energy-charging rate u of each mobile
vehicle is several orders of magnitude of the energy depletion rate of sensors, i.e.,
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1 > maxy,ey {p;}. A fully charged sensor can survive from 10days up to 4 months.
We put one year as our monitoring period of the sensor network. Each value in fig-
ures is the mean of the results by applying each mentioned algorithm to 50 different
network topologies with the same network size.

To evaluate the performance of the proposed algorithms, we have also imple-
mented three benchmarks LB_optimal, algorithm Heuristic, and algorithm
minMCP [32, 33], in which LB_optimal is a lower bound on the minimum number
of mobile chargers which is an approximate estimation of the optimal solution, i.e.,
LB_optimal = [WH(T)/IE] by Eq. (16.17), where WH (T) is the total cost of
the MST T of the metric graph G, induced by the to-be-charged sensors, and /E
is the energy capacity of each mobile charging vehicle. Algorithm Heuristic is
described as follows. Given n to-be-charged sensors vy, vy, ..., v, indexed by their
appearance in the area, we assume that the depot is the origin, and index the sensors in
anticlockwise order. Algorithm Heuristic assigns the vehicles to the sensors one
by one until all sensors are charged. Specifically, assume that the first K — 1 mobile
vehicles have been assigned to sensors vy, Vo, ..., v;_i already. We now assign the
Kth mobile vehicle to charge the sensors in the sequence v;, Vi1, ..., V,. Initially,
K = landi = 1. The set of sensors charged by vehicle K willbe v;, viy1, ..., v;if the
total cost of a shortest closed tour Ck including depot r and sensors v;, Vity, ..., V;
is no more than the energy capacity /E while the total cost of a shortest closed
tour Cy including depot r and sensors v;, viii, ..., Vj, V41 is larger than IE, i.e.,
WH(Ck) < IE and WH(Cy) > IE, where i < j < n. This procedure continues until
all n sensors are charged.

To compare our work with the two closely related works [32, 33], we adopt a
variant of algorithm minMCP in [32, 33] since the total energy consumption of some
of the closed tours delivered by their algorithms may violate the energy capacity
constraint /E, and the amount of energy consumed on each such a tour can be up to
IE(1 4 ¢) with ¢ > 0 being a constant. To ensure that the energy consumption of
any charging tour is no greater than the energy capacity /E of each mobile vehicle
when applying algorithm minMCP, we set the energy capacity of mobile vehicles as
JE_ when invoking the algorithm. Thus, the total energy consumption of a charging

I+e

vehicle per tour will be no more than ll—fg -(14¢&)=1IE, and we set ¢ = 0.1 in all

our experiments in the default setting.

16.6.2 Performance Evaluation of Algorithms

We evaluate the performance of algorithms NMV_without_Eloss,
NMV_with_Eloss, Heuristic and minMCP as follows, where algorithm
NMV_without_Eloss does not take into account the sensor energy consump-
tion during each charging tour, while algorithm NMV_with_Eloss does take such
sensor energy consumption into consideration.
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Fig. 16.9 Performance of algorithms NMV_without_Eloss, Heuristic, and minMCP by
varying network size under two different distributions of energy consumption rates when /E =
1,000KJ, pmin = 1 ml/s, and p0c = 10ml/s

We first evaluate the performance of algorithms NMV_without_Eloss,
Heuristic, and minMCP under the assumption that sensor energy consumption
rates follow linear and random distributions, by varying the network size from 100 to
500 sensors. Figure 16.9a plots their performance curves, from which it can be seen
that the solution delivered by algorithm NMV_without_Eloss is fractional of the
optimal one. Specifically, the number of mobile vehicles delivered by it is around
35 % more than the lower bound LP_optimal, while the number of mobile vehicles
by it is about 20 and 45 % less than that by algorithms Heuristic and minMCP,
respectively. The rationale behind is as follows. Given a set of to-be-charged sen-
sors, algorithm Heuristic first sorts the sensors in anticlockwise order, where the
depot is the origin. The algorithm then assigns the mobile vehicles to sensors one
by one until all sensors are charged. There may be some cases that some sensors
charged by a mobile charging vehicle are far away from each other. Then, the charg-
ing vehicle consumes more energy on traveling, rather than on charging the sensors.
As a result, more charging vehicles are needed. In contrast, the proposed algorithm
NMV_without_Eloss will schedule a mobile charging vehicle to replenish a set
of sensors whose locations are close to each other. Therefore, less charging vehi-
cles are required. Figure 16.9b indicates that the four algorithms have the similar
behaviors under both linear and random distributions of energy consumption rates.

We then study the impact of the energy capacity of mobile charging vehicle
IE on the performance of algorithms NMV_without_Eloss, Heuristic, and
minMCP by varying /E from 1,000 to 5,000kJ. Figure 16.10 shows that with the
growth of the energy capacity /E, the number of mobile charging vehicles delivered by
algorithm NMV_without_Eloss decreases, and the gap between the solution and
the lower bound of the optimal solution becomes smaller and smaller, which implies
that the performance of algorithm NMV_without_Eloss is near-optimal. On the
other hand, the number of vehicles delivered by algorithm NMV_without_Eloss
is up to 50 % less than that by algorithm Heuristic.
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We finally investigate the impact of the variance among energy consump-
tion rates of sensors on the performance of algorithms NMV_without_Eloss,
Heuristic, and minMCP, by varying pm.. from 1 to 10mJ/s while fixing p0,,in
at 1 mJ/s. Figure 16.11 indicates that the number of mobile vehicles needed by
each of the three algorithms NMV_without_Eloss, Heuristic, and minMCP
decreases, followed by slowly growing. The rationale behind is that when the variance
is quite small (i.e., the gap between p,,,, and p,,;, is small), the solution delivered by
algorithm NMV_without_Eloss will include almost all sensors in each charging
round, thus, a large number of mobile vehicles are required. With the increase on the
variance, the number of to-be-charged sensors in each charging round significantly
decreases. On the other hand, when the maximum energy consumption rate 0
becomes large, the average energy depletion rate of the sensors will be faster, the solu-
tion by algorithm NMV_without_Eloss will include more sensors to be charged
per charging round as more sensors are within their critical lifetimes. In the following,
we do not compare the performance of algorithm minMCP, since its performance is
the worst one among the four algorithms LB_optimal, NMV_without_Eloss,
Heuristic, and minMCP, which has been shown in Figs. 16.9-16.11.

16.6.3 The Impact of o on Algorithmic Performance

We now evaluate the impact of critical lifetime interval parameter « on the perfor-
mance of the proposed algorithms by varying the value of « from 1 to 7. A smaller «
implies that more frequent schedulings are needed, and less numbers of mobile vehi-
cles are employed per charging round. With the growth of «, more and more sensors
will be included in Vi, and more sensors will be charged by mobile charging vehicles
per charging round. Figure 16.12 implies that with the growth of «, more charging
vehicles are needed by algorithms NMV_without_Eloss and Heuristic in
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each charging round, as more sensor nodes fall in the defined critical lifetime inter-
val. However, it is interesting to see that no more mobile vehicles are required when
the value of « is greater than 6, since all sensors will be charged in each charging
round.

16.7 Conclusions

In this chapter, we studied the use of multiple mobile chargers to charge sensors in
a wireless sensor network so that none of the sensors will run out of energy for a
given monitoring period, for which we first formulated the novel service cost mini-
mization problem of finding a series of charging schedulings of mobile chargers so
that the total traveling distance of the mobile chargers for the monitoring period is
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minimized, and the problem of using the minimum number of mobile chargers to
charge sensors such that none of the sensors will run out of energy, subject to the
energy capacity constraint imposed on each mobile charger, while maintaining the
perpetual operations of sensors. As these optimization problems are NP-hard, we
then devised an approximation algorithm for the service cost minimization problem
with a provable approximation ratio if the maximum charging cycle of each sensor
is fixed in the given monitoring period. Otherwise, we developed a novel heuristic
solution through modifications to the approximate solution. We further devised an
approximation algorithm for the minimum number of mobile chargers deployment
problem with a provable performance guarantee. We finally evaluated the perfor-
mance of the proposed algorithms through extensive experimental simulations, and
experimental results showed that the proposed algorithms are very promising, and
the solutions obtained are fractional of the optimal ones.
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Chapter 17
Unmanned Aerial Vehicle-Based Wireless
Charging of Sensor Networks

Carrick Detweiler, Michael Eiskamp, Brent Griffin, Jennifer Johnson,
Jinfu Leng, Andrew Mittleider and Elizabeth Basha

Abstract Sensor networks deployed in remote and hard to access locations often
require regular maintenance to replace or charge batteries as solar panels are some-
times impractical. In this chapter, we develop an Unmanned Aerial Vehicle (UAV)
that can fly to remote locations to charge sensors using magnetic resonant wireless
power transfer. We discuss the challenges of using UAV's to charge sensors wirelessly.
We then present the design of a lightweight system that can be carried by a UAV
as well as design a localization sensor and algorithm to allow the UAV to precisely
align itself with the receiver by sensing the induced field. We also develop a number
of algorithms to address the question of which sensors should be charged given a
network of sensors. Finally, we experimentally verify algorithms that leverage the
sensor network’s ability to adapt internal communication and energy consumption
patterns to optimize UAV-based wireless charging.
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17.1 Introduction

Battery life continues to limit long-term deployment of wireless sensor networks for
applications such as remote environmental monitoring. Typically, the batteries are
charged using solar cells, but these are impractical in numerous applications where
the sensors are placed in shady locations (e.g., under bridges for structural monitor-
ing) or when they are embedded in materials (e.g., in agronomy fields for monitoring
soil conditions). Wireless recharging of environmental monitoring systems addresses
many of these issues, including being able to transfer power through many materi-
als, and does not require the precise physical alignment required for contact-based
charging. Getting close enough to the sensors to use medium-range wireless power
transfer systems, however, can still be a challenge in many environments (e.g., a
sensor under a bridge monitoring structural integrity). In this chapter, we use an
Unmanned Aerial Vehicle (UAV) to wirelessly recharge sensor nodes located in hard
to access outdoor environments.

Using wireless power transfer systems carried by a UAV to charge sensor nodes
poses numerous challenges. First, we need to determine if this system can even
be effectively carried on a payload and power-limited UAV. Typical methods for
optimizing the quality factor of the power transmission coils may not be best for
UAV systems that need to be lightweight and handle minor crashes that can deform
coils. In addition, the UAV has specific operating voltages and battery capacities so
care must be taken to ensure that sufficient energy is reserved for flight. Solving this
requires designing a specialized lightweight wireless system that can be carried by a
UAV. Further, GPS alone is insufficient to get close enough to the sensors to charge,
so this requires additional systems to align with the sensors for efficient recharging.
Second, in a network of many sensors, we need to decide the best order to charge
nodes to optimize the overall lifetime of the network.

In this chapter, we solve these challenges with three solutions: (1) a novel wireless
recharging system for a UAV to recharge a sensor node, (2) a localization strategy
for the UAV to efficiently align with the sensor node for recharging, and (3) algo-
rithms that effectively utilize both systems (the UAV and the sensor network) for
recharging. Our first solution is our wireless recharging system, consisting of the
UAV transmission system, a sensor node receiving system, and a specialized sensing
system for alignment between the two. Our second solution utilizes these systems to
develop an algorithm for the UAV to locate a sensor node for recharging. Our final
solution develops algorithms to identify the correct node to recharge and recharges
that node, using both systems collaboratively.

We demonstrate that it is possible to develop a lightweight wireless power system
that can be carried by a UAV. Further, we develop a magnetic resonance sensor that can
detect the induced magnetic field. This allows the UAV to localize the sensor network
node within 27 cm, which enables efficient wireless power transfer. We then develop
a family of heuristic algorithms that address the NP-hard problem of selecting the
sequence and amount of energy to transfer to a set of sensor nodes in a network given
different levels of knowledge about the network. Further, we leverage the capabilities
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of the sensor network to change the routing protocols within the network to shift the
energy deficit to a subset of nodes. This enables better algorithms for selecting the
node to charge and the UAV can then use this information to optimize its recharging
strategy while not requiring full network energy information. We test this on our
sensor network platform to confirm operation.

The chapter has the following structure: Section17.2 outlines related work.
Section 17.3 describes the technical challenges in greater detail. Section17.4 dis-
cusses our system implementation while Sect. 17.5 describes the algorithm for effi-
ciently recharging a sensor node. Section 17.6 outlines our use of this information
by the UAV to determine recharging strategies; Sect. 17.7 then discusses our work
on identifying which node to recharge within the larger sensor network using both
systems. Finally, we conclude with Sect. 17.8 that describes our future work.

17.2 Related Work

There are a wide range of techniques for wirelessly transmitting energy ranging from
directed microwave energy [25] to radio frequency power harvesting [30] (see [23]
for an overview of techniques). The concept of using magnetic resonance to transfer
power is based on systems developed by Tesla over a century ago [34]. We use
magnetic resonance wireless to transfer power from our UAV to sensors. Magnetic
resonance power transfer has seen significant advances in the past decade as discussed
in the other chapters in this book. We refer readers to those chapters for detailed
related work on the development and advances in magnetic resonance-based power
transfer. In this chapter, we focus our related work on power transfer and localization
systems for UAV-based power transfer and also examine work related to wireless
sensor network charging.

17.2.1 UAV Power Transfer and Localization

Instead of focusing on improving the efficiency of magnetically resonant wireless
power transfer systems, part our research focuses on obtaining precise relative local-
ization between the UAV carrying the power transfer system and the sensor node
being charged. Since GPS is not sufficiently accurate for our purposes, we must
use another localization technique. There are a number of approaches to obtaining
more accurate position information for UAVs outdoors. While it is possible to use a
Real Time Kinematic or Differential GPS to obtain decimeter-level accuracy [21],
these systems require infrastructure, expensive receivers, and the signals may still
be blocked, for instance, under bridges where we wish to operate. Altug et al. used
a ground-based camera to track a UAV to provide accurate position information [2].
Optical flow, often fused with inertial measurement unit (IMU) data, has been used
on UAVs to provide good position estimates over the course of a UAV mission [15,
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16, 20]. We cannot solely rely on optical flow, however, since we require submeter
positioning accuracy and even the best optical flow techniques cannot provide this
under all conditions. In our system, we use a velocity estimate from a simulated
optical flow camera with 0.2 m/s error, which is moderate accuracy for an optical
flow system as explained by Honegger et al. [16].

Simultaneous Localization and Mapping (SLAM) is an alternative approach to
optical flow which, unlike optical flow, does not typically suffer from accumulated
error. SLAM methods correct for drift by developing a map on which to localize.
Weiss et al. used a monocular camera and IMU on a UAV to perform SLAM with
only a few centimeters of error over 1 min [38]. Bachrach et al. used a laser scanner
on a UAV to perform 2D SLAM inside large buildings [3]. Grzonka et al. perform
SLAM in 3D on a UAV while navigating indoors [14]. While SLAM techniques on
UAVs have sufficient accuracy for our system, they require significant processing
systems that are heavy to carry and would greatly reduce flight time.

Our localization approach is inspired by Moore and Tedrake [27] who use a
magnetic field to localize a glider UAV to perch on a power line. They use a standard
magnetometer to sense the magnetic field from low-frequency, high-current power
lines (40 A). They use a Kalman filter and track the magnetic field and eliminate
positional ambiguity in the magnetic field sensors. They conclude that their method
of localization is sufficient for a small UAV to perch on a power line; however, their
system does not fully close the loop to enable control based on the sensor readings.
Our work differs from theirs in a number of ways. First, our system operates at higher
frequencies and lower currents so standard magnetometers do not work. Instead we
develop a sensor that measures the voltage in a small resonant coil (see Sect. 17.4.2).
Second, we are primarily interested in having a final position close enough to transfer
power and are less interested in the trajectory during approach, which is critical to
enable perching. Thus, we do not need to consider the details of vehicle dynamics,
which allows us to easily adapt our approach to new vehicles. Finally, we demonstrate
our system and perform full closed-loop control.

Also related to our work is methods for localizing based on radio transmissions [7,
9, 17, 24, 35, 37]. For instance, Tokekar et al. used bearing and signal strength to
locate radio tagged fish with a robotic boat [35]. They use many wireless sensor
network nodes equipped with rotatable antenna to locate the fish. First, they map
a relationship between the signal strength and the distance from a ground truth
measurement. They fit a linear regression model of this data. When the radio strength
is at its maximum value, the bearing and radio strength information is sent to a
centralized computer. The position of the fish is then triangulated by creating an
enclosed polygon with the bearing angles.

While we were one of the first to demonstrate charging of ground sensors from
an aerial robot [13, 26], the reverse problem of how to power an aerial vehicle was
looked at in 1964 to wirelessly power a flying helicopter [6] and in 2011 was used
to enable a 12-h, record-length quadrotor flight [1].
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Finally, we also examine the impact of embedding the sensors we are localizing
and charging in different materials. Prior work by Seo et al. examined the impact
of building materials such as softwood lumber, concrete brick, and drywall with
insulation on wireless power transfer [32]. We add to this by also examining common
outdoor materials and looking specifically at how these impact our magnetic resonant
localization sensor.

17.2.2 Wireless Sensor Network Charging

The lifetime of a sensor network remains a performance bottleneck of many wire-
less sensor network applications. While this chapter focuses on recharging wire-
less sensor networks with a robot, many researchers take a different approach to
eliminating this bottleneck. For example, Coleri et al. introduced the PEDAMACS
control scheme, which shows that with an unlimited energy source for an Access
Point coupled with clever transmission synchronization using Time Division Mul-
tiplexing, they are able to increase the lifetime of some networks by 1-2years [8,
10]. Feeney et al. identified the complex relationships between energy consump-
tion and transmission speed, transmission range, and node density [11]. This allows
researchers to identify energy performance bottlenecks in a variety of wireless sensor
networks. Roundy et al. reviewed many potential power sources for wireless sensor
networks [29], allowing the lifetime of some networks to be prolonged.

Still, the lifetime of the network can only be lengthened so much using these
methods. Recharging the network has the potential to power the network indefinitely.
Bing et al. use a mobile robot to replace wireless sensor network nodes [36]. Xie et
al. discuss the scenario of periodically charging sensors with a vehicle and created the
concept of arenewable circle [39]. Peng and Li [28] proved the concept that wireless
power transfer can effectively prolong the lifetime of the sensor network. They used
an energy station to monitor the status of the nodes and then guide the behavior of the
mobile charger. They also showed that optimally deciding which sensor to recharge
and how much energy to recharge is NP-complete via a reduction from the Traveling
Salesman Problem. Sheng et al. discussed how to use multiple mobile robots to
collaboratively recharge the sensor network and proposed an optimal recharging
algorithm for the scenario where nodes are distributed in one dimension [40].

In our prior work, we determined the best sink selection algorithm for improving
network lifetime assuming that a UAV can recharge a single sensor node per flight [4,
18]. This work occurred in simulation only. In this chapter, we implement a combined
sink selection and recharging algorithm on a sensor network; to the best of our
knowledge, it is the only field experiment to do so. In addition to the sensor network
implementation, in this chapter, we consider a UAV-centric approach to the problem
of finding the best strategy for UAV to recharge these sensor nodes if it can only have
one flight out to the network.
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17.3 Design Consideration and Challenges

In this section, we provide an overview of wireless magnetic resonant power transfer
and discuss the specific design challenges associated with UAV-based wireless power
transfer systems.

Resonant power transfer has a number of advantages over other techniques. Laser-
and microwave-based power transfer systems can transfer high amounts of energy,
but cannot operate through materials. RFID-type systems transfer power with radio
waves, but have limited power transfer capabilities. Standard inductive power trans-
fer has a very limited transmission range. Resonant power transfer improves upon
standard inductive power transfer by including two coupled resonant coils between
the driven and loaded inductive coils, as seen in Fig. 17.1. In this configuration, the
primary inductive coil, or Drive coil, is driven by an AC power supply. Due to the
close proximity between the Drive coil and the first resonant coil, called the Tx res-
onant coil, oscillations occur and power is transferred to the Tx coil. The Tx coil
causes the Rx coil to oscillate with a proportional degree of energy that is dependent
on their coupling. The Tx and Rx coils do not have any direct load connected to them
to interfere with the resonance. This allows them to couple and resonate over larger
distances than is possible without resonant coils. The last coil, the Load coil, induc-
tively receives power from the Rx coil in the same way that the Drive coil transfers
energy to the Tx coil, and it applies the voltage that it gains across a load to receive
the power.

In this work, we primarily consider two factors that impact resonant wireless
power transfer performance: (1) the quality factor (Q) of the coils and (2) ensuring
that all coils naturally resonate at a similar frequency. The quality factor represents
how well a resonant coil can hold energy without losses to heat and is defined as [5]:

Fig. 17.1 Schematic for Drive Coil
resonant power transfer
Power
Supply
Tx Resonant Coil
Alternating Magnetic Field
Rx Resonant Coil
WSN
node

Load Coil
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Fig. 17.2 Coils with high
quality factor (solid blue)
can have lower coupling than
those with lower quality
factors (dashed red) due to
manufacturing tolerances

' Frequency

—l\/f 17.1
0=z (7.1)

where R is the resistance of the coil (§2), L is the inductance of the coil (H), and C
is capacitance (F). For details on how to compute these parameters, see [12].

Intuitively, the quality factor can be thought of as how much energy a resonant
system can hold compared to energy lost during a single cycle. However, as previously
stated, while maximizing the quality factor is important when trying to minimize the
losses within the coils, a high Q may have a detrimental effect. In practice, the
resonant frequency of all of the coils will be slightly different from each other due
to manufacturing imperfections and component tolerances. High Q factors cause
a decrease in the bandwidth of the resonant coil, Af in Hz, which is defined as
Af = g

If the resonant frequency of one coil is not within the bandwidth range of the other
coil, they will couple poorly as shown in Fig. 17.2. The figure represents two sets of
resonant coils. The solid blue curves represent coils which have resonant frequencies
f1 and f;, respectively, and have a high Q. The higher the curves intersect on the
y-axis, the higher the power transfer. Notice that the high Q means that the peak
power transfer is higher if they are aligned, but because of the difference in the coils
natural resonant frequency (e.g., manufacturing tolerances), they are only able to
transfer at about half of the optimal performance. The red, dashed curves show coils
with the same resonate at the same frequencies f) and f>, but lower Q. If they were
precisely aligned, they would have lower overall transfer, but, since they have higher
bandwidth, they better tolerate misalignment. Thus, in this configuration, using the
coils with lower Q results in a higher power transfer.

While fixed, ground-based power transfer systems can be precisely tuned, this can
be difficult for UAV-based systems or other field robotics applications. For instance,
in order to be lightweight, our coils flex significantly during flight and, after rough
landings or crashes, their shape becomes distorted. This distortion changes their
resonant frequencies so, while having high Q is typically good, too high of a Q may
reduce performance in many robot systems.
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In addition to these considerations, with UAVs, we have to consider the construc-
tion and weight of the wireless power transfer system. One of the primary constraints
for UAVs is the weight of the payload, since any increase in the payload will decrease
the flight time. For low-frequency systems, power transfer systems energy losses are
dominated by ohmic losses and high frequency losses by radiative losses [19]. The
primary loss in our relatively low-frequency system is ohmic, which causes the coils
to heat when high currents move through the slightly resistive wire coils. Ohmic loss
can be decreased using a thicker gauge wire, thus decreasing resistance and increas-
ing Q, but this adds weight to the UAV and reduces flight time. Further, a reduction
in resistance can cause an increase in the switching losses due to higher currents
moving through MOSFETs. Similar trade-offs must be made when adjusting the
capacitance and inductance in the system to attempt to maximize the quality factor
while minimizing weight.

Finally, a key consideration for designing power transfer systems for UAVs is
the battery voltage available on the UAV and how drawing extra power from the
UAV will impact flight time. Typically, it is better to directly use the onboard UAV
battery as adding an additional battery dedicated to the power transfer system is often
impractical due to the added weight. Most UAVs use high-power LiPo batteries, so
most batteries can support wireless power transfer systems, although care should be
taken to not exceed the maximum current rating for the batteries as the UAV motors
also draw high currents. If an existing UAV is used to carry the power transfer system,
then the power transfer system must be designed to operate on the specific voltage of
the battery, since most UAVs are designed to use a single voltage (e.g., a three-cell
LiPo). Adding transformers or step-up regulators can increase the voltage available
to the power transfer system, but the weight of these systems typically reduces flight
time too much to be practical. If a high or specific voltage is required for the power
transfer system, then it is best to choose or design a UAV around this operating
voltage.

Now that we have briefly examined the theory behind magnetic resonant wireless
power transfer and discussed design considerations, we will look at the specific
components of our UAV-based wireless power transfer system and wireless sensor
network node.

17.4 System Overview

This section describes the hardware of the wireless power transfer system and the
UAV. Figure 17.3 shows an overview of the wireless power transfer system on the
UAV. The system consists of a UAV, the wireless power transmitter on the UAV, and
the receiving wireless sensor node.
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Fig. 17.3 The wireless power transfer system

17.4.1 UAV Power Transfer System

On the UAYV, the TX Drive Board sends an alternating current through the Drive Coil
causing an alternating magnetic field that drives the neighboring Tx Resonant Coil.
The Tx Resonant Coil serves to focus the field for transmission to the Rx Resonant
Coil, which is placed on the sensor network node along with the Load Coil. A
magnetic resonant (MR) sensor is connected to the Rx Resonant Coil to detect the
Tx system and enable localization. The Load Coil is connected to the receiving board,
which draws energy from the Rx Resonant Coil. Finally, the energy from the Load
Coil can be stored in the sensor network node. Table 17.1 gives an overview of the
specific parameters for the coils we use in our wireless power transfer system.

Table 17.1 Power transfer system parameters for the UAV and sensor network node coils

Description Variable Value

Coil length / 1.47655 m

Coil radius r 0.235m
Resistance R 0.0143 2

Number of wraps N 2

Inductance L 5.20068 x 1076 £2
Capacitance C 1.5x1077F
Frequency fr 167 kHz

Bundle thickness c 0.004 m

Quality factor Q 411
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Fig. 17.4 Power transferred to the sensor node with input voltage of (left) 12V and (right) 24V
recorded at a constant height roughly 5 cm above the sensor

At the heart of the TX Drive Board is an AD9833 programmable waveform
generator that can generate up to a 12.5 MHz signal. This signal is input into an
H bridge that generates a high-power alternating current that is driven through the
Drive Coil. Typically, we operate with a 9-24 V input range with a current between
1-4 Amps, although the board is designed to support up to 45V and 8 A with a
maximum power rating of up to 100 W. In addition, the TX Board has a processor to
control the frequency, enable or disable power transfer, monitor voltage and current,
and communicate with the ground sensors and base station with a Zigbee radio.

Figure 17.4 shows the amount of power that can be received by the device attached
to the load coil using an input of 12 and 24 V. This figure shows that there is a region
with a radius of approximately 30 cm that provides over 3W of power transfer for
12V input (our UAV operating voltage). As the distance from the transmitter to
receiver increases past this radius, the amount of power transferred drops signifi-
cantly. In Sect. 17.5, we show that the UAV can consistently localize to within 21 cm
of the sensor. While we are less concerned with optimizing the power transfer sys-
tem, it is important to note that the overall power transfer can be easily increased.
Figure 17.4(right) shows that we can double the power transfer, obtaining over 10 W
by doubling the input voltage. This can be accomplished using a UAV with higher
operating voltage, which is preferable to adding a dedicated power transfer battery
as the increased weight would significantly reduce flight time.

17.4.2 Wireless Power Receiver Sensor Node

A node in the sensor network consists of the wireless power receiver board, coils,
a magnetic resonant sensor, and any other sensors that are specific to the nodes
application, such as vibration, temperature, soil moisture, or pressure sensors. In
this chapter, we omit any application-specific sensing system; instead, we focus on
the power transfer system and localizing the UAV with the sensor network node
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Fig. 17.5 (left) Magnetic resonant (MR) sensor, which reads the voltage through the resonant coil
and (right) a heatmap of the values read 1.0 m above the sensor (white indicates areas of no data)

using the wireless power transfer system. A sensor network node receives about
6.1 W at peak efficiency. With 6.1 W power transfer for 5min, we nearly charge
a typical rechargeable AAA battery, which can operate most types of low-power
sensing systems for weeks. As with the transmitter, there is a Rx Resonant Coil in
close proximity to the Load Coil. The receiver board draws energy from the Load Coil
and may either use this energy directly or may charge batteries or super capacitors.

A Magnetic Resonant (MR) sensor, Fig. 17.5(left), is connected to the Rx Resonant
Coil and can detect the presence of the UAV power transfer system. When the Tx
system approaches, the voltage in this resonant coil increases significantly and is
measured by the MR sensor. The MR sensor detects the power transfer system from
three times farther away than the Rx Load Board and is thus the primary input to
the localization algorithm discussed in Sect. 17.5. The MR sensor circuit consists of
two opamps. The first controls the gain while the second is configured as a precision
rectifier to transform the AC signal into a DC value. This value then read by a
microcontroller with a 10-bit analog-to-digital converter (ADC). Figure 17.5(right)
visualizes the data returned from the MR sensors. As the transmitter approaches the
MR sensor, the voltage values approach a maximum value of about 3.7 V. As the
distance between the MR sensor and the transmitter increases, the voltage values
approach a minimum of around 1V.

17.4.3 MR Sensing Through Different Materials

We envision that the sensor network nodes charged by the UAV may be embedded
in many different materials, for example, underground to monitor soil properties. In
this section, we test the effect of common outdoor materials on the MR sensor to
ensure it will work for this scenario.

In this experiment, the sensor network node was placed under atleast 15 cm of each
of the target materials (except for the steel, where it was covered with a single 1 mm
sheet). The UAV flew a straight horizontal line directly over the sensor network node
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Fig. 17.6 Voltage readings from an MR sensor which is embedded in different materials

at a constant height of 1 m, and we record the values of the MR sensor. Figure 17.6
compares the voltage through the resonant coil that is embedded in plastic, wood,
stone, soil, and steel compared with a baseline measurement of air. The x-axis is
the horizontal distance, which is circularly symmetric around the MR sensor. The
voltage on the y-axis is used for localization and is also directly correlated with
the power transfer that the sensor network node receives. As Fig. 17.6 shows, the
nonferrous materials have no effect on the reception; however, the steel interferes
with reception, as would other metals. This means that the sensors can be embedded
in many common materials for long-term deployment.

17.5 Localization

In the prior section, we explored the details of the magnetic resonant power transfer
system that is attached to the UAV and the sensor network node. We showed that the
system is able to transfer sufficient power to charge a low-powered sensor network
node. In this section, we address the problem of using the MR sensor to align the UAV
close enough to the sensor network node to improve power transfer. The UAV can
use GPS to get near the location of a sensor network node, but GPS has 7.8 m error
in a 95 % confidence range [33]. Since the UAV must be within 30 cm to efficiently
transfer power, in this section we develop a localization algorithm that uses the sensed
magnetic field and dead-reckoning information from an optical flow sensor at the
sensor network to aid in localizing the UAV.
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17.5.1 Converting Measured Voltages to Distance
Measurements

The first step in estimating the position of the UAV is to convert the voltage mea-
surements from the MR sensors into a distance measurement. We experimentally
determined this relationship between the voltage and distance. We collected the data
by recording the positions of the UAV and the MR sensor readings at 52 Hz (the rate
the MR sensors transmit data). The UAV flew in the x direction directly over the top
of the MR sensor while holding y and z constant. Figure 17.7 shows curves that repre-
sent distances from the sensor for z values between 70 and 180 cm. These curves are
circularly symmetric on any radial axis. The figure shows that, for z values which are
too close to the MR sensor, there are significant lobes in the magnetic field. This may
be caused by poor coupling or overcoupling that can cause destructive interference
within the resonant coil [31]. The lobes make it difficult to estimate the range of the
UAV because one reading may correspond to two possible ranges. However, when
the UAV is sufficiently far from the sensor (in the vertical direction), the magnetic
field is still strong but there are no lobes. This shows that it is best to fly with a z
distance of roughly 1.3—1.6 m from the sensor, which can be accomplished using the
height estimates from the acoustic range finder on our optical flow system.

Figure 17.8 shows the data (black) and model (red) from 10 passes of the UAV
over the MR sensor at a height of 1.3 m =+ 5cm. The resulting dataset contains 6852
data points. We use this data to create a lookup table to convert the readings to
ranges. The maximum range at which the MR sensor can detect the UAV is about
2.2m; however, the model is the most accurate when the UAV is between 1.3 and
1.5 m of the sensor. We should note that in many environments we can fly within this
20 cm altitude range using the ultrasonic range finder; this may be more challenging
in complex environments and is part of our future work.

Fig. 17.7 Distance versus 4
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Fig. 17.8 MR voltage
averaged over multiple runs
while at a z value of 1.3m
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17.5.2 Localization Algorithm

Now that we have an estimate of the distance between the UAV and the MR sensor,
we develop a localization algorithm for the UAV using this information. Since the
MR sensor only provides a range and not direction, we need additional data to provide
the direction and aid in localization. Here, we use an optical flow camera, since it can
provide accurate motion estimates over short periods of time [20, 38] with higher
accuracy and update rates than GPS.

Algorithm 13: Localization Algorithm

// Input: coarse position of the sensor
1 Function Localize(x;,, ys,)
2 GPSFlyTo(xs,,ys,) // Fly to the coarse position
// Now switch to Optical Flow + MR sensor control
OptFlowFlySquare(x;,, ys.,2) ;
OptFlowFlyTo(Xs, ¥s) ;
while True do // Continually refine estimate
OptFlowFlyInCircle(Radius = d) ;
OptFlowFlyTo(Xs, Js) ;
end while
end
10 Function OnNewMRreading(V olts)
11 d < Volts_to_range(Volts) ;
12 Xuay < Append(Xyay, Xuav) 5
13 Yuay < Append(Yuan f’uav) N
14 D < Append(D, d) ;
15 | &, s < ArgMin(((Xuav — £5)* + Yuav — 3)* = D)) // Eq. 17.2
16 return i, Js // The estimated position of the sensor
17 end

R=BEN- - B LY B )
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We use a least squares approach to find the location of the sensor network node.
We find a location (X;, y,) that minimizes the difference between the position of the
UAV and the range measurements from the MR sensor. Specifically, we minimize
the function

n

arg Ipln Z (()/C\uav,- - 2?)2 + (j}uav,- - )’}s)z - (21')27 (172)

X Vs i=1

where (X,4v,, Juav;) 1s the estimated position of the UAV given by the simulated opti-
cal flow camera and c?,- is the distance measurement from the MR sensor. We then find
the estimated position of the MR sensor, (X;, J5), that minimizes this function over
the n readings. Using n readings prevents the minimization function from becoming
overweighted with areas with dense sampling, producing erroneous position esti-
mates from too few samples, and problems from longer term optical flow position
estimation drift.

Minimizing Eq. 17.2 produces accurate position estimates as long as there are
sufficient samples within 1 m of the MR sensor (as per Fig.17.7). Algorithm 13
is the algorithm we develop to ensure good sampling of the area. This localization
algorithm first approaches the position of the sensor using GPS alone (line 2). Once
the UAV is near the sensor, the algorithm switches to the optical flow camera and MR
sensor data. The UAV flies in a square surrounding the estimated position (lines 3
through 8) while simultaneously calculating the minimization function described in
Eq. 17.2 (Line 15). After the last waypoint is reached, the UAV flies to the estimated
position of the sensor given by the minimization function (line 4). It then enters a
loop which continually refines the estimate (lines 5 through 8) until some other action
is taken (for example, land, charge, fly home, fly to another node).

To evaluate the localization algorithm, we perform a series of trials where we
placed the MR sensor in a random location in a motion capture room. Since our
optical flow camera does not work well in the low lighting conditions of our test
environment, we simulate the accuracy of an optical flow system through the motion
capture system. Honegger et al. have shown that their optical flow system is able to
provide velocity estimates to within 0.2 m/s [15]. We induce this level of error as
random Gaussian noise.

The results from one experiment are shown in Figs. 17.9 and 17.10. Figure 17.9
shows the flight path in space; Fig.17.10 shows the range readings compared to
ground truth and the power transfer rate over time. During time r = O to ¢ = 5, since
the system does not have a valid range estimate, it cannot estimate distance. The
UAV continues the scripted flight until # = 15 at which point it flies to the current
estimate of the sensor’s position. In this experiment, the system found the position
within 6 cm of the true location after 24 s. At this distance, the sensor network node
receives 5.49 W and the MR sensor is at 100 % of its maximum value.

We perform 20 experiments overall and all successfully found the location of the
MR sensor with an average positional error of 27 cm and an average localization
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Fig. 17.9 The flight path of 1.5
the UAV as it searches for
the MR sensor 1t
<—-— sensor
0.5+
— 0r
E
> _05}
1t
-15}
_2 . . . . . . )
-1 -0.5 0 0.5 1 1.5 2 2.5
X (m)
Fig. 17.10 Localization 4 : : - : 100
experlment ShOWlI'lg —— Actual Distance o
e?stlmated/actual distance Estimated Distance €
from the sensor node —— Percent Transfer £
3
. =
£ 2
o °
2 2 50 @
B o
a 2
(]
=
9]
=
[e]
a
0 . 0
0 5 10 15 20 25
Time (s)

time of 36s. The maximum positional error is 48 cm. These experiments show that
we can localize the UAV to the sensor node for good power transfer using an optical
flow camera and an MR sensor.

17.6 Sensor Network Recharging with a UAV

With the ability to wirelessly recharge a node and optimize this recharging through
localization, we now examine how to use this UAV recharging system in support
of an overall sensor network. The problem requires determining the order and how
much to charge sensor nodes in order to prolong the sensor network lifetime. Ini-
tially, we will examine the problem from the UAV perspective; Sect. 17.7 will then
include leveraging the sensor network’s processing capabilities. We develop charging
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strategies for one flight of one UAV; we would rerun these algorithms for multiple
flights of the UAV. We begin by formally describing the problem; then we develop
algorithms based on how much information the UAV has about the sensor nodes’
energy levels (no knowledge, some knowledge, and complete knowledge).

17.6.1 Problem Definition

We begin by defining the problem and appropriate variables. We model the system
as a graph G = (V, E), V = {Vpase} U Viodes, Where vy, 18 the UAV base station
and each vertex of the V,,4.s is a sensor node. The set of edges, E, represent the
possible UAV flight paths between the base station and the sensor nodes. These paths
are defined by the shortest flight path between vertices. The UAV travels along the
edges in E and stops at nodes in V,,,4.s to recharge the sensor nodes. In addition
to the topology of the system, we define the energy used by the UAV. The UAV
consumes energy at a rate of e., while flying and e., while transferring energy. This
total energy consumed by the UAV cannot exceed energy capacity, ey 4y, of the UAV.
We also define variables for the wireless recharging and the sensor nodes. All of these
variables and notations are summarized in Table 17.2.

Figure 17.11 shows a visual representation of the problem that the algorithm
solves. This example has eight sensor nodes in a configuration near the UAV base
station. An example route is shown with the UAV leaving the base station, visiting
six nodes, and returning to the base stations. As shown, five variables define the UAV,
one variable the base station, and three variables the sensor nodes.

We also need to define the behaviors of the system in addition to its properties.
The UAV must start at v, and it must return to v, before it consumes all of its
energy. As the UAV travels through the network, when the UAV is at some sensor

Table 17.2 Variables in UAVWS problem

Variables Description

G=(V,E) The graph of the sensor nodes and UAV base station
Vpase € V UAV base station

Viodes =V — {Vbase} sensor nodes

euav € Rog The energy of UAV

e.r €Ryp The energy consumption rate of UAV for flight

et € Ry The energy consumption rate of UAV for wireless power transfer
r € Rand r € [0.0, 1.0] The efficiency rate of wireless power transfer
veRs The moving speed of UAV

ei € Rog The energy of sensor node i

ecs i €Rop The energy consumption rate of sensor node i

T e Ry The lifetime of the system
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Fig.17.11 A representation of the UAV, UAV base station, and sensor nodes along with the different
variables used in the definition

node, vertex A, where A € V, it has two types of valid actions. It can move to vertex
B,where B € V andedge (A, B) € E,oritcanstay at A and charge A,if A € V,p4es,
for a time of ¢, where ¢ € RT. For the sensor network, at each time interval, ¢; for all
sensor nodes in V,,4.s Will reduce by e.; ;. Once any of the sensor nodes’ energy is
zero, the sensor network system is dead; its lifetime is the number of intervals until
that occurs.

The problem is to then determine the path and charging sequence for the UAV to
maximize the system lifetime. The challenge is that this problem is NP-complete; we
can show this through a reduction from the metric version of the traveling salesman
problem [22].

17.6.2 Path Planning Algorithms and Charging Algorithms

We now want to develop a set of algorithms to solve this problem; since this problem
is NP-complete, we focus on heuristic algorithms. We separate the algorithms into
three categories based on the UAV’s knowledge of the sensor node energy levels: (1)
no network energy information is known and the UAV-only discovers an individual
node’s energy level when it flies to the node (No Knowledge), (2) the network’s
initial average energy level is known in advance but the UAV-only discovers an
individual node’s energy level when it flies to the node (Some Knowledge), and (3)
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Fig. 17.12 An outline of the algorithms evaluated in simulation. By combining a Path Planning
algorithm and a Charging algorithm, we have 6 No Knowledge, 3 Some Knowledge, and 1 Complete
Knowledge algorithm

all network energy information is known in advance (Complete Knowledge). All
of the algorithms, except for LEAST (which has Complete Knowledge), break the
problem down into deciding the order to visit nodes (Path Planning) and determining
how much energy to transfer (Charging). This results in nine algorithms, six requiring
no knowledge (two path planning approaches and three charging approaches), two
requiring some knowledge (two path planning and one charging approach), and one
requiring complete knowledge. Figure 17.12 outlines the nine algorithms in these
three categories. We now describe the details of the algorithms.

Path Planning: The Path Planning portion of each algorithm schedules the order
of nodes to visit. This order includes all nodes in the network independent of the
energy required to visit the nodes as that will depend on energy charging levels and
environmental conditions. To ensure that the UAV has sufficient energy to return to
the base station, as the UAV traverses the network, the UAV tracks its own energy
levels. If necessary, the UAV will stop its traversal of the network and return to the
base station before visiting all of the sensor nodes; it will not return to visit those
nodes in the current time iteration. Alternatively, after visiting all the sensor nodes,
the UAV might have energy remaining; in this case, it will restart the traversal with
the same path planning schedule.
We examine two path planning algorithms:

e SHORTEST: This algorithm finds the shortest route that visits each node at least
once and returns to the base station at the end. This requires knowledge of the
network topology in advance.

e CLOSEST: This greedy algorithm always moves to the closest unvisited sensor
node until all the nodes are visited. If each sensor node knows its neighbors, the
UAV does not have to know the topology of the network in advance, just the total
number of nodes.

Charging: The Charging algorithm determines the amount of energy to transfer
from the UAV to the node. We evaluate four different charging algorithms:

e FULL: Charge each candidate node to its full capacity. Charging each node to its
full capacity means that the UAV may be unable to visit every node in the network
due to its own energy limitations.
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e RND: Charge each candidate node with a random amount of energy from zero to
the amount that will completely charge the node.

e FIX: Charge each candidate node with a fixed amount of energy up to the amount
that will completely charge the node.

e AVG: Charge each candidate node to the initial average energy level of the sensor
network. If anode is at or above the initial network average, the UAV will not charge
that node. This algorithm requires knowledge of the sensor network’s average
energy level.

LEAST: This algorithm requires that the UAV has complete knowledge of all sensor
nodes’ energy levels. It first visits the sensor node with lowest energy level, then
moves to the sensor node with second lowest energy level, and so forth until it has
visited all nodes. This does not generate the optimal path, but it makes sure that
sensor nodes with low energy levels are charged first. The algorithm then computes
the best target energy to charge all nodes while taking into account the energy required
for flying, localization, etc. It may only charge a subset of the sensor nodes if this
would result in a longer overall network life. Algorithm 14 gives an overview of
this algorithm. The helper function BinarySearchTargetEnergy uses binary search to
narrow the range of optimal target energy until the result satisfies a user-specified
minimum accuracy requirement.

Algorithm 14: Compute Target Energy for LEAST Algorithm

1 Function ComputeTargetEnergy(nodes, UAV )

2 sn < SortByEnergy(nodes) ; // Sorted nodes

3 te < 0; // Target energy

4 nn < len(sn) ; // Node number

5 fori = 1tonndo

6 cn < sn[0:i]; // Candidate nodes, the first i nodes of the
sorted nodes

7 te <~ UAV[energy'l; // Total energy

8 te < te — FlyingCost(cn, UAV) ;

9 te < te — LocalizationCost(cn, UAV) ;

10 te < te — HoveringCost(cn, UAV) ;

11 ee < textransferRate ; // Efficient energy for sensor nodes

12 cte < BinarySearchTarget Energy(ee,cn); // Current target energy

13 if i < nn then

14 ‘ cte < min(cte, nodes[i][ energy']) ;

15 end if

16 te < max(te, cte) ;

17 end for

18 return ‘e ;

19 end
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17.6.3 Simulation Analysis and Results

We developed a simulation system to evaluate the performance of these nine algo-
rithms. Table 17.3 lists the default values of all parameters used in the simulation;
these parameters are based on the capabilities and empirical measurements from our
UAV power transfer system. For the system topology, we start with a virtual field
where the center of the field is the UAV base station. We then randomly generate
a set of sensor node locations within this field. At the start of the simulation, these
sensor nodes have a random amount of energy that is between 20 and 60 % of their
capacity.

Our goal is to improve the lifetime of the sensor network as much as possible on
a single flight of the UAV. Therefore, we use the network’s average lifetime as our
metric to compare the performance of the nine algorithms. We vary the area of the
virtual field and the number of sensor nodes. For each system configuration, we run
each algorithm 100 times.

We first vary the area of the virtual field and fix the sensor network size at eight
nodes. This network size allows for easy computation of the SHORTEST algo-
rithm for comparison purposes. Figure 17.13 shows the performance of algorithms
deployed over three different areas: 100 m x 100 m, 200 m x 200 m, and 400 m x
400 m.

The results for each algorithm show nominal differences as the area changes
since the energy used for traveling between nodes is minimal as compared to the
energy used to charge nodes. Between the algorithms, we see the best lifetime with
the LEAST algorithm that combines path planning with charging. This approach
provides over five additional days of network lifetime compared to the next best

Table 17.3 Simulation system parameters

Variables Default value
Field size 200m * 200 m
Number of sensor nodes 5

Energy of UAV: Ey sy 25WH
Energy consumption rate of UAV for flight: e.s 121.91W
Energy consumption rate of UAV for hovering: ey | 92.28 W
Energy consumption rate of UAV for wireless 20W

power transfer: e,

Efficiency rate of wireless power transfer r 0.2

Moving speed of UAV: v 7.33m/s
Sensor localization time 36s

Energy capacity of sensor node 2.34WH
Energy of sensor node i: E; 20% to 60 % of 2.34 WH
Energy consumption rate of sensor node i: ¢; 1.625mW
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Fig. 17.13 The performance of algorithms on sensor network of eight sensor nodes and different
sizes of field (100m x 100 m, 200m x 200 m, and 400 m x 400 m from left to right). Error bar is for
the standard error. NO means no charge. On default, CLOSEST is used for FULL, RND, FIX, AVG,
and * means SHORTEST is used
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algorithm, AVG. These results show that, as the system has more information, the
decisions do improve the system lifetime. With no information, however, we still
can improve the network lifetime; the FIX algorithm still is within three days of the
network lifetime of the AVG algorithm. Finally, among the different algorithms with
no information, we do not see a difference between the two path planning algorithms.

We now skew the number of nodes while keeping the area fixed at 200 m x
200 m. Figure 17.14 shows the lifetime of the five charging algorithms as the number
of nodes increases from 4 to 12. Since we did not see a difference between the path
planning algorithms, we use the CLOSEST algorithm as it is the computationally
cheapest of our two path planning algorithms. The ordering of the five algorithms
based on network lifetime mirrors the earlier results; the more information we have,
the better the algorithm performs. This holds across all of the network sizes; although,
as Fig. 17.14 shows, the lifetime decreases with the increasing of number of sensor
nodes for all algorithms.

These results imply that the UAV spends the majority of its energy on hovering
and recharging the nodes, and spends less energy traveling between nodes. We can
examine the implications of this for the UAV. Given that the simulation energy
capacity of a sensor node is 2.34 WH and that the UAV consumes 20 W to transfer
power with an efficiency rate of 0.2, the power transferred to the node is 4 W. At this
rate, it would take 35 min to recharge a fully discharged node. While performing this
recharging, the UAV hovers near the sensor node; the cost for it to hover is expensive
with the result that the energy required to fully recharge one completely discharged
node exceeds the energy capacity of the UAV. To improve this, we either need to
improve the efficiency of the power transfer system or ensure that the UAV visits
before nodes reach a fully discharged state.

These results also indicate the UAV behavior improves given information about
the energy status of the network. In the base case, 200 m x 200 m with eight sensor
nodes, with no information of the energy level of sensor nodes, the best charging
algorithm achieves an 8 % improvement in network lifetime. With information of
the initial average energy of sensor nodes, the charging algorithm achieves an 25 %
improvement. With information of the energy level of each sensor node, the algorithm
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Fig. 17.14 The performance of algorithms on sensor network of different number of sensor nodes
on a 200 m x 200 m field

achieves an 50 % improvement. Therefore, we need to ensure that the UAV has
the information about the sensor network; this communication is costly so we will
examine methods to reduce communication and better utilize systems next.

17.7 Sensor Network Recharging with a UAV
and a Sensor Network

As Sect. 17.6 identifies, the UAV needs information about the network to best extend
the lifetime. However, this information requires significant communication between
nodes and the UAV, which will limit the network’s lifetime. In addition, this approach
ignores the computational ability of the sensor network. In this section, we develop
a combined approach that utilizes the sensor network computation in order to min-
imize communication. The sensor network determines which node to recharge to
maximize the lifetime of the network as well as modifying its routing protocols to
shift the energy deficit. The UAV then communicates with the network to gather that
information, optimize its flight to that node, and recharge that node. In this section, we
outline our algorithmic solutions along with our experiments on real sensor network
platforms to validate our solutions.

Determining which node to recharge depends on our sensor network sink policies
as that defines the communication patterns of the system. In the sensor network, the
sink is the one node that controls the network and to which all other nodes forward
their sensed data; this node then sends all of the data out of the network (perhaps
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Table 17.4 UAV recharge amount per grid topology

Grid topologies | Total number of nodes Node recharged | UAV recharge amount (%)
8x 8 64 Lowest Powered | 10
8x 13 104 Lowest powered | 25
8 x 18 144 Lowest powered | 55
11 x 18 198 Lowest powered | 80
14 x 18 252 Lowest powered | 80
17 x 18 306 Lowest powered | 95
20 x 18 360 Sink 30

using the UAV). Since communication dominates power usage in a sensor network
and, therefore, defines the network lifetime, nodes that must communicate more will
die sooner. The nodes closest to the sink communicate the most (since they receive
and forward messages from all other nodes) so the method by which the sink is
selected and rotates among the nodes will define the network lifetime.

In our prior work, we examined five different sink selection algorithms to deter-
mine which will extend the network lifetime the longest when one node is recharged
at each time interval [4, 18]. These algorithms are Static, Random, Circles, Greedy,
and Linear Programming. That work determined recharging policies and sink selec-
tion algorithms based on the network size. Table 17.4 describes the recharge amount
and node to recharge for which the UAV has the largest impact for each grid topology;
these results are shown as a percentage of the initial node’s energy. In that table, we
choose which node to recharge (either the sink or the node with the lowest power)
and the amount that the UAV recharges (as a percentage of the battery). For the
recharging algorithm, Sect. 17.6 explored algorithms that try to charge many nodes
in a single flight. To extend that work, we instead examine only recharging nodes
with multiple flights; as the network size and node recharged change, the amount
the UAV has to recharge a node in order to achieve the best network lifetime varies.
Using these policies outlined in Table 17.4, Table 17.5 describes our sink algorithm
policy for a given grid size. The best performing sink positioning algorithms for the
larger three grid sizes are the Greedy and Circles algorithms.

Table 17.5 Policy of sink algorithm choice per grid size

Grid topologies Number of nodes Chosen algorithm

8x 8 64 All 5 Equal

8 x 13 104 Static sink, Random and LP
8 x 18 144 Static sink

11 x 18 198 Static sink

14 x 18 252 Greedy

17 x 18 306 Circles

20 x 18 360 Greedy
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Based on this work, we implement the algorithms on our sensor network and
verify the results through field experiments. We address three key questions: (1) does
recharging significantly improve the network lifetime, (2) which node to recharge,
and (3) which sink selection algorithm to use. First, we outline implementation
details and differences between the simulation and experiments. Then, we discuss
and analyze the experiment results.

17.7.1 Experiment System Detail and Modifications

We use our sensor nodes described in Sect. 17.4.2. The system consists of nine nodes,
communicating via XBee radios. To create easily repeatable experiments, we do not
use the recharging system, but simulate recharging. This allows us to ignore the UAV
temporarily while analyzing our key questions. Our field experiment recharging uses
0.85 % of the starting node power level instead of the 30 % used in the simulation;
this ensures that the network will die and end the experiment within a reasonable
time period.

Figure 17.15 shows the control algorithm that each node follows. The process is
event driven; the time interval completes once all nodes receive a new sink message
from the current sink.

All XBee messages utilize a common packet structure as shown in Table 17.6.
Each node can transmit three types of messages: (1) startSink, (2) sendToSink, and
(3) newSinkSelection. At the beginning, the sink sends a startSink message to the rest

New Sink
Chosen

No Yes

¥ ¥
" | Recharge
Am %
/[ | Sink? i) ]

Schedule Event
to Choose New
Sink

Fig. 17.15 Sensor node
program flow diagram

Schedule Event
to Send
Message to Sink

Wait for
Messages from
other Nodes
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Table 17.6 XBee packet structure

Source ID | Destination | Message Origin ID | Power level | Iteration (2 | Packet
1D Type (3 bytes) bytes) terminator
(2 bytes)

of the network. Upon receiving this message, the other nodes schedule a sendToSink
message. Each node has a specific time window in which its message is sent to
prevent interference between the nodes; we use a 200-ms window, which allows for
enough time for a single message to propagate through the network and reach the
sink. This sendToSink message contains the power level of a node in the network
and is stored by the sink. At the same time, the sink schedules a newSinkSelection
message that selects the new sink for the next iteration of the test and broadcasts this
message after receiving all sendToSink messages.

The newSinkSelection messages were not needed in the simulation where all
nodes had instant information of the sink. The experiment, then, has a total of 2
(number of nodes in network) — 1 extramessages transmitted and received at each
sink iteration. These extra messages consume energy from the physical network that
is not accounted for in the simulated network.

17.7.2 Experiment Results

We answer three key questions with three experiments: (1) does UAV recharging
increase network lifetime, (2) which node should the UAV recharge at each sink
iteration, and (3) how does the combination of the best recharging algorithm and
different sink selection algorithm impact the lifetime of the network. We compare
all experiment results to the simulation results from Basha et al. [4].

Recharging Effectiveness: The first experiment verifies that recharging extends the
sensor network lifetime. To test this, we first run the sensor network with the Static
sink selection algorithm and no recharging. We then run the sensor network with
the same Static sink selection algorithm and introduce sink recharging of 0.85 % of
starting node power. The experiment stops when the first node fails.

Figure 17.16 shows that recharging the sink in the network provides a large
increase in the overall network lifetime. Without recharging, the network lives for
112 iterations, with the sink being the first node to die and end the experiment. With
recharging, the network lives for 667 iterations, almost six times longer than without
recharging. Unlike the first test, recharging the sink allows it to stay alive the entire
test. With the other eight nodes consuming an equal amount of power, each has no
power remaining at the end of the test.

Comparing the experiment to the network simulation results shown in Table 17.7,
we see that the two tests have similar behaviors. The no recharging run lasts almost
exactly the same time, 118 versus 112 iteration, with the slight difference due to the
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Fig. 17.16 Recharge
algorithm results
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Table 17.7 Network lifetime for recharging algorithms in simulation and experiment

Recharge algorithm Simulation time Experiment time
None 118 112
Sink 2000 666
Lowest powered node 2229 715

extra message sent by the sink at each time iteration. Similarly, for the recharging
run, each of the neighbor nodes transmits and receives two extra messages compared
to the one transmit in the simulation; the experiment should last one-third the length
of the simulation, which it does at 666 iterations. Based on this, we verify the results
of the simulation that determined that UAV recharging does provide a significant
increase to the overall network lifetime.

Node Recharging Selection: This second experiment compares recharging the sink
with recharging the lowest powered node. Since the sink is the node that spends the
most energy receiving the messages from all the other nodes in the network, it is
likely to die first. The lowest powered node, however, is the node that is most critical
to the lifetime of the overall network since, if one node dies, so does the network. In
this experiment, we reuse our sink recharging results. We now also run the network
with the Static sink selection algorithm and 0.85 % recharge value, but now recharge
the lowest powered node instead of the sink.

Figure 17.16 shows that the lowest powered node recharging algorithm test lasts
for 715 sink iterations. Similar to the sink recharging algorithm, the lowest powered
node recharging algorithm lasts significantly shorter in the experiments compared to
the simulation due to the extra messages.

We calculate the theoretical maximum number of iteration to expect for the sim-
ulation and experiment based on the number of messages being sent and amount of
energy added to the network at each sink iteration. In the simulation, the sink receives
8 messages, one from each node, and transmits 9 while each other node transmits
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the one message to the sink. Therefore, the simulation transmits or receives a total
of 25 messages in each iteration. We then subtract from that the total energy added
to the network by the UAV, which is 0.85 % of 2000 or equivalent to 17 messages.
Therefore, we compute the total power in the network, 92”3301070, to determine that the
network lives for 2250 iterations maximum. Similarly, for the experiment, the sink
receives 8 messages and transmits 10, while the other nodes transmit 2 and receive 1,
which equals a total of 42 messages transmitted and received at each sink iteration.
We then compute 94’5301070 to get a theoretical maximum of 720 iterations before the
network dies. When comparing the results of the simulation and experiment to these
theoretical values, both fall just below, supporting the theory behind these results.
Since lowest powered node recharging allows the sensor network to last longer
than static sink recharging, it is the best recharging algorithm for this network size.
Although both do not provide the same increase in network life time as in the simu-
lation, the percentage increase between lowest powered and static is similar for the
simulation and experiment. The simulation of the lowest powered node algorithm
provides an 11 % increase in network lifetime over the static algorithm. The experi-
ment on the network shows the lowest powered algorithm providing a 7 % increase

in network performance over the static algorithm.

Sink Selection: Finally, we find the best combination of sink selection and node
recharging algorithms to maximize network lifetime. Using lowest powered node
recharging, the best performing from the previous experiment, we test each of the
five sink selection algorithms.

Figure 17.17 shows that the Static sink algorithm performs the best out of the
five, which matches the simulation results. The remaining four algorithms do not
follow the same ordering as the simulation, however. In the simulation, Random
was the next best performing algorithm with Greedy performing the worst. In the
experiments, the Greedy algorithm performs the next best with Random and Circles
performing the worst. This result is due to slight differences in how each selects the
sink (Table 17.8).

Fig. 17.17 Sink algorithm Sink Algorithm Test, Simulation vs. Experiment
results 2500 - - - - - -
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-
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Table 17.8 Network lifetime for sink algorithms in simulation and experiment

Sink algorithm Simulation time Experiment time
Static 2229 715
Random 1193 545
Circles 1114 544
Greedy 993 624
Linear programming 1056 580
Greedy Sink and Lowest Powered Greedy Sink and Lowest Powered

Node Experiment Node Simulation
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Fig. 17.18 Greedy algorithm times as sink and recharged during experiment (left) and simulation
(right)

Figure 17.18(left) shows the number of times the Greedy experiment chooses
each node as the sink and the number of times the system recharges a node. The
experiment selects node four as the sink over 400 times and node five approximately
200 times, while it selects the other nodes only a few times. These two nodes are
also the most commonly recharged. With only these two nodes selected as sink, the
algorithm requires less messages sent through the network compared to Random,
Circles, or Linear Programming.

We now compare this to the simulation. Figure 17.18(right) shows the number of
times the simulator selects each node as the sink. The nine nodes share sink duty
more than the experiment. Node five is not selected, while node four is selected over
900 times, node three is selected approximately 100 times, and node nine is selected
approximately 100 times. During the simulation, there are an average of about 31
messages sent per iteration. The experiment sends less messages per iteration, an
average of approximately 27, due to the small differences in sink selection. Since the
experiment averages less messages each iteration, the Greedy algorithm performs
better than in the simulation compared to the other sink selection algorithms.

Calculating the relative lifetime of the network, the four other algorithms last 45 to
54 % of the lifetime of the Static algorithm in the simulation. On the physical sensor
network, the other algorithms last 77 to 87 % of the lifetime of the Static sink selection
algorithm, due to the introduction of the new messages sent during the experiments.
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Overall, the Static sink selection algorithm with the lowest powered node recharging
algorithm outperforms the other sink selection and recharging algorithms. With these
results, we verify that the simulation accurately represents the behavior of a real
sensor network of the size used in our experiments.

The UAV-only experiments of Sect.17.6 provide path planning algorithms for
the UAV to best visit the nodes; this section provides sensor network algorithms to
identify the best node to recharge. Moving forward, we want to connect these two
pieces together into a complete system and full outdoor field experiments. Some
small modifications are needed to achieve this. First, the sensor network algorithms
need to identify an number of nodes to recharge instead of just one; this will provide
the best information to leverage the UAV algorithms. Second, the UAV and sensor
network need a shared communication strategy that optimizes the energy of both
while not forcing the UAV to always fly to the sink (which it would not know in
advance).

17.8 Conclusion and Future Work

This chapter described the development of a UAV-based wireless power transfer and
localization system designed to allow the UAV to charge sensor network nodes in
remote locations. We discussed the challenges specific to developing UAV-based
wireless power transfer systems. We developed a power transfer system that is light-
weight enough to be carried by a UAV and meets the other design challenges. In the
future, we plan to investigate adaptive systems that actively adjust the frequency and
impedance to further optimize power transfer. The localization system we developed
can localize the UAV with respect to the sensor node by sensing the induced magnetic
field. It can localize to within 30 cm to transfer over 3 W of power to the sensor node.
We tested the operation through a variety of materials where sensor network nodes
may be embedded. In future, we plan to test the localization system in a variety of
outdoor environments to verify functionality when faced with wind and other factors.

We then developed algorithms that define how a UAV equipped with these systems
can recharge a network of sensor nodes. First, we considered it from a UAV-only
perspective and develop heuristic algorithms to select the order and amount to charge
nodes, which is an NP-hard problem. This enables significant improvements to the
life of the sensor network with only a single charging flight, but is limited to relatively
small networks.

We also developed algorithms that leverage the communication and computation
capabilities of the sensor network to shift the energy deficit to a small subset of nodes
to allow the UAV to effectively charge those nodes. We verified these algorithms on
sensor network hardware and showed that this enables significant sensor network
lifetime improvements for larger sensor networks even if only a single sensor node is
charged per UAV flight. In the future, we plan to validate the sensor network charge
selection algorithms with larger scale field experiments. We also plan to extend the
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system to use multiple UAVs recharging the same network and adaptively determine
the time intervals in which the UAVs should recharge the network. This work will help
extend sensor network lifetimes, providing more complete monitoring information.

Acknowledgements This work was partially supported by NSF 1217400, NSF 1217428, and
USDA-NIFA 2013-67021-20947.
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Chapter 18
Wireless Power Transfer in Sensor Networks
with Adaptive, Limited Knowledge Protocols

Constantinos Marios Angelopoulos, Sotiris Nikoletseas
and Theofanis P. Raptis

Abstract In this chapter, we investigate the problem of efficient wireless power
transfer in Wireless Rechargeable Sensor Networks (WRSNS). In such networks a
special mobile entity (called the Mobile Charger) traverses the network and wire-
lessly replenishes the energy of sensor nodes. In contrast to other approaches, we
envision methods that are distributed, adaptive and use limited network informa-
tion. We propose three new, alternative protocols for efficient charging, addressing
key issues which we identify, most notably (i) to what extent each sensor should be
charged (ii) what is the best split of the total energy between the charger and the
sensors and (iii) what are good trajectories the Mobile Charger should follow. One of
our protocols (LRP) performs some distributed, limited sampling of the network sta-
tus, while another one (RTP) reactively adapts to energy shortage alerts judiciously
spread in the network. We conduct detailed simulations in uniform and non-uniform
network deployments, using three different underlying routing protocol families. In
most cases, both our charging protocols significantly outperform known state of the
art methods, while their performance gets quite close to the performance of the global
knowledge method (GKP) we also provide.
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18.1 Introduction

The last decade energy harvesting technologies have been effectively integrated into
wireless sensor networks. A variety of ambient energy, such as mechanical, thermal,
photovoltaic and electromagnetic energy, can be converted into electrical energy to
charge sensor batteries. However, as all these energy sources come from the external
environment and their spatial-temporal profiles exhibit great variations, the strength
of harvested energy is typically low, and especially sensitive to the environmental
dynamics. As there is generally a lack of a priori knowledge of energy profiles, such
dynamics impose much difficulty on the design of protocols that try to keep sensors
from running out of energy.

Wireless power transfer technologies offer new possibilities for managing the
available energy in wireless sensor networks and pave the way towards a new par-
adigm for wireless sensor networks; the Wireless Rechargeable Sensor Networks
(WRSNs). WRSNs consist of sensor nodes that may be either stationary or mobile,
as well as few mobile nodes with high energy supplies. The latter, by using wire-
less power technologies are capable of fast recharging [10] sensor nodes. This way,
the highly constrained resource of energy can be managed in great detail and more
efficiently. Another important aspect is the fact that energy management in WRSNs
can be performed passively from the perspective of the sensor nodes and without the
computational and communicational overhead introduced by complex energy man-
agement algorithms. Finally, WRSNs allow energy management to be studied and
designed independently of the underlying routing protocol used for data propagation.

The Problem. Let a Wireless Rechargeable Sensor Network comprised of stationary
sensor nodes and a single, special mobile entity called the Mobile Charger. The
Mobile Charger has significant (yet finite) energy supplies, that are much larger
than those of each sensor node, and is thus capable of recharging the sensors in the
network.

We aim at designing and evaluating efficient strategies for several critical aspects
of the Mobile Charger’s configuration in order to improve energy efficiency, prolong
the lifetime of the network and also improve important network properties (such as
the quality of network coverage, the robustness of data propagation).

We focus on the cases of both randomly heterogeneous and homogeneous sensor
nodes deployment. An underlying routing protocol is taking care of the data propa-
gation from sensors to the Sink. Unlike other methods in the state of the art, we do not
couple the charging process and the data propagation; actually, we wish to perform
efficient wireless energy transfer in a way which is agnostic to the routing protocol,
via adaptive techniques that (without knowing the routing protocol) implicitly adapt
to any routing protocol.

Remarks. We note that, although the wireless recharging problem might look similar
to other related research problems (such as aggressive data collection via mobile
Sinks), it admits special features that necessitate a direct approach, while the opti-
mization of concrete trade-offs and the fine-tuning of design alternatives that arise in
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wireless recharging necessitate the distinct investigation of special protocol design
parameters (like the extent of wireless recharging at each node, the energy split
between the charger and the nodes etc.) mentioned above.

Finally, we note that such charger optimization problems are (inherently) compu-
tationally hard, e.g. in [1] we have formulated the wireless recharging problem as the
Charger Dispatch Decision Problem (CDDP), and showed that it is N P-complete
(via reduction form Geometric Travelling Salesman Problem, G-TSP; example [5],
p. 212).

Our contribution. While interesting research has been contributed to the wireless
recharging problem and particularly to the scheduling of the mobile charger, most
methods necessitate significant (in many cases even global) network knowledge (e.g.
itis assumed that the charger knows the energy levels of all sensors in the network) and
the solutions are centralized. On the contrary, the methods we design are distributed
and adaptive, and use only local (or limited) network information. Also, unlike many
state of the art approaches that opt for integration and coupling of the recharging and
routing problems, our methods can be used together with any underlying routing
protocol (since they adapt on it implicitly). Furthermore, our protocols dynamically
and distributively adapt to network diversities, e.g. they cope well with heterogeneous
node placement (while still behaving very well in the homogeneous case too).

In particular, we propose and evaluate selected alternative strategies for efficient
recharging in stationary WRSNs via a single Mobile Charger. Our design provides
concrete, different solutions to some key issues (and the associated trade-offs) of
wireless recharging which we identify, most notably

(i) given that the energy the Mobile Charger is finite, to what extent each sensor
should be charged,
(i) what should be the split of the total available energy between the charger and
the sensors and
(iii) what are good trajectories the Mobile Charger should follow in order to charge
the sensor nodes.

More specifically, (a) we first introduce a new network attribute, which we call node
criticality, capturing both the energy consumption at the node over time and the
traffic flow served by the node (b) taking the node criticality of each sensor node
into account, we suggest a particular amount of energy the sensor node should be
charged to when visited by the mobile charger (c) for the trajectory followed by the
mobile charger, we design three alternative strategies (GKP, LRP, RTP) assuming
different levels of network knowledge (from global to limited and reactive); actually,
we view the global knowledge protocol as a performance upper bound to which the
two distributed, partial knowledge protocols are compared with.

One of our protocols (LRP) performs some distributed, limited sampling of the
network status, while another one (RTP) reactively adapts to energy shortage alerts
judiciously spread in the network. As detailed simulations demonstrate, both proto-
cols significantly outperform known state of the art methods, while their performance
gets quite close to the performance of the global knowledge method (GKP) which
we also provide.
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18.2 Related Work and Comparison

Recently, there has been much research effort in WRSNs. In [21] the authors consider
a sensor network in which a mobile entity is employed which (in contrast to our
approach) serves also as a data collector and as an energy transporter that charges
the stationary sensors on its migration tour. They provide a two-step approach: in the
first step the mobile entity selects the maximum number of anchor points such that
the sensors located in these anchor points hold the least energy and meanwhile the
tour length is no more than a threshold. In the second step they formulate a utility
maximization problem on a flow-level network model in order to determine how to
gather data from sensors. However this algorithm requires global information, thus
making it not very practical in even medium-sized sensor networks.

In [12] the authors analyse again the possibility of practical and efficient joint
routing and charging schemes. They propose a sensor network in which both a
mobile charger and a base station appear. Each sensor sends data hop-by-hop to
the Sink periodically using the Collection Tree Protocol. Also, measurements of
other local properties such as energy level, consumption rate, etc., are piggybacked
along with data and reported to the Sink. Then, the base station, according to sensors
information, schedules future charging activities and commands the mobile charger
through long-range radio to execute the schedules. Authors show that the network
lifetime is prolonged by the mobile charger which mostly moves in energy-minimum
paths. However, each sensor has to send more data to the Sink and the charger has
to know the location of each sensor a priori.

Authors in [16, 19] consider the scenario of a mobile charging vehicle periodically
traveling inside the sensor network and charging the battery of each sensor node
wirelessly. The necessary and sufficient conditions are introduced and the problem
is studied as an optimization problem, with the objective of maximizing the ratio of
the wireless charging vehicle’s vacation time over the cycle time. Also, in [18], the
authors colocate the mobile base station on the Mobile Charger and minimize the
energy consumption of the entire system while ensuring none of the sensor nodes
runs out of energy. In contrast to our protocols, the models used in the above works
use global knowledge.

In [14] the authors build a proof-of-concept prototype by using a wireless power
charger installed on a robot and sensor nodes equipped with wireless power receivers,
carry out experiments on the prototype to evaluate its performance in small-scale
networks of up to ten nodes, and conduct simulations to study its performance in
larger networks of up to a hundred nodes. Despite the fact that this paper nicely
demonstrates the feasibility of a real, implemented WRSN, the simulations of the
proposed heuristics are limited to a small number of sensor nodes in the network, an
approach that is not convenient for highlighting the behavior of the charging protocol
in large scale networks.

In [11], the authors formulate an energy-constrained wireless charging problem,
which maximizes the number of sensors wirelessly charged by a Mobile Charger. The
paper proposes heuristic solutions based on the meta-heuristics of Particle Swarm
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Optimization but, in contrast to our approach, the model assumes extensive knowl-
edge on the charger and the performance evaluation is limited to simulations on
small-scale networks.

In previous work of our group in [1] the authors study the impact of the charging
process to the network lifetime for selected routing protocols. They propose a mobile
charging protocol that locally adapts the circular trajectory of the mobile charger to
the energy dissipation rate of each sub-region of the network. They compare this
protocol against several other trajectories by a detailed experimental evaluation.
The derived findings demonstrate performance gains, but are limited to uniform
network deployments, in contrast to our approach which focuses on heterogeneous
node distributions.

Alternative versions of the problem have also attracted important research atten-
tion. In [13, 17, 20] the authors consider the wireless recharging problem, using
multiple mobile chargers. In this case, several other interesting aspects emerge, such
as the minimum number of chargers that suffice to cover the network area, inter-
charger coordination etc. Another interesting approach is presented in [4], where the
charging process is conducted using another, RFID-based technology resulting in
the introduction of the charging delay notion and different modeling of the problem.

Overall, in the majority of the above methodologies, the knowledge of the model
is much stronger than ours, allowing for offline and/or centralized optimization under
high levels of network information. Also, in several of these approaches the charging
problem is coupled together with routing, while in our method the charging policy
implicitly adapts to any underlying routing policy. For this reason, we have chosen
to compare with the protocols presented in [1, 14], in order to be fair in terms of the
model assumptions. Our strategies here significantly extend the ones in [1] via also
taking into account the traffic served by a node (not just its energy levels). This gives
rise to completely new configurations of the Mobile Charger (one based on a limited
network knowledge and a reactive one) that significantly outperform (especially in
heterogeneous settings) the ones in [1]; even in uniform placements, our protocols
perform similar or better to the ones in [1].

18.3 The Model

We consider a plane sensor network, in which the sensors and the single Sink node are
stationary. We abstract the network by a graph G(V, E), where V = {v, v, ..., v,,}
denotes the set of nodes (sensors), while E € V? represents the set of edges (wireless
links). An edge between two nodes in the graph exists iff the distance between the
corresponding sensors in the network is less than or equal the transmission range r.

Without loss of generality, we assume that network deployment area is a circle
of radius D. We virtually slice the network into M = D/r co-centric Rings and
N =2m/¢ Slices. A Sector is defined as the intersection of a specific Ring and
Slice. For example, in Fig. 18.1 the network is divided into 12 Slices (¢ = 7 /6) where
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(a) Partition in Sectors of (b) Non-uniform deployment.
heterogeneoudensities.

Fig. 18.1 Network deployment

each Slice contains 10 Sectors, resulting in a total of 120 sectors in the network. An
example of non-uniform network deployment is shown in Fig. 18.1.

Placement heterogeneity. We consider random instances of the following quite
general model of non-uniform deployment: Denote by S;; the sector corresponding
to the intersection of Slice i and Ring j. Let » > 1 be an arbitrary constant. Each
sector S;; chooses independently a number §;; € [1, b] according to the uniform
distribution % [1, b]. We will refer to the number §;; as the relative density of sector
S;;j. Values of §;; close to 1 imply low relative density and values close to b imply
high relative density. By combining the knowledge about the total number of sensors
in the network n, together with the relative density §;; and the area A;; of every
Sector, we compute the number of nodes n;; deployed in sector §;; by the following

formula:
n

Aifj/ ‘Sr’j/
iJ" Ay i)

}’l,'j =

wheren = >, ; nij- Finally, we scatter n;; nodes in the area corresponding to sector
A 8is
Furthermore, if all Sectors have the same relative density (i.e. §;; = 8; -, foralli’, j'),
we get the uniform deployment.

Each sensor node knows its location, has a unique ID and belongs to exactly one
Sector. Each node can identify in which Slice it belongs to. This information can be
disseminated through a setup phase initiated by the Sink during which the position
of the Sink and the IDs of the nodes in neighboring Slices is diffused. Our protocols
operate at the network layer, so we are assuming appropriate underlying data-link,
MAC and physical layers. The nodes’ memory is assumed limited and each node

S;;. The fraction of the actual densities of two sectors S;; and S;: - is exactly
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chooses independently a relative data generationrate A; € [c, d] (where ¢, d constant
values) according to the uniform distribution % [c, d]. Values of A; close to ¢ imply
low data generation rate and values close to d imply high data generation rate. We
consider two types of data transmission: (a) single-hop transmission (cheap in terms
of energy and slow) between two neighboring nodes and (b) direct transmission
(expensive in terms of energy and fast) where the node that holds the data transmits
directly to the Sink. We assume that the energy spent at a sensor when transmitting
data messages is proportional to the square of the transmitting distance and only
energy spent during transmissions is counted (for simplicity).

We assume a single, Mobile Charger that traverses the network and wirelessly
charges sensor nodes when getting appropriately close to them. We assume that
E, 4 1s the total available energy in the network (at the sensors and at the charger).
Initially

Eiotat = Esensors + EMC (tim't)

where E.,s0rs 1S the amount of energy shared among the sensor nodes and E y;¢ (1)
is the total amount of energy that the Mobile Charger may deliver to the network
by recharging sensors. At time ¢ the energy left to the Mobile Charger for sensor
charging is denoted as E;¢(¢) and the current residual energy of node v; as E;(¢).
The maximum amount of energy that a single sensor may store is denoted as E7*%*

sensor
and is the initial energy given to each sensor, i.e. EV'%% = ET In our model the

sensor

charging is performed point-to-point, i.e. only one sensor may be charged at a time
from the Mobile Charger by approaching it at a very close distance so that the charging
process has maximum efficiency. The time that elapses while the Mobile Charger
moves from one sensor to another is considered to be very small when compared
to the charging time; still the trajectory followed (and particularly its length) is of
interest to us, since it may capture diverse cost aspects. We assume that the charging
time is inversely proportional to the battery level of each sensor.

Regarding the three families of routing protocols we use to investigate the impact
of our methods, we refer to [8] for clustering, [2, 6] for greedy, single path routing
and [3, 9] for energy balanced data propagation.

18.4 Node Criticality: A New Network Attribute

In order to develop efficient protocols for the Mobile Charger and address the cor-
responding trade-offs, we introduce a new attribute that captures a node’s “impor-
tance” in the network, under any given routing protocol. This new attribute relies on
two factors, (a) the traffic served by the node and (b) the energy consumed by the
node.

The need for combining these two factors emerges from the fact that the traffic
served by a node captures different aspects than its energy consumption rate. A node
may consume a large amount of energy either because it serves a high network flow,
or because its transmissions have high cost (e.g. long ranged transmissions) (or both).
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The purpose of the attribute is to indirectly prioritize the nodes according to their
flow rate and energy consumption; a node serving high traffic and/or having low
residual energy should be charged at higher energy level.

We denote as ¢; (t) the criticality of node v; at time ¢, with

ci(t) = fi(@) - pi(0).
Given the time ;¢ when the last charging of the node occurred

generation rate of node v; ! A

fit) =1

traffic rate of v; since tyc i+ #
—imc

is the normalized traffic flow served by node v;, where m;(t) is amount of traffic
(number of messages) that v; has processed (received and forwarded) towards the
Sink by time t since time tyc, and

energy consumed since last charging

pi(t) = :
max node energy since tyc
_ Eitme) —E@® _  Ei(0)
E;i(tyc) Ei(tuc)

is the normalized energy consumption by time ¢, since the last charging. The criticality
is thus a number in [0, 1] which captures the importance of a given node by taking
into account its flow rate, its energy consumption, its possible special role in the
network and its influence to the routing protocol; nodes serving high traffic (large
m;(t)) and/or having consumed a lot of energy (low E; (¢)) have high criticality c; (¢)
at time ¢ and are “prioritized” by the Mobile Charger.

18.5 Mobile Charger Configuration

18.5.1 Charging Extent

A straightforward charging policy (such as in [1]) follows the rationale that the
amount of energy the Mobile Charger delivers to node v; is proportional to the
residual charging energy of the Mobile Charger. This approach takes into account
the energy dissipation rate of the Mobile Charger but neglects the energy evolution
in the network and the fact that some nodes are more important than others, due to
their location, generation rate, special role in the network, etc. In other words, by
adopting that charging policy, the energy of every node is replenished in the same
way, with the absence of any energy levels based on node diversity.

In this work we use the criticality attribute as a measure of the level that a node
v; should be charged.
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Definition 18.1 Let eyc(¢) = % denote the ratio of the Mobile Charger’s

residual energy at time ¢ over the total amount of energy that the Mobile Charger
was provided at the network initialization at time #;,;; .

Definition 18.2 Let Ae;(t) = E;(ty¢c) — E;(¢t) denote the amount of energy that
node v; has consumed by time ¢, since the last charging (occurred at time #;¢).

Node v; will be charged until its energy becomes
Ei(t + 1) = Ei(t) + ¢i(1) - emc (1) - Ae; (1)
where ¢, is the time needed (considered negligible) for the charging of v; and

ci(t) -eyc(t) - Aei(t) =

(- Ai - Emc@®  (Eiltuc) — Ei(1))*
A+ % Eyc(tinir) Ei(tuc)

We notice that v;’s charging is not a fraction of its maximum or initial energy but
a fraction of the consumed energy since the last charging. In other words, a sensor
that consumed a lot of energy since its last charging will be charged at a higher level;
this level is also higher when the sensor has high criticality and when the energy left
at the charger is high.

18.5.2 New Protocols

We introduce three protocols for the trajectory followed by the mobile charger. These
protocols assume different levels of network knowledge (from global to limited and
reactive). Actually, the global knowledge method can not be considered realistic in
large scale networks and rather serves as an upper bound on performance which the
other methods are compared to.

18.5.2.1 Global Knowledge Protocol GKP

The global knowledge charger we suggest is an online method that uses criticality as
aranking function. In each round the charger moves to the sensor that minimizes the
product of the negation of each node’s criticality times its distance from the current
position of the Mobile Charger. More specifically, in each moving step the GKP

minimizes the product
. @ ) 1+ dist;
min — ¢ .
i ' 2D
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where dist; is the distance of each sensor from the Mobile Charger and D is the
network radius, with the minimum taken over all sensors in the network (or at least
a large part of it). In other words, this protocol prioritizes nodes with high criticality
and small distance to the Mobile Charger. Since this protocol requires a global
knowledge of the state of the network, it is expected to outperform all other strategies
that use only local or limited network information, thus somehow representing an
on-line centralized performance upper bound. However, it would not be suitable for
large scale networks as it introduces great communication overhead (i.e. every node
has to propagate its criticality to the Mobile Charger) and does not scale well with
network size.

18.5.2.2 Limited Reporting Protocol LRP

The Sink is informed about the status of some representative nodes scattered through-
out the network and is able to provide the Mobile Charger with some guidance. In
other words, this protocol distributively and efficiently “simulates” the global knowl-
edge protocol. We assume that the Sink can transmit to the Mobile Charger wherever
in the network the latter might be. The protocol follows a limited reporting strategy,
since it exploits information not from the whole network area but from a limited
number of nodes. The nodes of each Slice periodically run a small computation
overhead algorithm in order to elect some special nodes, the reporters of the Slice;
in particular, each node becomes a reporter independently with some appropriate
probability (thus, the number of reporters is binomially distributed). The reporters
act as the representatives of their Slice and their task is the briefing of the Sink about
their criticality.

The percentage of the nodes that will act as reporters brings off a trade-off between
the representation granularity of the network and the communication overhead on
each message propagated in the network. If we set a large percentage of reporters,
the Sink will have a more detailed knowledge of each Slice’s overall criticality but
the message overhead will highly increase, since each message should carry the Slice
reporter’s current criticality. On the contrary, if we set a small percentage of reporters,
the overhead will be tolerable, but the representation of a Slice will be less detailed.

In order to maintain a small set of reporters for each Slice (for communication
overhead purposes) we propose that Slice i which contains n; nodes elects

n;
Ki = — * Kiotal
n

reporters, with the global number of reporters being

D a
Kiotal = h - logn, whereh =1 — 5
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is anetwork density heterogeneity parameter. Clearly, a highly heterogeneous deploy-
ment (large b compared to a) will necessitate a higher number «,,,; of reporters.
Also, k;pq; must be large in large networks with many sensors. Each node periodi-
cally with probability p; becomes a reporter. In order to have an expected number
of k; reporters in Slice i we need

i K
* Ktotal Ktotal

n

Kl.—ni.pi:>pi——:>p[—

i

18.5.2.3 Reactive Trajectory Protocol RTP

In this protocol, a node v; is propagating an alert message to its neighbors each time
its energy drops below a set of some crucial limits. The messages are propagated for
some hops and are stored at every node passed, in order for a tree structure rooted
at v; to be formed that can be detected by the Mobile Charger when passing through
some tree node. Every node can root a tree and the strategy followed (towards a small
tree management overhead) is the maintenance of a small tree degree with a larger
tree depth.

The tree that is formed for each node is gradually growing, in an analogous way
to the criticality of the root node, as the gradual increase of a node’s criticality is
an indication of either high traffic or high energy consumption. We use criticality
as a measure of the gradual expansion of the tree, since its value depicts both the
importance of the node in the network and its energy consumption rate. We propose
a strategy of message propagations that aims at covering a relatively large area of the
network, while keeping energy consumption due to communication overhead low.

More specifically, each node v; can alter among [log (n2)] alert levels which
determine the characteristics of the v;’s rooted tree. We denote as al; the current alert
level of node v;. The tree rooted at v; is formed in a way that the degree = al; — 1
and the depth = 2¢%~! — 1. The duration of each successive alert level is increased
by a constant ratio from the previous level

1 if0 < ci(t) <05
2 if0.5 < ¢;(t) < 0.75

‘flog(n%ﬂ lfl—m <ci() <1

“luiue [1,2, [log ("?)m

1 1
withl — —— < ¢i(f) < 1 — —
2u-1 2

1 e 1 1
Wherel—FzA 2—],1—27222—]
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The Mobile Charger alters its state between a patrol mode and a charging mode.
When in patrol mode, it follows a spiral patrol trajectory centered at the Sink with
gradually increasing radius. The spiral trajectory is a space-filling trajectory that
enables the MC to traverse the network area in a systematic way while visiting sev-
eral sub-regions. During the patrol mode the MC does not charge any nodes until
it is notified—via an alert message—that a neighboring subregion is low on energy.
When so, the MC will switch to charging mode and will follow a different trajectory
towards charging that subregion. If the Mobile Charger detects simultaneously dif-
ferent trees, then by a check on the depth of each structure it can decide which is
the most critical. After the completion of the charging process the Mobile Charger
resumes the patrol mode.

The reactive traversal can be an efficient, adaptive solution for dynamic networks
such as networks with varying event generation rate per Slice.

18.5.3 Known Protocols

We also briefly describe two other state of the art protocols, that will be used in our
experimental evaluation.

18.5.3.1 Local Knowledge Protocol LKP ([1])

An intuitive traversal strategy is that the Mobile Charger follows a circular trajectory
around the Sink. The radius of the trajectory varies and adapts to the energy depletion
rates of each subregion of the network. Starting from the Sink, the mobile charger
traverses a path which forms a set of concentric circles, centered around the Sink with
varying (increasing or decreasing) radii. In particular, the Mobile Charger charges
the sensors inside the ring which contains the corresponding trajectory. The width
of each ring is pre-specified and constant.

18.5.3.2 GreedyPlus ([14])

The algorithm is designed to find a charging sequence with which the lifetime of
the network can be prolonged as much as possible while incurring small traveling
distance. Sensor nodes estimate their remaining lifetime periodically and an aggre-
gated report of the shortest lifetime nodes is delivered to the Sink. The Sink informs
the Mobile Charger about the best charging sequence of those nodes, taking into
account the maximum time that can be spent to move to and charge a given node in
order to extend its lifetime so that no other node of the sequence dies. We note that
the knowledge amount of this protocol is relatively high, since the Mobile Charger
knows the exact position and ID of each node. Also, since all nodes participate in
the lifetime information aggregation, the protocol is expected to have high overhead
due to transmission of messages that keep the Mobile Charger updated.
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18.6 Experimental Evaluation

18.6.1 Experimental Setup

The simulation environment for conducting our experiments is Matlab 7.11.0. For
statistical smoothness, we apply the deployment of nodes in the network and repeat
each experiment 100 times. For each experiment we simulate large numbers of data
propagations and the average value is taken. The statistical analysis of the findings
(the median, lower and upper quartiles, outliers of the samples) demonstrate very high
concentration around the mean, so in the following figures we only depict average
values.

Before we deploy the nodes as described in Sect. 18.3 and in order to come up
with a heterogeneous network topology that will be connected with high probability,
we deploy a portion of the nodes (defined by the connectivity threshold discussed
below) uniformly at random in order to establish connectivity. Since two nodes
communicate with each other iff their euclidean distance is at most r, the generated
network topology by this first set of nodes is in fact an instance of the Random
Geometric Graph model. In [7, 15] it is shown that the connectivity threshold for an
instance of the RGG modelisr, = 1;—,’: This is the connectivity threshold according
to which the initial nodes are deployed.

We focus on the following performance metrics: (a) alive nodes over time, that is
the number of nodes with enough residual energy to operate, during the progress of
the experiment, (b) connected components over time which indicates the number of
strongly connected components of the network graph throughout the experiment, (c)
network criticality map, which is a spatial depiction of the whole network in terms
of energy dissipation and flow traffic, after the generation of a number of events, (d)
routing robustness and average routing robustness, in terms of the nodes’ average
alive neighbors during the progress of the experiment, (¢) coverage aging, that is
the average coverage number (number of sensors having the point in their range) of
1000 randomly selected points in the network over time. We provide results for three

underlying routing protocol families; energy balance, clustering and hop-by-hop.

18.6.2 Protocol Parameters

18.6.2.1 Node Criticality

Our node criticality attribute captures a node’s diversity in terms of both energy
consumption aspects and flow rate. The LKP, as proposed in [1], uses only the nodes’
average energy levels as an indication for its traversal configuration. Intuitively, a
change at the charger’s traversal decision criterion that replaces energy check with
criticality check could provide the charger with a more detailed evaluation of the
current network neighborhood. As shown in Fig. 18.2, changing the above criterion
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Fig. 18.2 LKP with energy criterion and with criticality criterion

and using our new one, results in a lifetime extension of the network, as well as in
improved routing robustness; the improvements are larger as the number of events
increases. This demonstrates the strength of the node criticality attribute which we
thus adopt in the sequel.

18.6.2.2 Percentage of E;,;,; available to the charger

This particular trade-off consists in how much energy (of the total available) should
the Mobile Charger be initially equipped with. On the one hand, more energy to
the Mobile Charger leads to better on-line management of energy in the network.
However, since E,,q1 = Egensors + Epc(tinis), more energy to the Mobile Charger
also means that the sensor nodes will initially be only partially charged. Therefore,
they may run out of energy before the Mobile Charger charges them leading to
possible network disconnection and low coverage of the network area.

To investigate this trade-off, we conducted a comparison among several percent-
ages of initial energy given to the charger. More specifically, we investigate the cases
of 20, 30, 50, 70, and 80 % of the total energy to be given to the Mobile Charger, both
for the LRP and for RTP (Fig. 18.3a, b correspondingly). It is clear that providing
the Mobile Charger with more than 30 % of the total energy is negatively affect-
ing the life evolution of the network, in both protocol cases. On the other hand, a
smaller percentage of energy at the charger (like 20 %) leads to worse results, since
the recharging potential is limited. We thus adopt a 30 % in the following.

18.6.2.3  K(pta1 Of the LRP

The total number of nodes that act as reporters is a fundamental parameter of the LRP.
High numbers of reporters provide the Mobile Charger with detailed information
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about the current state of the Slices’ criticality but require more messages for the
propagation of the reporters’ state, resulting in higher energy consumption throughout
the network. On the other hand, whereas a small number of reporters decreases
the number of message exchanges, poor detail of the Slice’s representation may
disorientate the Mobile Charger and guide it to Slices where the energy to be provided
is not truly needed (in comparison to other Slices).

In order to figure out possible good values for k., that maximize the LRP per-
formance we carry out a comparison operating the protocol between several reporter
numbers. Figure 18.4 depicts the number of alive nodes of the network after 6000
events, for various percentages of reporters over the total number of nodes in the
network. In the particular setting the formula for x4 yields k;orq1 = 5 %. Then we
try to experimentally validate the suitability of this «;,,; choice. It is obvious that if
the protocol defines the number of reporters to be less than 5 % of the network nodes,
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Fig. 18.5 Various metrics for non-uniform deployments with the E; routing protocol

the granularity of the Slice representation is poor, resulting in reduced network life-
time. Similarly, for numbers greater than 5 % of the network nodes, the lifetime is
also reduced, due to the higher message exchange overhead (over total traffic) in
Fig. 18.4. Thus, we set the reporters to a 5 %.

18.6.3 Results in Non-uniform Deployments

We study the effect of our charger strategies, on the number of alive nodes over time,
the energy/flow balance of the network, the routing robustness, the coverage aging
and the number of strongly connected components over time in non-uniform network
deployments. The results with the E; energy balance protocol as underlying routing
protocol are displayed in Figs. 18.5, 18.8, 18.11, and 18.15, for the Greedy protocol
in Figs. 18.6, 18.9, 18.12, and 18.16 for the LEACH protocol in Figs. 18.7, 18.10,
18.13, and 18.17.

18.6.3.1 Alive Nodes over Time

(1) E; protocol: The overall death rate (in terms of alive nodes over time) of the
network is vastly reduced, as shown in Fig. 18.5. The performance of both the LRP
and the RTP approaches the performance of the GKP, powerful charger. We note
that our traversal strategies outperform both the LKP of [1], which seems to be less
adaptive, when used in non-uniform deployments, and the GreedyPlus.

(ii) Greedy protocol: In the hop-by-hop routing case we observe that the perfor-
mance of both the LRP and the RTP approaches the performance of the GKP again
(Fig. 18.6). We notice that the LKP of [1], is more adaptive than in the E; case and its
performance is similar to the LRP. This can be explained by the fact that the greedy
message propagation tends to stress the regions closer to the Sink. Thus, since the
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Fig. 18.7 Various metrics for non-uniform deployments with the LEACH routing protocol

LKP charger does not travel large distances in the network area, it can adjust more
effectively its circular trajectory.

(iii) LEACH protocol: As shown in Fig. 18.7, the results for the LEACH case
are similar to the ones for the E; case. The RTP maintains a large number of alive
nodes over the network and approaches the performance of the GKP. The LKP, while
starting with a relatively inefficient charging behavior, it ends up to a fast regeneration
of dead nodes after 2500 events. However, such network starvation phenomena may
lead to high percentages of lost messages.

18.6.3.2  Criticality Map
(1) E; protocol: Fig. 18.8 depicts the criticality map of the network over time, for each

one of the chargers. More specifically, we present graphically the spatial evolution of
energy dissipation combined with flow traffic information in the network after 4.000
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(a) No charger. (b) LKP. (¢) LRP.

(d) RTP. (e) GKP. (f) GreedyPlus.

Fig. 18.8 Criticality map for non-uniform deployments with the E; routing protocol

(a) No charger. (b) LKP. (c) LRP.

(d) RTP. (e) GKP. (f) GreedyPlus.

Fig. 18.9 Ceriticality map for non-uniform deployments with the Greedy routing protocol

event generations. Nodes with low criticality values are depicted with bright colors.
In contrast, nodes with high criticality values are depicted with dark colors. The cen-
tralized global knowledge charger GKP outperforms all other chargers and achieves
a balanced overall network criticality, as expected, while the local knowledge LKP
of [1] creates a ring consisted of low criticality nodes, since the underlying routing
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(a) No charger. (b) LKP. o (c) LRP.

(d) RTP. (e) GKP. (f) GreedyPlus.

Fig. 18.10 Criticality map for non-uniform deployments with the LEACH routing protocol

protocol is the energy balance E;, where nodes in the middle of the network radius
suffer both from long-range transmissions and high flow rate from outer nodes. This
ring is a cause of imbalance, in contrast to our proposed charger scheme LRP where
the overall network criticality is more balanced.

(ii) Greedy protocol: Fig.18.9 displays the criticality map of the network over
time, for each one of the chargers. Again, we present graphically the spatial evolution
of energy dissipation combined with flow traffic information in the network after
4.000 event generations. The centralized global knowledge charger GKP, in this
case also achieves a balanced overall network criticality followed by the LRP, RTP
and GreedyPlus. The ring of LKP of [1] consisted of low criticality nodes, in this
case, which are spread in a wider area, since the underlying hop-by-hop routing
protocol tends to stress the regions closer to the Sink.

(iii) LEACH protocol: In Fig. 18.10 we can see the criticality map of the network
over time, for the clustering-based routing protocol. We present graphically the spatial
evolution of energy dissipation combined with flow traffic information in the network
after 4.000 event generations. Nodes with low criticality values are depicted with
bright colors and nodes with high criticality values are depicted with dark colors.
As usual, the GKP, outperforms all other chargers and achieves a balanced overall
network criticality. In this case, the LKP of [1] does not create a low criticality ring,
the LRP and the GreedyPlus of [14] lead to an efficient criticality map and the RTP
forms a map with a small number of low criticality nodes.
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Fig. 18.11 Routing robustness for non-uniform deployments with the E; routing protocol

18.6.3.3 Routing Robustness

(i) E; protocol: Routing robustness is critical for sensor networks, as information
collected needs to be sent to remote control centers. Path breakage occurs frequently
due to node mobility, node failure, or channel impairments, so the maintenance of
a path from each node to a control center is challenging. A way of addressing the
routing robustness of a sensor network is by considering for each node the number
of its alive neighbors over time, which can be seen as an implicit measure of network
connectivity. The average number of alive neighbors is depicted in Fig. 18.5. A more
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Fig. 18.12 Routing robustness for non-uniform deployments with the Greedy routing protocol

detailed evolution of the network’s routing robustness is shown in Fig. 18.11. Our
LRP and our RTP achieve high robustness, outperforming both the LKP and the
GreedyPlus and approaching the GKP performance.

(i1) Greedy protocol: The average number of alive neighbors is depicted in
Fig. 18.6. A more detailed evolution of the network’s routing robustness is shown
in Fig. 18.12. Again, the LRP and RTP achieve high robustness, outperforming the
LKP and GreedyPlus and approaching the GKP performance. We observe that in
contrast to the E; routing case the number of alive neighbors follows a smoother
decrease pattern, since the hop-by-hop message propagation does not include long
ranged transmissions.
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Fig. 18.13 Routing robustness for non-uniform deployments with the LEACH routing

(iii) LEACH protocol: The average number of alive neighbors is depicted in
Fig. 18.7. A more detailed evolution of the network’s routing robustness is shown in
Fig. 18.13. The results are similar to the E; routing case.

18.6.3.4 Strongly Connected Graph Components

The number of strongly connected graph components is also an overall measure of
connectivity quality in a sensor network. Disconnected components are unable to
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communicate with each other and sometimes even with the Sink, resulting in high
data delivery failures. Maintaining a small number of connected components in the
network can also improve data delivery latency. High numbers of components may
lead to isolation of critical nodes, thus loss of important information. Figure 18.14
depicts the evolution of the number of network components throughout the exper-
iments (E; routing protocol). As we noted earlier, the LKP of [1] has a high node
death rate, a fact that results in early disconnections and sharp increase of connected
components. Our LRP maintains a (single) strongly connected network. The per-
formance of LKP and GreedyPlus is characterized by an increasing number of
connected components.

18.6.3.5 Point Coverage

(i) E; protocol: Point coverage problem is regarding how to ensure that all points
in the network are covered by enough sensors. Coverage is an important aspect in
sensor networks (e.g. localization, target tracking etc.). A point that is covered by k
sensors is called k-covered. The coverage aging (evolution of coverage with time) of
1000 randomly selected points in the network is shown in Fig. 18.15. We investigate
how many points are <2, 2, 3, >3 covered during an experiment of 4000 generated
events. Our LRP and RTP maintain satisfactory levels of coverage.

(i1) Greedy protocol: The coverage aging of 1000 randomly selected points in the
network is shown in Fig. 18.16. We investigate how many points are <2, 2, 3, >3
covered during an experiment of 4000 generated events. Our LRP and RTP maintain
satisfactory levels of coverage. Note that in this case, the LKP charger has a rather
unstable impact on the network coverage.

(iii) LEACH protocol: The coverage aging of 1000 randomly selected points in the
network is shown in Fig. 18.17. We investigate how many points are < 2, 2, 3, > 3
covered during an experiment of 4000 generated events. Our LRP and RTP maintain
satisfactory levels of coverage, approaching the performance of the GKP.

fan.ye@stonybrook.edu



488

1000

Covered points
I
=3
=1

1000
900
800
700
600
500
400
300
200
100

Covered points

1000

Covered points

C.M. Angelopoulos et al.

——1—covered

m=2-covered —=3-covered mmm>3—covered ]

- - - - - 1000,

Covered points
"
(=3
=3

800 1600 2400 3200 4000
Events

(a) No charger.

800 1600 2400 3200 4000
Events

(b) LKP.

1000
1 900
1 800
700
600
500
400
300
1 200
1 100

Covered points

800 1600 2400 3200 4000 0
Events

(c) LRP.

T T T T T 1000

800 1600 2400 3200 4000
Events

(d) RTP.

Covered points
I
=3
=1

800 1600 2400 3200 4000
Events

() GKP.

800 1600 2400 3200 4000
Events

(f) GreedyPlus.

Fig. 18.15 Coverage aging for non-uniform deployments with the E; protocol

Overall, our proposed protocols extend several network attributes, approach the
performance of the global powerful knowledge protocol and significantly outperform
the LKP which was designed with a focus on uniform deployments, and the Greedy-
Plus in which the Mobile Charger requires frequent updating, hence increased energy
consumption due to message transmissions throughout the whole network.
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Fig. 18.16 Coverage aging for non-uniform deployments with the Greedy protocol

18.6.4 Uniform Deployments

Our protocols achieve performance which approaches the one of the centralized, full
knowledge strategy; also, interestingly, their performance is similar or better than
the performance of the local protocol of [1] whose design was tailored to uniform
deployments. The impact of the charger, in all cases, is lower than the impact on the
non-uniform cases, but still greatly improves the no-charger case performance. The
alive nodes over time metric for the three routing protocols is shown in Figs. 18.18a,
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Fig. 18.17 Coverage aging for non-uniform deployments with the LEACH protocol

18.19a, and 18.20a, criticality map in Figs. 18.21, 18.22, and 18.23, coverage aging in
Figs. 18.27, 18.28, and 18.29, and routing robustness in Figs. 18.18b, 18.19b, 18.20b,
18.24, 18.25, and 18.26.
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18.6.4.1 Alive Nodes over Time

(i) E; protocol: The overall death rate (in terms of alive nodes over time) of the
network is reduced, as shown in Fig. 18.18a. The performance of both the LRP and
the RTP approaches the performance of the GKP. Our traversal strategies outperform
both the LKP of [1], which seems to be less adaptive, even in uniform deployments,
and the GreedyPlus of [14]. An explanation about the LKP less efficient behavior
is that the charger is constantly moving and charging, a fact that may result in energy
replenishment of non-vital network regions.

(ii) Greedy protocol: In the hop-by-hop routing case, the performance of both the
LRP and the RTP approaches the performance of the GKP (Fig. 18.19a). We notice
that the LKP, is more adaptive than in the E; case and its performance is similar to the
LRP and RTP. This is a result of the uniform network deployment in combination
with the greedy message propagation that tends to stress the regions closer to the
Sink and results in less traveling distance for the LKP.

(iii) LEACH protocol: As shown in Fig. 18.20a, both the RTP and the LRP main-
tain a large number of alive nodes over the network and approach the performance
of the GKP. In contrast to the LEACH case in non-uniform network deployments,
all chargers follow a smoother behavior throughout the experiment and network
starvation phenomena are absent.

18.6.4.2 Criticality Map

(1) E; protocol: Fig. 18.21 depicts the criticality map of the network over time, for
each one of the chargers. More specifically, we present graphically the spatial evo-
lution of energy dissipation combined with flow traffic information in the network
after 4.000 event generations. Nodes with low criticality values are depicted with
bright colors. In contrast, nodes with high criticality values are depicted with dark
colors. The centralized global knowledge charger GKP, as expected, outperforms
all other chargers and achieves a balanced overall network criticality while the local
knowledge LKP of [1] creates a dense ring consisted of low criticality nodes.

(i1) Greedy protocol: In Fig. 18.22 we can see the criticality map of the network
over time, for each one of the chargers. The centralized global knowledge charger
GKP, in this case also achieves a balanced overall network criticality followed by
the LRP, RTP and GreedyPlus. The ring of LKP of [1] consisted of low criticality
nodes in this case is spread in a wider area, since the underlying hop-by-hop routing
protocol tends to stress the regions closer to the Sink.

(iii)) LEACH protocol: In Fig. 18.23 we can see the criticality map of the network
over time, for the clustering-based routing protocol. We present graphically the spatial
evolution of energy dissipation combined with flow traffic information in the network
after 4.000 event generations. In this case, the LRP and the GreedyPlus of [14] lead
to an efficient criticality map and the RTP forms a map with a small number of low
criticality nodes.
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(a) No charger. (b) LKP. (c) LRP.

(d) RTP. (e) GKP. (f) GreedyPlus.

Fig. 18.21 Criticality map for uniform deployments with the E; routing protocol

(a) No charger. (b) LKP. (¢) LRP.

(d) RTP. (e) GKP. (f) GreedyPlus.

Fig. 18.22 Ceriticality map for uniform deployments with the Greedy routing protocol
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(a) No charger. (b) LKP. (c) LRP.

(d) RTP. (e) GKP. (f) GreedyPlus.

Fig. 18.23 Ceriticality map for uniform deployments with the LEACH routing protocol

18.6.4.3 Routing Robustness

() E; protocol: The average number of alive neighbors is depicted in Fig. 18.18a. A
more detailed evolution of the network’s routing robustness is shown in Fig. 18.24.
Our LRP and our RTP achieve high robustness, outperforming the LKP and Greedy-
Plus and approaching the performance of the GKP.

(i) Greedy protocol: The average number of alive neighbors is depicted in
Fig. 18.19b. A more detailed evolution of the network’s routing robustness is shown
in Fig. 18.25. Again, the LRP and RTP achieve high robustness, outperforming the
LKP and GreedyPlus and approaching the GKP performance. We observe that in
contrast to the E; routing case the number of alive neighbors follows a smoother
decrease pattern, since the hop-by-hop message propagation does not include long
ranged transmissions.

(iii) LEACH protocol: The average number of alive neighbors is depicted in
Fig. 18.20b. A more detailed evolution of the network’s routing robustness is shown
in Fig. 18.26. The results are similar to the E; routing case, where both hop-by-hop
and direct transmissions are used.
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Fig. 18.24 Routing robustness for uniform deployments with the E; routing protocol

18.6.4.4 Point Coverage

() E; protocol: The coverage aging (evolution of coverage with time) of 1000 ran-
domly selected points in the network is shown in Fig. 18.27. We investigate how many
points are <2, 2, 3, >3 covered during an experiment of 4000 generated events. Our
LRP and RTP maintain satisfactory levels of coverage.
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Fig. 18.25 Routing robustness for uniform deployments with the Greedy routing protocol

(ii) Greedy protocol: The coverage aging of 1000 randomly selected points in the
network is shown in Fig. 18.28. We investigate how many points are <2, 2, 3, >3
covered during an experiment of 4000 generated events. Our LRP and RTP maintain
satisfactory levels of coverage, approaching the performance of the GKP.
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Fig. 18.26 Routing robustness for uniform deployments with the LEACH routing protocol

(iii) LEACH protocol: The coverage aging of 1000 randomly selected points in
the network is shown in Fig. 18.29. We investigate how many points are <2, 2, 3, >3
covered during an experiment of 4000 generated events. The LKP ring is now located
at the outer network region. Our RTP achieves satisfactory levels of coverage. We
observe that the LRP not only achieves an overall network criticality balance, but
also maintains the corresponding criticality values at low levels.
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Fig. 18.27 Coverage aging for uniform deployments with the E; protocol

network.

Overall, our proposed protocols extend several network attributes, approach the
performance of the global powerful knowledge protocol and significantly outperform
the LKP of [1] which was designed with a focus on uniform deployments, and the
GreedyPlus of [14] in which the Mobile Charger requires frequent updating, hence
increased energy consumption due to message transmissions throughout the whole
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18.7 Conclusions

In this chapter we studied the problem of efficient wireless power transfer in Wireless
Rechargeable Sensor Networks (WRSNs), in which a Mobile Charger traverses the
network and wirelessly replenishes the energy of sensor nodes. We first identify and
investigate some critical issues and trade-offs of the Mobile Charger’s configuration,
such as (i) the energy level each sensor should be charged to (ii) the best split of
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Fig. 18.29 Coverage aging for uniform deployments with the LEACH protocol

the total available energy between the charger and the sensor nodes and (iii) which
trajectories are good for the Mobile Charger to follow.

To capture the diverse dynamics in the network (for both the energy consumption
and the traffic flow) we introduce the new network attribute of node criticality; nodes
with high criticality are “prioritized” by the charger. This also gives rise to alternative
traversal strategies for the charger; in particular, we suggest three new protocols
assuming different levels of network knowledge: a centralized global knowledge
method, a limited knowledge protocol that performs a distributed sampling of the
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network conditions and a reactive method based on the judicious propagation of
alert levels in the network. We note that, in contrast to most current approaches,
our methods are distributed and adaptive, and use only local (or limited) network
information; also, we do not couple recharging with routing, since our methods can
be used together with any underlying routing protocol (since they implicitly adapt
to it).

For future research, we plan to investigate the case of WRSNs with multiple charg-
ers, where energy transfer among them is possible. We also plan to develop methods
addressing WRSNs with mobile sensor nodes. Furthermore, recent advances in mag-
netic resonant coupling show that multiple nodes can be charged at the same time.
This enables us to consider new design alternatives for the charging problem. Finally,
we plan to implement selected protocols in small/medium scale real experiments (e.g.
with robotic elements and wireless charging technology).
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Chapter 19
Collaborative Mobile Charging

Sheng Zhang and Jie Wu

Abstract Wireless power transfer attracts significant attention from both academia
and industry. While most previous studies have primarily focused on optimizing
charging sequences and/or durations for one or more mobile chargers, we concen-
trate on collaboration between mobile chargers. In this context, what we mean by
“collaboration” is that chargers can exchange energy. We will first show the collabo-
ration benefit in terms of charging coverage and energy usage effectiveness, then we
will show how to design collaboration-based scheduling algorithms using a simple
yet representative setting. Finally, we will demonstrate several extensions in which
previous assumptions are relaxed one by one. We also use simulations to evaluate
our theoretical findings and investigate the effects of important design parameters.

19.1 Introduction

Wireless power transfer [1] provides a promising means of replenishing battery-
powered devices in ad hoc communication networks, and thus supports various novel
applications. Armed with wireless power transfer, many existing studies [2—4] have
envisioned employing mobile vehicles, robots, and even helicopters carrying high
volume batteries as mobile chargers to periodically deliver energy to rechargeable
devices in target areas. The optimization goals of these studies include maximiz-
ing the lifetime of the underlying network [5], optimizing the efficiency of charging
scheduling [3], energy provisioning [6], minimizing total charging delay [2], optimiz-
ing the coordination of multiple mobile chargers [7], minimizing maximum radiation
point [8], etc.
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However, we found that most of the existing work has hardly considered the
limited energy of mobile chargers, and has usually assumed that a mobile charger
has a sufficient amount of energy to not only replenish an entire target network, but
also to make a round-trip back to the base station. This model is invalidated when a
dedicated charger (even that with a full battery) cannot reach a particularly remote
area.

In this chapter, we introduce a novel charging paradigm, i.e., collaborative mobile
charging paradigm [9], which allows energy transfer between mobile chargers. By
careful selection of the location of and the amount of energy transferred at each ren-
dezvous point, not only is the energy usage effectiveness improved, but the charging
coverage is also enlarged.

We will first discuss related work in Sect. 19.2, and show the collaboration benefit
in terms of charging coverage and energy usage effectiveness in Sect. 19.3, then we
present how to design collaboration-based scheduling algorithms using a simple yet
representative setting in Sect. 19.4. Finally, we demonstrate several extensions in
which previous assumptions are relaxed one by one in Sect. 19.5, where we also
use simulations to evaluate our theoretical findings and investigate the effects of
important design parameters. Concluding remarks are given in Sect. 19.6.

Nikola Tesla (July 10, 1856—January 7, 1943) conducted the first experiments
in wireless power transfer as early as the 1890s: an incandescent light bulb was
successfully powered using a coil receiver that was in resonance with a nearby
magnifying transmitter [10]. Recently, Kurs et al. experimentally demon-
strated that energy can be efficiently transmitted between magnetically resonant
objects without any interconnecting conductors, e.g., powering a 60 W light
bulb, which is 2 m away, with approximately 40 % efficiency [1]. This tech-
nology has led to the development of several commercial products, e.g., Intel
developed the wireless identification and sensing platform (WISP) for battery-
free monitoring [11]; 30+ kinds of popular phones are beginning to embrace
wireless charging [12]; and even vehicles [13] and unmanned planes [14] are
now supporting wireless charging. It is predicted that the wireless charging
market will be worth $13.78 billion by 2020 [15].

19.2 Related Work

There are a number of approaches that are useful in extending the sustainability
and applicability of battery-power devices, e.g., sensors, RFIDs, and vehicles. These
methods can be classified into two broad types: energy harvesting and energy con-
servation. The former extracts environmental energy for supporting energy-hungry
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devices, and the latter resorts to energy-aware mechanisms for conserving energy
during normal operations of devices.

For example, in energy harvesting, Kansal et al. [16] incorporated proactive
learning on environmental parameters into performance adaption, and also pro-
vided performance-aware systematic methods to systematically utilize environmen-
tal energy [17]; solar energy harvesting was taken into consideration when making
routing decisions [18]; Cammarano et al. [19] developed accurate prediction models
for solar and wind energy harvesting.

With regard to energy conservation, Wang et al. [20] proposed using resource-
rich mobile nodes as sinks/relays to balance the unbalanced energy usages; Dunkels
et al. [21] took cross-layer information-sharing into consideration; Bhattacharya et
al. [22] proposed caching mutable data at some locations to control the data retrieval
rate, for the purpose of slowing down the energy consumption rate. Note that, a
combination of energy conservation and wireless power transfer can further improve
the energy usage effectiveness.

Wireless power transfer has been a viable topic in the area of wireless networks
and mobile computing in recent years. A practical wireless recharge model is derived
in [6] on top of WISP. The performance of multi-device simultaneous charging is
investigated in [23]. For stationary chargers, a charger placement framework is pro-
posed in [6] to ensure that each device receives sufficient energy for continuous
operation; a joint optimization of charger placement and power allocation is consid-
ered in [24]; how to obtain the maximum electromagnetic radiation point in a given
plane is studied in [8]; quality of energy provisioning for mobile nodes, given their
spatial distribution, is investigated in [25].

For mobile chargers, existing studies have considered various decision variables
and objectives. To maximize network lifetime, charging sequence and packet routing
are optimized in [5, 26], while charger velocity is optimized in [27]; to maximize
the ratio of the charger’s vacation time (i.e., time spent at the home service sta-
tion) over the cycle time, travelling path and stop schedules are optimized in [3, 4];
to maximize energy usage effectiveness, collaboration between mobile chargers is
optimized in [28, 29]; to minimize the total charging delay, stop locations and dura-
tions are optimized in [2]; NDN-based energy monitoring and reporting protocols
are designed in [30] with a special focus on scheduling mobile chargers for multi-
ple concurrent emergencies; to simultaneously minimize charger travel distance and
charging delay, synchronized charging sequences based on multiple nested tours are
optimized in [31]; given heterogenous charging frequencies of sensors, how to sched-
ule multiple charging rounds to minimize total moving distance of mobile chargers
is studied in [32].

19.3 Motivation

The motivation of our design is to illustrate the benefits of collaboration in terms of
charging coverage and energy usage effectiveness.
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19.3.1 Notations

In order to clearly present the motivational examples, we first introduce a few nec-
essary notations.

We consider N stationary sensor nodes distributed along a straight line. These
nodes are uniformly distributed, i.e., a unit distance apart. A base station is located
to the left of the wireless sensor network (WSN). The base station also serves as
the service station that replenishes mobile chargers. Without loss of generality, we
denote the sensor nodes from left to right by sy, 7, ..., and sy. The battery capacity
of each sensor node is b. Each node consumes energy for sensing, data reception,
and transmission. We represent the average energy consumption rate of each sensor
node as r. The recharging cycle of a sensor node is defined as the time period during
which a sensor node with a full battery can survive without being charged. Letting
T be the recharging cycle of each sensor node, we have t = b/r.

We assume that mobile chargers are homogeneous: for every charger, the battery
capacity is P, the travelling speed is v, and energy consumed by travelling one unit
distance is c. Both travelling and wireless charging share the same battery of a mobile
charger. The i-th mobile charger is denoted by C;. A mobile charger starts from the
base station with a full battery; after it finishes its charging task, it must return to the
base station to be serviced (e.g., recharging its own battery).

As the wireless power transfer efficiency decreases rapidly when the distance
between charger and rechargeable device increases [6], we assume that a charger can
transfer energy to a sensor node only when they are very close to each other; in this
case, we assume that the wireless power transfer is perfect, i.e., there is no energy

loss during energy transfer. We denote by C; 5 C; (resp. C; 5 s;) the event that
charger C; transfers e units of energy to charger C; (resp. sensor s;).

19.3.2 Collaboration Benefit

Coverage. Figure 19.1 shows an example of scheduling chargers without collabora-
tion, where there are 6 sensor nodes and the distance between two consecutive nodes
is 1 m. The battery capacities of each node and each charger are 2 and 40 J (J for
Joule), respectively; the travelling cost is 3 J/m. In the figure, two chargers are used:
C charges s; to s4 and returns to the base station, and C, charges ss to s¢ and returns
to the base station.

We note that even given an infinite number of chargers, the maximum coverage
cannot exceed 6 sensors, since any charger must return to the base station for the
next round of scheduling (i.e., % = % < 7). However, we will shortly see in The-
orem 19.2 that, the coverage of well-designed collaboration-based scheduling can
be infinite.

Energy usage effectiveness. The energy consumed in replenishing target networks

can be classified into three categories: payload energy, which is the energy eventually
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Fig. 19.1 Time-space view
of scheduling chargers
without collaboration, where
b=2J,P=40J,andc =3
J/m

Fig. 19.2 Time-space view
of scheduling chargers with
collaboration, where b = 2 J,
P=40J,and c =3 J/m

obtained by rechargeable devices, movement energy, which is the energy used by
mobile chargers for moving, and loss energy, which is the energy loss during wireless
energy transfer. The energy usage effectiveness (EUE) is thus defined as the ratio of
the amount of payload energy to the total energy.

In Fig. 19.1, the payload energy is 12, the movement energy is 60, and the loss
energy is 0, and hence the EUE is %. In fact, this is also the highest EUE a schedul-
ing without collaboration can achieve in this example. To delivery energy to s¢, one
charger (C; in the example) must travel to se; due to capacity constraint, C; can-
not charge more than two nodes (since 40 < 6 x 2 x 3 4 2 x 3 = 42); therefore,
another charger (C,) must travel to at least s,4.

However, collaboration can improve EUE, as shown in Fig. 19.2. C, charges s; to
52, charges C| to its full battery at s,, and returns to the base station. We can similarly
calculate that, the EUE of this scheduling is 1.

19.4 Design

In this section, we present the design of collaboration-based scheduling algorithms
for a simple yet representative setting. First, we introduce problem formulation in
Sect. 19.4.1 and scheduling examples in Sect. 19.4.2, then we present PushWait, an
algorithm that achieves the highest EUE in Sect. 19.4.3, and lastly we give some
notes in Sect. 19.4.4.
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19.4.1 Problem Formulation

The scheduling of chargers is equivalent to deciding the time-space trajectories of
chargers. In a feasible scheduling, any rechargeable device should not run out of
energy, and every charger should be able to return to the base station. The scheduling
cycle of a feasible scheduling is the time interval between two consecutive time
points when each sensor has the same battery level. To evaluate the long-term energy
efficiency of a scheduling, we only have to consider the energy usage in a scheduling
cycle. In a scheduling cycle, we denote by EP!, E™" and E* the amounts of payload
energy, movement energy, and loss energy, respectively. The EUE is thus defined as

EP!

EUE = ———.
Ep! + Emm +EIS

(19.1)

Given these settings, our goal is to maximize the EUE.
For simplicity of presentation, we discuss our designs under two assumptions:

e Short Duration (SD): the time for charging a sensor node to its full battery is
negligible compared to the recharging cycle;

e Long Cycle (LC): the recharging cycle of a sensor node is longer than a charging
round, i.e., any two consecutive charging rounds have no intersections. Thus,
mobile chargers can always accomplish a charging round, return to the base station,
and wait for another charging round.

Our designs can be applied to settings without these two assumptions, see remarks
in Sect. 19.4.4.

19.4.2 Scheduling Examples

We introduce three scheduling examples to motivate the algorithm design.

Suppose we have only 3 mobile chargers with P = 80J, ¢ = 3 J/m, and the battery
capacity of each sensor node is b = 2 J. Since the total energy is fixed, and is 80 J x
3 =240 J, EUE is maximized when E”' is maximized. Therefore, in the following,
we try to see how to cover the greatest number of sensor nodes using 3 chargers.

Figures 19.3, 19.4, and 19.5 show the time-space views of three simple scheduling
heuristics. In the figures, we use L; (1 < i < 3) to represent the farthest distance that
C; travels away from the base station. We also let L4 be 0 for compatibility.

e EqualShare: each sensor node is jointly charged by all chargers. In our example,
each mobile charger transfers 2/3 unit of energy to each sensor node. Thus, 12
sensors can be covered, as shown in Fig. 19.3.

e SolelyCharge: each charger is responsible for a set of consecutive senor nodes, and
each sensor node is assigned to one distinct charger. In our example, Cs charges
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Fig. 19.5 CLCharge, L3 = 5%, Ly =11%,L; = 17. Cy has %J residual energy

sensor nodes from L, to L3; C, charges sensor nodes from Ls to L,; and C; charges
sensor nodes from L, to L;. The variables L3, L,, and L, are carefully chosen, so
that each charger returns to the base station with exactly zero energy. Figure 19.4
demonstrates that 13 sensors can be covered.

e CLCharge: each charger is responsible for a set of consecutive senor nodes, each
sensor node is assigned to one distinct charger, and energy transfer between charg-
ers are utilized. In our example, C3 charges sensors from the base station to L3, then
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transfers some energy to C, and C; at L3, and finally returns to the base station.
Here, L; is carefully chosen, such that (i) C; and C; have full batteries after C;
transfers energy to them, and (if) Cs returns to the base station with exactly zero
energy. In Fig. 19.5, 17 sensors can be covered.

In these scheduling examples, we make the following key observation that may
provide some insight into the design of an optimal scheduling algorithm in the next
subsection: when the extent of collaboration increases, the coverage increases. In
EqualShare, chargers do not cooperate with each other, and they just charge sensor
nodes one by one from the base station; in SolelyCharge, each charger is restricted
to replenishing a set of consecutive nodes, and the target network is partitioned into
disjoint intervals; finally, in CLCharge, intentional energy transfer between chargers
is utilized to further enlarge the coverage.

19.4.3 PushWait

For a given target network, the payload energy is fixed, i.e., E! is fixed,; since
we assume wireless power transfer is perfect, i.e., EBS =0, we can maximize EUE
through minimizing the sum of distances travelled by chargers, i.e., minimizing E™".

How might we minimize the sum of the distances travelled by chargers? The
key observation is that, we can let as few mobile chargers as possible carry the
residual energy of all chargers, and move forward. CLCharge in Fig. 19.5 reflects
this intuition: C3 turns around at L3 = 5%, which is smaller than 13 in Fig.19.4.
Therefore, the sum of the total travelling distances in CLCharge is less than that in
SolelyCharge, leading to a higher EUE. The reason that we can safely let Cs turn
around at L3 =5 g is that C; and Cj can carry the residual energy and move forward,
instead of having all of the three not-full-battery mobile chargers move forward.

Can we improve CLCharge? We notice that, in Fig. 19.4, when C, (resp. C)
reaches L3 on its way back to the base station, it has a positive amount of residual
energy for safely returning to the base station. In other words, C; (resp. C;) carries
this particular part of energy during its travelling from L3 to L, (resp. L), and finally
to L3 again. How about letting C3 stop moving forward at a place L; which is closer
to the base station than L; = 5%? In doing so, C5 can wait at a place with sufficient
energy to support C, and C;’s travelling from L} to the base station.

We therefore design PushWait, the optimal scheduling algorithm that achieves
the highest EUE. Formally, suppose that we require M chargers to cover a given
WSN, then each charger C; in PushWait follows the iterative process below.

1. C; starts from the base station with a full battery; it then gets fully charged at
locations Ly, Ly —_1,..., and L.

2. C; charges sensor nodes between L;;; and L;. When it arrives at L;, it charges
Ci_1, Ci_3,..., and Cy, such that these (i — 1) chargers’ batteries are full.

3. C; waits at L;. When all of Cy, Cs,..., and C;_; return to L;, it evenly distributes
its residual energy among these i chargers (including C; itself).
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Fig. 19.6 Time-space view of PushWait with the same settings as in Figs. 19.3, 19.4, and 19.5. We
have L3 = 3%, Ly, =9,L; = 19. C3 has 14 J residual energy

4. On C;’s way back to the base station, it gets charged at locations L;y, Li2,...,
and Ly, which makes it have just enough energy to return to the base station.

The reason for naming this scheduling after “PushWait” is clear: each charger
“pushes” some other chargers to move forward, and “waits” for their returns.

Figure 19.6 shows the time-space view of PushWait with the same settings as in
Figs.19.3, 19.4, and 19.5. The running details are as follows. Mobile chargers Cj,
C,, and Cj start from the base station with P = 80 J energy. At L; = 3%, both Cy and
C; have 80 — 3 - L3 = 70 J energy, while C3 has 80 — 3 - L3 — 2 x 3 = 64 J energy,

because it charges nodes s1, 52, and s3. Then, we let Cs E; C, and C3 ﬂ)) C;. After
this, C3 waits at L3 with 44 J energy. Similarly, after C, charges nodes from s4 to s9,
and charges C; to its full battery at L, = 9, C, waits at L, with 34 J energy. When
C returns to L, after charging nodes from sy to 59, as the reader can verify, it has

exactly O energy. Then, we let C; L7> C;. Note that, 17 J energy is just enough for C;

or C, to move from L, to L3. At L3, we let C3 1—0> C, and C; B C;. Again, note that,
10 J energy is just enough for C; or C;, to move from L3 to the base station. When
they return to the base station, only C3 has 14 J residual energy. PushWait covers 19
sensor nodes.

19.4.3.1 Parameters

We present how to determine L; (1 < i < M) to maximize EUE in this subsection.
Remember that, sensor nodes are uniformly distributed, and therefore, we make the
following approximation: given d’ distance, we have approximately d’/d sensors.
Let us analyze the interval between L;;| and L;. C; gets fully charged at ;| and
reaches L;;; with O energy on its way back to the base station. The full battery P
is used up for the following reasons: (i) C; charges sensors between L;; and L;,
(if) C; moves from L;y; to L;, (iii) C; transfers some energy to Cy, Cy, ..., and C;_;
at L; for the first time. Note that these i — 1 chargers are fully charged at L;;, and
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thus the energy transferred to them at L; is exactly the energy consumed by their
travellings from L;1; to L;; (iv) C; transfers some energy to Cy, C», ..., and C;_; at
L; for the second time, which is just enough for them to travel from L; to L;;;, and
(v) C; moves from L; to L;;. Combining the above reasons together, we have the
following equations.

2icd(Li — Liy1) +b(Li — Liy)/d = P(1 <i < M) (19.2)
2Mcd(Lyy — 0) +b(Ly — 0)/d < P (19.3)

The second formula is an inequality, since PushWait cannot always use up exactly
the total energy of M chargers. We then have:

L = Nd (19.4)

i1

Pd
L=Nd-Y — " @2<i<M 19.5
ngcdzwrb(—’— ) (19.5)

The number of chargers M can be determined by: Ly, > 0, Ly, < 0. We further
have EP! = Nb and E™" = 2cd Zﬁ \ Li. The duration of a charging round is Nd /v,
and the scheduling cycle is equal to the recharging cycle, i.e., 7.

19.4.3.2 Properties

Theorem 19.1 (Optimality of PushWait) For the settings described in Sect. 19.4,
PushWait is optimal in terms of EUE.

Proof Denote by Distance(alg) the sum of travelling distances by all mobile charg-
ers in a scheduling algorithm alg. As we mentioned before, it is sufficient to prove
that Distance(PushW ait) is the minimum. Suppose that PushWait requires M mobile
chargers to replenish the given WSN. We prove the theorem by mathematical induc-
tion on M.

M = 1. Distance(PushWait) = 2L, where L, is the length of the given WSN.
We note that any scheduling algorithm anyalg must have at least one charger to
charge the farthest sensor node in the WSN, therefore, Distance(anyalg) > 2L, =
Distance(PushW ait).

M = 2. (By contradiction) Suppose that PushWait is not optimal, and the optimal
scheduling algorithm is OPT,. Since one charger cannot cover the entire WSN,
there are at least two chargers in OPT;. One of them, say C’, must charge the
farthest sensor, and thus it moves at least 2L; distance. By definition, we should
have Distance(OPT,) < Distance(PushWait) = 2L, + 2L,. Therefore, all the other
chargers in OPT, cannot travel as far as L,. However, according to our calculation
of L, in PushWait, a charger with a full battery at L, can only charge the sensors
between L, and L; and return to L, with 0 energy; then we know C’ in OPT) can, by
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no means, reach L;: a contradiction! Therefore, no such OPT, exists, and PushWait
is optimal.

LH.: PushWait is optimal for any M < n.

M = n. (By contradiction) Suppose that PushWait is not optimal, and the optimal
scheduling algorithm is OPT,,. Imagine that a virtual base station BS’ is located at L,,,
then, OPT, and PushWait require Q and (n — 1)P energy, respectively, to cover the
sensors between L, and L;. By the induction hypothesis, QO > (n — 1)P. Then, the
task of OPT,, is to cover the sensors from the base station to L, and to deliver Q energy
to L,. It is then straightforward to see that OPT,, requires at least n chargers to reach
L,; otherwise, the total residual energy of less than n chargers at L, is definitely less
than (n — 1)P. Since Q > (n — 1)P, OPT, consumes more energy than PushWait: a
contradiction! No such OPT,, exists, and PushWait is optimal. |

Theorem 19.2 (Coverage) The maximum coverages of EqualShare, SolelyCharge,
CLCharge, and PushWait are P/2c, P/2c, P/c, and infinity, respectively.

The detailed proofs of Theorems 19.2, 19.3, 19.4, and 19.5 can be found in
[9, 29].

Our problem resembles the banana-eating camel problem [33] to a limited
extent. A farmer has 3,000 bananas that will be sold at a market 1,000 miles
away. He has only a camel that can carry at most 1,000 bananas at a time but will
eat 1 banana to refuel for each mile it walks. Is there any method to delivery
any bananas to the market? If yes, how? There are two major differences
between our problem and this one: first, energy can only be exchanged between
chargers, while bananas could be placed on the ground; second, only one camel
is involved, implying there is no collaboration.

19.4.3.3 Performance

Following similar settings in [5], we assume that sensor nodes are powered by a
1.5V 2000 mAh Alkaline rechargeable battery, then the battery capacity (b) is 1.5
V x 2 A x 3600 s = 10.8 KJ. The battery capacity of a mobile charger (P) is
2000 KJ; the moving speed of a charger (v) is 1 m/s; the charger’s moving power
consumption rate is 50 W, thus, the moving cost of a charger (c) is 50 J/m. We assume
that sensor nodes are uniformly deployed over a 10 Km straight line. By default, the
number of sensor nodes (V) is 400; the wireless charging efficiency (17;) is 1.5 %; the
charging efficiency between mobile chargers (1,) is 30 %. We compare PushWait with
EqualShare, SolelyCharge, CLCharge, and GreedyPlus [5]. The original version of
GreedyPlus does not consider multiple chargers, and we tailored it to our scenarios:
multiple mobile chargers are seen as one large charger, which adopts binary search to
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find a suitable target network lifetime. Note that, a sensor may be recharged several
times in a charging round in GreedyPlus.

Figure 19.7 shows the performance comparisons in scenario K 1K2K3 by varying
the number of sensor nodes. When the number of sensor nodes increases, since they
are restricted to the 10 km long line, the density of sensor nodes also increases.
This is so that mobile chargers can transfer energy to more sensor nodes without
incurring much moving cost. According to this, all of the five algorithms perform
better when the number of sensor nodes increases. The main reason for the relatively
low EUE of EqualShare is that, every charger in EqualShare has to move to the
farthest sensor node, and thus, the increase in the number of sensor nodes leads
to an increase in the amount of overhead energy. In summary, as we theoretically
demonstrated earlier, PushWait achieves the highest EUE among the five algorithms.
CLCharge takes advantage of collaboration between chargers, and so has the second
highest EUE. GreedyPlus greedily selects the next charging target, outperforming
SolelyCharge and EqualShare. EqualShare has the worst performance. Comparisons
between EqualShare, SoleCharge, and CLCharge can be found in [28].

19.4.4 Remarks

We now show how to apply PushWait to contexts without the short duration (SD)
and low cycle (LC) assumptions.

Without SD. When the time for charging a sensor node to its full battery is
not negligible compared to the recharging cycle, we use the first charging round to
synchronize the battery levels of all sensor nodes. The purpose of synchronization is
to make sure that, each sensor node s; would require exactly b amount of energy when
the mobile charger approaches it in the following charging rounds. Since the energy
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transfer rate is fixed, we can modify our scheduling algorithms by intentionally
adding a fixed duration at each sensor node.

We use Fig. 19.8 for further explanation, where 3 sensor nodes are 10 m apart. The
battery capacity of each node is 2 J, and the recharging cycle of each node is 50 min.
Therefore, the energy consumption rate is 0.04 J/min. The charger can transfer 0.2J
energy to a node in 1 min. Therefore, it takes 10 min to transfer 2J to a node.

Suppose that when the charger arrives at s; for the first time, it has 1.2J residual
energy; since (2 — 1.2) /(0.2 — 0.04) =5, it takes 5 min for the charger to replenish
s1 to its full battery. When the charger arrives at s», it also has 1.2] residual energy.
Although the charger could finish charging s, in 5 min, the charger should intention-
ally wait another 5min before heading for s3. This should be done for the purpose
of synchronizing energy levels among sensor nodes, as shown in Fig. 19.8. In doing
s0, in the following charging rounds, each sensor node will have exactly 0.4 ] energy
when the charger begins to recharge it, implying that it would take the same amount
of time (i.e., 10 min) for the charger to recharge each node to its full battery. For
instance, s1, 5, and s3 have full batteries at the 7th, 19th, and 31st min, respectively;
in the second charging round, they become fully charged at the 47th, 59th, and 71st
min, respectively. We see that, the corresponding time interval for every sensor is
50min, which is the recharging cycle of each sensor node.

Without LC. Generally speaking, when the recharging cycle of a sensor node is
not longer than a charging round, we can adopt a pipeline-like solution. Figure 19.9
shows an example. Since the recharging cycle is 24 min, the 2nd (resp. 3rd) charging
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Fig. 19.9 Without the LC
assumption. Pipeline-like
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recharging cycle (24 min <
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round has to start at the 19th (resp. 43rd) minute. Itis not hard to see that, pipeline-like
PushWait can still achieve optimality. An additional requirement of such a solution
is that, it needs more chargers, e.g., 2 chargers are required in Fig. 19.9.

19.5 Extensions

Three main assumptions that are made in Sect. 19.4 include: (K1) all sensor nodes
are distributed along a one-dimensional (1-D) line; (K?2) the recharging cycles of all
sensor nodes are the same; (K 3) there is no energy loss during any energy transfers.
In this section, we consider several scenarios that remove these conditions one by
one, and finally investigate the mobile charging scheduling problem in general 2-
dimensional (2-D) WSNs. We use K] to indicate that Kj does not hold, j € {1, 2, 3}.
For example, K 1K2K 3 represents the scenario in which K1 and K2 hold, while K3
does not hold.

The recharging cycle of s; is denoted by 7;. We denote by 7; the wireless charging
efficiency between a charger and a sensor node, i.e., a charger C consumes one unit
of energy while a sensor can only receive n; units of energy. Similarly, denote by 7,
the efficiency between two chargers. For example, if C; 5 C; (resp. C; 5 s;), then
C; (resp. s;) receives only nye (resp. nie) units of energy.
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19.5.1 Energy Loss

We first study the scenario where K3 does not hold. Mobile chargers’ collaboration
helps PushWait achieve optimality; however, when energy loss during energy transfer
is not negligible, collaboration increases E”, and hence, may impair the EUE of
PushWait. We use the following example to illustrate this observation.

Figures 19.10, 19.11, 19.12 and 19.13 show the time-space views of four schedul-
ing algorithms. The farthest distance that C; moves away from the base station is
determined via the same analysis as before. The settings are similar to those in
Figs.19.3, 19.4, 19.5 and 19.6, except that n; = 0.5 and n, = 0.25.

Taking Fig. 19.10 for example, C3 can cover only 8 sensors, because 8c + 8¢ +
2 x 8n; = 80; C; can cover only s1,, because it cannot return to the base station if it

;
d
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Fig. 19.11 SolelyCharge, L3 = 8, L, = 11%, Ly = 12. C has 4 ] residual energy

Fig. 19.12 CLCharge,
L3y =2,1,=5L =10.C
has 4 J residual energy
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Fig. 19.13 PushWait, Lz = 1, L, = 3, L; = 11. C3 has 10 J residual energy

covers s13 as well. When all three chargers return to the base station, only C; has 4 J
residual energy. The numbers of sensor nodes that can be covered in four algorithms
are 10, 12, 10, and 11, respectively; their EUEs are 5;0°5 & 0.091, 222 ~ 0.102,

02 e 240-20 > 240
X ~ X ~
2103 ~ 0.085, and 5,775 ~ 0.096, respectively.

19.5.1.1 nPushWait

Recall that PushWait is optimal for scenario K 1K2K 3; however, in scenario K 1K 2K3,
due to the energy loss between chargers, its EUE is only the second highest, while
SolelyCharge achieves the highest EUE. This example suggests to us that Solely-
Charge may perform better than PushWait for K 1K2K3.

Theorem 19.3 (Optimality of SolelyCharge) If collaboration among chargers is not
permitted, SolelyCharge is optimal in terms of EUE for K1K2K3,

Though SolelyCharge is optimal if collaboration is not allowed, it has limited
coverage (see Theorem 19.2). PushWait is not optimal for scenario K 1K2K 3, but it
can cover a 1-dimensional WSN of infinite length.

We therefore propose combining SolelyCharge with PushWait to construct our
solution nPushWait, which is better than either of them individually. Denote by
cg(alg, M) the coverage of a scheduling algorithm alg with M mobile chargers. For
example, in scenario K1K2K3, if we assume that, V1 <i < N, b=bandx; =i-d,
following a similar analysis as in Sect. 19.4.3, we have

Y, i
1
cg(SolelyCharge, M) = E P (19.6)
P (2n1cd? + b)

M—1
cg(PushWait, M) = Z
i=0

n11m2dP

: (19.7)
mb 4+ 2n1cd?(n2 + i)

Given a WSN and mobile chargers that satisfy K1K2K3, let M’ be the largest
value of M that ensures cg(SolelyCharge, M) > cg(PushWait, M), i.e.,
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M’ = arg max M. (19.8)

cg(SolelyCharge ,M)>cg(PushW ait,M)

Then, nPushWait can be constructed as follows. If the length of the given WSN is
not greater than cg (SolelyCharge, M'), we use SolelyCharge. Otherwise, we have the
following strategy: we use SolelyCharge to charge sensors between the base station
and cg(SolelyCharge, m), and use PushWait to charge the remaining sensors, where
m (1 <m < M’) is a positive integer that maximizes the EUE of such a strategy.

19.5.1.2 Performance

We evaluate the impact of charging efficiencies in this subsection. Figure 19.14 shows
the case where 7, is fixed, i.e., the charging efficiency between chargers is fixed.
When we increase 7, the energy loss during wireless charging becomes smaller, so
the EUE of each algorithm gets larger.

Figure 19.15 shows the case where 1, is fixed. There are three interesting obser-
vations. First, since there is no energy transfer between chargers in SolelyCharge,
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GreedyPlus and EqualShare, their EUEs remain unchanged when 7, increases. Sec-
ond, CLCharge has a higher and lower EUE than PushWait when 1, < 0.6 and
12 > 0.6, respectively. The rationale behind this phenomenon is that, the total energy
exchanged between chargers in CLCharge is less than that in PushWait. Thus,
CLCharge may perform better than PushWait if 1), is small. Third, nPushWait always
has the best performance, because it takes advantage of SolelyCharge when 7, < 0.6,
and takes advantage of PushWait when 1, > 0.6.

19.5.2 Different Recharging Cycles

We consider K 1K2K3 in this subsection. When sensor nodes have different recharg-
ing cycles, a scheduling cycle may include multiple charging rounds, which greatly
complicates the scheduling problem. Figure 19.16 shows a scheduling example in
scenario K 1K2K3. There are six sensor nodes in the WSN: 1, =2, 1, = 4, 13 = 3,
74 =7, 15 = 6, and g = 5. All sensor nodes are initialized to their full batteries at
time 0. At time 1, we plan to charge s1, s, and s3. Since 7, = 4 and s; has a full bat-
tery at time 0, s, needs only b/4 energy at time 1. So we employ PushWait to deliver
b/2, b/4, and b/3 energy to s, 52, and s3, respectively, at time 1. In the scheduling
example, there are also charging rounds at time points 2 and 4. From time 5, the three
charging rounds between time points 1 and 4 are repeated. Two important questions
can be raised for such a scheduling example.

First and foremost, how are we to go about characterizing long-term EUE? Since
the scheduling cycle is 4, we can use the EUE within a scheduling cycle to exactly
represent the long-term EUE. Second, how might we define the scheduling cycle?
As we mentioned before, it is defined as the time interval between two consecutive
time points when all sensors are fully charged. For example, the WSN in the figure
is fully charged at time points 0, 4, 8, and so on, so the scheduling cycle is 4.

Fig. 19.16 A scheduling

example for K 1K2K3 where BS O—O0——CO0—0O——06 ©®
11=2,10=413=3,
weTr=Gadn =3 ol [ [E B B I[EIE ]
For instance, at time 2, we
use PushWait to deliver b/2, A Jass [ b2 ]-{ b4 }[ b3 |
b/4,b/3, and 2b/7 energy to 2F---- [ b2 || b4 || b3 f[2b7 |- oooeiene
51,82, 83, and s4, 3
respectively. The scheduling
cycle of this example is 4 . i [ b ][ b2 J[205 }[2b/7 }[2b/3 ][ 4b/5 ]
5 ..... | b2 ].lbmllb;g I
6} [b2 ][ b4 }[ b3 }[20/7]
7
8 aE>| b |-{ b2 }[2b/3 }[2b/7 ][ 2b/3 ][ 4b/5 ]
L
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Second, when should we plan to make a charging round? The next theorem tells
us that, we only need to start a charging round when there is at least one dying sensor
node. For example, the charging round at time 1 in Fig. 19.16 is redundant, since no
sensor nodes will run out of energy if the charging round is cancelled.

Theorem 19.4 (Necessary condition) Given a node s that is x; distance away from
the base station, the battery capacity of s is b; using PushWait to deliver b energy to
s one time achieves a higher EUE than using PushWait twice.

At one extreme, when we plan to recharge a sensor node, we want to transfer as
much energy as possible to it, so as to increase the payload energy. Based on this
intuition, we start a charging round only when there is at least one dying sensor
node, and in this charging round, we only charge the dying sensor nodes. With the
same settings as in Fig. 19.16, Figure 19.17 shows such an example: a sensor node is
charged only when it is dying. At another extreme, when there is a charging round,
we want to charge as many sensor nodes as possible, so as to increase the payload
energy. Figure 19.18 demonstrates this extreme case.

In fact, these two design options compete with each other; thus, we strive to strike
a balance between them, and propose our solution ClusterCharging(8).

19.5.2.1 ClusterCharging(8)

We first sort sensor nodes in decreasing order of their recharging cycles, then we
divide them into groups such that the ratio of the maximum recharging cycle to the
minimum recharging cycle in each group is not greater than a given threshold, say
B. Then, we start a charging round only when there is at least one dying sensor node,
and in this charging round, we employ PushWait to charge all sensor nodes in a
group on the condition that this group contains at least one dying sensor node. Note
that, in each charging round, different sensor nodes may need different amounts of
energy, .g., 5, 52, and s3 require b/2, b/4, and b/3 energy, respectively, at time 1 in
Fig.19.16. Remember that PushWait can still achieve its optimality in each round,
due to Theorem 19.1.

Letustake Figs. 19.17,19.18, 19.19 and 19.20 for example. “# = 1” represents the
extreme case in Fig. 19.17, where each sensor node, itself, forms a group. Similarly,
“B = 400" represents the other extreme case in Fig. 19.18, where all sensor nodes
form a single group. In Fig. 19.18, we consider sensor nodes in decreasing order of
their recharging cycles, i.e., s1, 53, 52, S6, S5, and s4. First, s; forms a group {s;}; we
then attempt to put s3 into {s,}, since 73/7; = 1.5 < B = 2, it is feasible for them to
be in the same group; the group {s1, s3} can also accommodate s,; when we want to
put s¢ into {s1, 53, 52}, as 76/71 > B, s¢ forms a new group, and so on. In Fig. 19.19,
B is set to 3, resulting in two groups, i.e., {s1, 52, §3, S5, S¢}, and {s4}.

Different values of S lead to different EUEs of ClusterCharging(8), and the
optimal value of B varies with the parameters of a given MCS problem. There-
fore, for a given MCS problem that satisfies K1K2K3, we maximize the EUE
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Fig. 19.17 B = 1, there are
six groups; each sensor,
itself, forms a group.
Ilustrations of
ClusterCharging(p) for
K1K2K3 with the same
settings as in Fig. 19.16

Fig. 19.18 B = 2, there are
two groups: {s1, 2, 53}, and
{s4, 55, 56}

Fig. 19.19 B = 3, there are
two groups:
{51, 52, 53, 55, 56}, and {s4}
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of ClusterCharging(f) by searching the optimal B in range [I, % + 1], where
Tpnin = MR <j<NTj, ANd Tpypy = MAX|<i<NT;.

Theorem 19.5 (Performance guarantee of ClusterCharging(8)) The approximation
ratio of ClusterCharging(B) for K1K2K3 is

bmin(zcxN + ZZV:I bl)
PTmaxk Zf\lzl bi

(19.9)

— minV
where by, = min;_,b;, and

k= argmin(zg:] l_zzcwrmmbm,-,l)k (19.10)

Ptmax

For scenario K1K2K3, we design an algorithm called nClusterCharging(8), in
which sensor nodes are divided into groups in a similar way as ClusterCharging(g).
However, in each charging round, we employ nPushWait instead of PushWait to
replenish sensor nodes.

19.5.2.2 Performance

We evaluate ClusterCharging(f) under different values of 8: 8 = 1 to 5 in Fig. 19.21
and 8 = 1 to 3 in Fig. 19.22. We notice that, ClusterCharging(8) with three different
B’s perform almost the same in Fig. 19.21, while ClusterCharging(3) outperforms the
other two algorithms in Fig. 19.22. The main reason is that, the relative gap between
recharging cycles in Fig. 19.21 is large, while the relative gap in Fig. 19.22 is small.
For example, if we use ClusterCharging(5) to replenish the WSN in Fig. 19.21, then
the energy we have to transfer to each sensor node varies from 1.8 KIJ (b/6) to
10.8 KJ (b). We can see that, some sensor nodes just need a small amount of energy.
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However, if we use ClusterCharging(5) to replenish the WSN in Fig. 19.22 (note that,
ClusterCharging(5) is equivalent to ClusterCharging(3) for the setting in Fig. 19.22),
then the energy we have to transfer to each sensor node varies only from 4.05 KJ
(3b/8) to 10.8 KJ (b). Therefore, ClusterCharging(5) can have the best performance
in Fig. 19.22.

19.5.3 2-D Networks + Different Recharging Cycles + Energy
Loss

Different recharging cycles force us to divide sensor nodes into groups, and energy
loss makes us combine SolelyCharge with PushWait. What challenges does 2-D pose
to us? The answer is that, given a set of sensor nodes to be replenished in a charging
round, we must discover how to determine the charging sequence, so as to minimize
the overhead energy.

Before presenting our design, we introduce some notations. In a charging round,
denote by S the set of sensor nodes that are going to be charged. We construct
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a complete graph G[S] with vertices being S [ J{BS}, and edge weights being the
Euclidean distance between two corresponding vertices.

We denote the minimum weight Hamiltonian cycle of G[S] by H. Denote by
dy(Py, Py) the sum of Euclidean distances of line segments between two posi-
tions Py and P, on H. For example, dy (L4, L3) = d(Ly, s3) + d(s3, $4) + d(s4, L3)
in Fig. 19.23.

19.5.3.1 HpClusterCharging()

In HnClusterCharging(8), we first divide sensor nodes into groups, and plan a charg-
ing round when there is at least one dying sensor node; in each charging round, we
try to find the minimum weight Hamiltonian cycle in the complete graph on the
corresponding set of sensors and the base station. Lastly, we apply nPushWait to
the Hamiltonian cycle, and further improve the results through shortcutting. More
specifically, HnClusterCharging(8) works as follows:

1. Sortsensor nodes in decreasing order of their recharging cycles, then divide sensor
nodes into groups with respect to a threshold g, as in ClusterCharging(8).

2. Decide the charging round plan, that is, decide the set of sensor nodes S that
should be replenished in each charging round. We apply the following steps, i.e.,
3-5, to each charging round.

3. Construct a complete graph G[S] and use the minimum spanning tree-based
heuristic [34] to generate a Hamilton cycle H in G[S].

4. Randomly choose a direction for H. Suppose that we start from the base station
and visit sensor nodes following the chosen direction along H. Without loss of
generality, denote the sequence of sensor nodes we visit by sy, 52, ..., and s;5;. We
apply nPushWait to H, which can be seen as a 1-dimensional manifold [35], and
thus, we can obtain the number of required chargers M and the farthest positions
that chargers will reach, i.e., Ly, Ly, ..., and Ly;. Again, without loss of generality,
we let Ly = (0, 0). (Note that, since we apply nPushWait to this 1-D manifold,
each L; will be located on an edge between two consecutive sensor nodes or at
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the location of a sensor node; particularly, L, is located at the same location with
the farthest sensor node, i.e., sys;.)

5. We improve nPushWait through shortcutting. In this step, we only present how
chargers take shortcuts and do not elaborate on the energy transfers between
mobile chargers, for the sake of presentation brevity.

a. For charger Cy, it charges the sensor nodes between the base station and Ly,
transfers energy to the other chargers at Ly, and waits at Ly, for the other
chargers’ return. When Cy, finishes its charging task, it can take a shortcut:
it directly returns to the base station.

b. For charger C; (1 <i <M — 1), denote the current position of C; as L,.
Before it finishes charging the sensor nodes between L;,; and L;

i. Wheni+2 < g <M + 1, it directly takes a shortcut to L;,, , where j,;,
satisfies:

Jmin = QrgMIN((L, 1) <dy (L1, L),i+1<j<g— (19.11)

ii. When g =i+ 1, it begins to charge the sensor nodes between L;;; and
L;.

iii. After this, on its way back to the base station: for i < g < M, it directly
takes a shortcut to L; , where j,,,, satisfies:

Jmax >

Jmax = ArgMAX (L, L) <dy(Le.Les1).g+1<j<M+1)J (19.12)

19.5.3.2 Running Example

Figure 19.23 shows when and how a charger can take a shortcut. Suppose that we
have to replenish 12 sensor nodes in a charging round. Without loss of generality,
the Hamiltonian cycle H we find is BS — 51 — 5o — ... — s12 — BS. After applying
nPushWait to this cycle, we know that, this round requires four chargers, and the
farthest position of each chargeris L; (1 <i < 4).

C4 is responsible for replenishing sensor nodes between Ls (base station) and
Ly. Tt can only take a shortcut after it completes its task, and thus, its trajectory is
BS — s; — sp — Ly = BS, where “—” denotes a path segment along H, and “="
denotes a shortcut.

When Cj starts from the base station, since g = 5, the situation satisfies case
5.2.1 in HpClusterCharging(g8), and we can determine j,,;, = 4, so it directly moves
to Ly. Then, the situation satisfies case 5.2.2, and thus, C5 charges sensor nodes
between L4 and L. The situation begins to satisfy case 5.2.3 when it arrives at L3, as
d(Ls, Ls) > dy(Ls, Ly), it does not have enough energy to move directly to the base
station. (Please keep in mind that, according to nPushWait, if C3 moves along H to
Ly, it would have O energy at L4.) Thus, the trajectory of C3 is BS = Ly — s3 —
S4—>L3 :>L4:>BS
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Fig. 19.24 The benefit of
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Following a similar argument, we can have the trajectory of C,: BS = Ly =
Ly — 55 — s¢ — §7 — s§ — L, = Ly = BS.

When C is at Ls, since d(Ls, L) < dy(Ls, Ly), we have j,,;, = 2, and it takes a
shortcut to L,. After charging sensor nodes between L, and L, it arrives at L;. As
d(Ly,Ls) < dy(Ly, L), we have j,,.c = 5, thus, it directly returns to the base station.
The trajectory of Cy is BS = L, — s9 — sj90 — s11 — s12 = BS.

19.5.3.3 Performance

We are interested in investigating how much benefit shortcutting brings about. The
results are shown in Fig. 19.24. When the moving cost of a mobile charger (c) is
fixed, if the number of sensor nodes increases, the energy saved by shortcutting also
increases. This is reasonable, since an increase in the number of sensor nodes results
in another increase in the number of mobile chargers required. Because of this, more
chargers may take shortcuts when necessary. When the moving cost doubles, we find
that the energy saved also doubles, or even triples. This is because, when moving
cost increases, the number of chargers required also increases.

19.6 Concluding Remarks

In this chapter, we mainly present some recent work on collaborative mobile charging.
Research results in this area can potentially be used in several mobile applications,
including DARPA flying robots, and Google WiFi balloon. Through presenting this
content, we aim to inspire readers to recognize the usefulness and importance of
collaboration, incorporate it into their designs, and further elevate it.
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Chapter 20
Assigning Hierarchy to Collaborative Mobile
Charging in Sensor Networks

Adelina Madhja, Sotiris Nikoletseas and Theofanis P. Raptis

Abstract Wireless power transfer is used to fundamentally address energy man-
agement problems in Wireless Rechargeable Sensor Networks (WRSNs). In such
networks, mobile entities traverse the network and wirelessly replenish the energy of
sensor nodes. In recent research on collaborative mobile charging, the mobile entities
are also allowed to charge each other. In this chapter, we enhance the collaborative
feature by forming a hierarchical charging structure. We distinguish the Chargers
in two groups, the hierarchically lower, called Mobile Chargers, that charge sen-
sor nodes and the hierarchically higher, called Special Chargers, that charge Mobile
Chargers. We define the Coordination Decision Problem and prove that it is NP-
complete. Also, we propose a new protocol for 1-D networks which we compare
with a state-of-the-art protocol. Motivated by the improvement in 1-D networks, we
design four new collaborative charging protocols for 2-D networks to achieve effi-
cient charging and improve important network properties. Our protocols are either
centralized or distributed, and assume different levels of network knowledge. Exten-
sive simulation findings demonstrate significant performance gains, with respect
to non-collaborative state-of-the-art charging methods. In particular, our protocols
improve several network properties and metrics, such as the network lifetime, routing
robustness, coverage, and connectivity. A useful feature of our methods is that they
can be suitably added on top of non-collaborative protocols to further enhance their
performance.
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20.1 Introduction and Contribution

In wireless sensors networks (WSNs), the sensor nodes are equipped with small
batteries and thus, the lifetime of the network is limited. Although there are several
approaches that try to address this fundamental problem, the proposed solutions
are still limited since the energy that is replenished is either uncontrollable (such
as environmental harvesting approaches) or require the nodes to be accessible by
people or robots in a very accurate way (such as battery replacement approaches).

However, the breakthrough of wireless power transfer technology (see e.g., [9])
combined with rechargeable batteries with high energy density and high charge/
discharge capabilities ([8]), has managed to directly address energy management and
led to the paradigm of Wireless Rechargeable Sensor Networks (WRSN5). In such
networks, special entities (called Chargers) are able to charge sensor nodes wirelessly.
Thus, the limited available energy can be managed in a controllable and more efficient
manner. This option introduced some new aspects that need investigation such as how
Chargers should be deployed, how much energy each Charger should transfer to each
sensor node or what is the minimum number of required Chargers in order to improve
network properties such as lifetime, connectivity, and coverage.

Wireless charging may address more efficiently the problem of limited energy
with respect to network properties if we use Mobile Chargers instead of simple
Chargers. Mobile Chargers are called the devices which are able to both charge sensor
nodes wirelessly and move throughout the network. This new capability introduced
some additional options that need investigation such as how Mobile Chargers can
coordinate or which is the trajectory that each Mobile Charger should follow.

The collaborative mobile charging approach proposed in [18] offers even more
useful options. In this new charging method, Mobile Chargers are allowed to charge
not only sensor nodes but also other Mobile Chargers. This new capability has been
proven very important, since it provides better exploitation of the potentially limited
available energy supplies.

The Problem. Let a WRSN comprised of stationary sensor nodes and Mobile
Chargers that can either charge the nodes or charge each other (collaborative charg-
ing). The transformation of the flat collaborative charging scheme to a hierarchical
one (hierarchical, collaborative charging) imports new challenges for the network
energy management. We design efficient protocols for the Mobile Chargers’ coor-
dination and charging procedure, in order to efficiently distribute and manage the
available finite energy, prolong the network lifetime, and improve key network prop-
erties such as coverage, routing robustness, and network connectivity.

Our Contribution. Since collaboration provides an efficient energy management
potential, we envision collaboration in a hierarchical structure. More specifically, we
propose a partition of Chargers into two groups, the hierarchically lower Mobile
Chargers, that are responsible for transferring energy only to sensor nodes and the
hierarchically higher Special Chargers that are responsible for transferring energy to
Mobile Chargers. Using our hierarchical charging model, we first propose a protocol
for 1-D networks that achieves a better performance ratio than known state-of-the-art
protocol, when the available energy supplies are limited.
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Motivated by the improvement in 1-D networks we propose four protocols for
2-D networks as well. Our protocols differ on the available network’s knowledge
level (2-level knowledge, 1-level knowledge and no knowledge) as well as on their
coordination procedure (distributed or centralized). Our No Knowledge No Coor-
dination (NKNC) protocol actually serves as a performance lower bound since it
assumes no network knowledge and does not perform any coordination. In con-
trast, our 2-Level Knowledge Centralized Coordination (2KCC) protocol assumes
2-level knowledge and performs centralized coordination. In between, our 2-Level
Knowledge Distributed Coordination (2KDC) and 1-Level Knowledge Distributed
Coordination (1KDC) protocols both perform distributed coordination but, since they
assume different knowledge level, their coordination and charging procedures differ.

Moreover, the hierarchical solution that we provide can be easily added on top
of non-collaborative protocols to further improve their performance (by applying
the necessary transformations which depends on the existing charging model). In
particular, we enhance a known state-of-the-art protocol that does not use any col-
laboration, by adding a hierarchical collaborative charging structure and we show
the added value of hierarchy.

20.2 Related Work and Comparison

Wireless power transfer technology inspired a lot of researchers to investigate how
to exploit it in WSNs efficiently. In [14], the authors used a realistic scenario where
the sensor nodes are mobile and the Chargers are stationary. They proposed two
protocols to address the problem of how to schedule the Chargers activity so as to
maximize either the charging efficiency or the energy balance. Also, they conducted
real experiments to evaluate the protocols’ performance. In [17], the objective was
to find a Charger placement and a corresponding power allocation to maximize the
charging quality. They proved that their problem (called P?) is NP-hard and proposed
two approximation algorithms for P3 (with and without fixed power levels) and an
approximation algorithm for an extended version of P3.

However, the exposure on the electromagnetic radiation that is caused by wireless
power transfer may lead to undesired phenomena for human health. That is why there
are a lot of works that investigate this aspect and try to control the electromagnetic
radiation. More specifically, in [13] the authors studied the Low Radiation Efficient
Charging Problem in which they optimized the amount of “useful” energy that is
transferred to nodes with respect to the maximum level of imposed radiation. In
[3], the authors investigated the charging efficiency problem under electromagnetic
radiation safety concern. More specifically, they formulated the Safe Charging Prob-
lem (SCP) of how to schedule the Chargers in order to increase the received power
while there is no location in the field where the electromagnetic radiation exceeds a
threshold value. They proved the hardness of SCP and proposed a solution which out-
performs the optimal one with a relaxed threshold. Also, to evaluate the effectiveness
of their solution, they conducted both simulations and real experiments.
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The same research group in [4] studied the Safe Charging with Adjustable PowEr
(SCAPE) problem which refers on how to adjust the power of the Chargers in order
to maximize the charging utility of the devices while assuring that electromagnetic
radiation intensity at any location on the field does not exceed a threshold value.
They also proposed an (1-¢)-approximation algorithm for the problem and conducted
simulations and real experiments to evaluate the algorithm’s performance.

Although all above works have studied a variety of problems caused by wireless
power transfer and try to maximize the received power by the sensor nodes under
various constraints, the usage of stationary Chargers does not exploit all the capabili-
ties of the technology. The hardware device that is able to send energy wirelessly can
be easily placed on top of a mobile robot and thus transformed to a new mobile entity
called Mobile Charger. Mobile Chargers are able to move throughout the network
and charge the sensor nodes. The main difference between our work and all men-
tioned state-of-the-art studies is that we use Mobile Chargers instead of stationary
Chargers.

There has been considerable research work using a single Mobile Charger. In [11]
the authors proposed a practical and efficient joint routing and charging scheme,
where there are periodical information exchanges between nodes and the Charger
on which the latter is based to schedule its charging activities. The approach in [19]
proposed to utilize mobility for joint energy replenishment and data gathering. In
[1], the authors studied the impact of the charging process to the network lifetime
for a set of routing protocols by proposing a protocol that locally adapts the circular
trajectory of the Mobile Charger to the energy dissipation rate of each subregion of
the network. In [2], the authors proposed distributed and adaptive protocols that use
limited network information for efficient recharging. In [6], individual sensor nodes
request charging from the Mobile Charger when their energy runs low.

All above works do not take advantage of the network capability to support more
than one Mobile Chargers. Such approach is vital for the lifetime prolongation of large
networks that consist of several thousand nodes (their maintenance is not feasible
using only one Mobile Charger). In contrast to previous works, we use multiple
Mobile Chargers in order to further exploit the network capabilities.

In the state of the art there are proposed solutions with multiple Mobile Chargers.
More specifically, in [15] the authors leveraged concepts and mechanisms from
Named Data Networking (NDN) in order to design energy monitoring protocols that
deliver energy status information to Mobile Chargers in an efficient manner. In [12],
the authors studied how multiple Mobile Chargers can periodically coordinate and
partition the sensor nodes in a balanced manner, according to their energy and adapt
to network energy consumption. The proposed protocols were either distributed or
centralized and used varying levels of network knowledge. In [5], the authors consider
the minimum number of Mobile Chargers problem in a general 2-D network so as
to keep the network running forever. More specifically, they partitioned the sensor
nodes in subsets, one for each Mobile Charger such that any Mobile Charger, at each
own period, visits its corresponding sensors, charges them, and then gets back to the
base station to recharge its own battery.
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In [16] the authors studied the recharging schedule that maximizes the recharge
profit. Although there are a lot of works that make the realistic assumption of Mobile
Chargers’ battery constraints, in this work, the authors also introduce an other realistic
assumption, that of Mobile Chargers’ movement cost.

The usage of multiple Mobile Chargers without collaboration also does not exploit
all capabilities of WRSNs. There is a work in the state of the art (in [18]) where the
authors introduce a new charging paradigm, that of collaborative mobile charging,
where Mobile Chargers are allowed to charge each other. They investigate the prob-
lem of scheduling multiple Mobile Chargers which collaboratively charge nodes over
1-D WRSNs, to maximize the ratio of the amount of payload energy to overhead
energy, such that no sensor runs out of energy. However, in contrast to our work, they
restrict their algorithms only in 1-D networks.

20.3 The Model

Our model features four types of devices: N stationary sensor nodes, M Mobile
Chargers which charge sensor nodes, S Special Chargers which charge Mobile Charg-
ers and a single stationary Sink. The sensor nodes of wireless communication range
r are uniformly distributed at random in a circular area of radius R. The Mobile
Chargers and the Special Chargers are initially deployed at the center of circular
area. The Sink serves only as data collector.

In our model, we assume that neither the Mobile Chargers nor the Special Chargers
perform any data gathering process. Figure 20.1 depicts the energy flow in three dif-
ferent charging models, including simple charging in WRSNs using multiple Mobile
Chargers (Fig. 20.1a), collaborative mobile charging (Fig. 20.1b) and our hierarchical
collaborative charging model (Fig. 20.1c). The arrows abstract the energy flow from
one device to another. The hierarchy of the charging model we propose is shown
in Fig.20.1c in which the Special Chargers that are the highest devices in terms
of hierarchy can charge the Mobile Chargers and the Mobile Chargers can charge
the sensor nodes. More specifically, the approach in Fig.20.1a where each Mobile
Charger charges its corresponding sensor nodes may lead to non-efficient energy
management since if there is a Mobile Charger that consumes its energy with higher
rate than others (e.g., its area is more critical), then the network will be disconnected
despite the fact that there is still an amount of unused energy available to the network.
In Fig.20.1b, there is an improvement on energy management since Chargers may
charge each other and so critical ones will be charged by others avoiding network dis-
connection. However, in Fig. 20.1c there is a more efficient energy utilization since
it both provides a balanced energy consumption rate between Chargers and captures
critical aspects of the network, e.g., reduce the amount of energy used for movement.

We denote by E,,, the total, finite, available energy in the network. Initially,

Etutal = Esensors + EMC(tinit) + ESC(tinit)v
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Fig. 20.1 Energy flow
models
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(a) Charging model with multiple Mobile Chargers.
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(b) Collaborative charging model.
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where Ejgens0rs 18 the total amount of energy shared among the sensor nodes,
Epc(tinig) 1s the total amount of energy shared among the Mobile Chargers and
Egc(tinir) s the total amount of energy shared among the Special Chargers. The
maximum amount of energy that a single node, a single Mobile Charger, and a sin-
gle Special Charger may store is E7or ., Eye and ESE, respectively. Energy is

uniformly split among the sensor nodes and the Chargers as follows:

max _ Esensors  pay _ EmcUinit) - pmax _ Esc(inid)

sensor — N ’ MC — T scC - S

At first, we deploy the sensor nodes uniformly in the circular network. Then, we
divide our network into M equal sized slices, one for each Mobile Charger. Thus,
every Mobile Charger is responsible for charging nodes that belong to its slice. We
denote by Z; the set of sensor nodes that belong to slice j, i.e., to the jth Mobile
Charger’s group. Finally, we divide the Mobile Charges into S groups, one for each
Special Charger. Thus, each Special Charger is responsible for charging the Mobile
Chargers that belong to its group, denoted as % (for SCy). Initially, these S groups
are equally sized, i.e.,

M
6l =< (1=k=S)
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and the Mobile Chargers that belong to each group are given by the following formula:

c M M
%”kz[]:]e[(k—l)?—i-l,k?“, 1<k<?9)

These groups may change during the protocol’s coordination phase. More specif-
ically, the Special Chargers communicate with each other and decide, according to
their energy status, if they are still able to be in charge of the Mobile Chargers that
belong to their group or they should delegate some of them to other Special Chargers.

The network operates under a quite heterogeneous data generation model. The
energy consumption due to data generation is nonuniform between the nodes. More-
over, the underlying routing protocol is the multihop one (e.g., [7]) and so, the energy
consumption for transferring the data to the Sink is also different between the nodes.
In our model, the charging is performed point-to-point, i.e., only one sensor node
may be charged at a time from a Mobile Charger, by approaching it at a suitably
small distance so that the charging process is conducted with maximum efficiency
(charging efficiency =~ 1). Also, one Special Charger can charge one Mobile Charger
at a time by approaching it very close. The time that elapses during the Charger’s
movement is considered to be very small compared to the charging time.

20.4 The Coordination Decision Problem (CDP)

Definition 20.1 Consideraset.” of S Special Chargers. Foreach SC;, (1 <k < S),
we denote by &}, the percentage of its current energy level to the total amount of energy
of all Special Chargers, i.e.,

Esc,
g
>i—1 Esc,

Also, consider a set .# of M Mobile Chargers. For each MC; (1 < j < M),
we define Eﬁl‘,}‘ck = E}yj¢ — Eumc, the amount of energy that Mobile Charger j can
receive until it is fully recharged and denote by ¢; the percentage of its energy lack
to the total energy lack of all Mobile Chargers, i.e.,

& = (1<k=<?9).

lack

Eje,
M plack
2.i—1 Eie,
The Coordination Decision Problem (CDP) is to determine whether there exists

a partition of the Mobile Chargers into S disjoint subsets, i.e., Z = (21, ..., Zs)
with

g = <j<M).

N
U 2=«
k=1
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such that
Dlej=6 1<k<S).
jeZi

In other words, the problem is to determine whether there exists a partition of
Mobile Chargers in S groups, one for each Special Charger, such that every Mobile
Charger belongs to the group of exactly one Special Charger and for every Special
Charger, the sum of percentages of the Mobile Chargers that belong to its corre-
sponding group equals its percentage of current energy.

Theorem 20.1 CDP is NP-complete.

Proof (1) Given a partition % = (%, ..., %) of Mobile Chargers into S groups,
we can verify in polynomial time whether, for this partition, the groups are pairwise
disjoint and the sum of percentages ¢; in a group equals the percentage of the corre-
sponding Special Charger for every group. More precisely, for every Mobile Charger,
we check all groups and verify if it belongs to exactly one group. If there is at least
one Mobile Charger that does not belong to any group or belongs to more than one
group then the given partition is incorrect. This takes O (M) time and for all Mobile
Chargers takes O (M?) time. Also, we examine for every group k if >’ jem € = &
This computation takes at most O (M) time. So, given a partition we can answer in
O (M?) time if the partition is correct or not. Therefore CDP € NP.

(2) Assume a special case of the CDP where all Mobile Chargers have the same
percentage of energy &; = &. If this special case is NP-hard then the generic CDP
is also NP-hard. In order to prove the hardness of CDP, we reduce the Bin Packing
Decision Problem (BPDP) to it. An instance of the BPDP is the following: k is
the number of bins, V is the capacity of each bin, Z is the number of items and
x; (1 <i < Z) is the size of each item. We create an instance of CDP as follows:
S = k is the number of Special Chargers, & = V is the percentage for every Special
Charger, M = Z is the number of Mobile Chargers and &; = x; are the percentages
of every Mobile Charger. A solution to this instance of CDP would provide an answer
to the solution of Bin Packing Decision Problem which means that BPDP <,, CDP.

O

20.5 The Protocols

We present a new protocol operating in 1-D networks and four new protocols oper-
ating in 2-D networks. Our protocols use hierarchical collaborative charging. Since
there is plenty of research on how multiple Mobile Chargers can charge sensor nodes
we focus on how we can efficiently use the available Special Chargers. In all protocols
we investigate the following three design aspects:

Coordination: A Special Charger consumes its energy according to the energy
depletion on its area, i.e., the energy consumed by the sensor nodes and the Mobile
Chargers. This may lead to a non-balanced energy consumption between Special
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Chargers. For this reason, they should periodically change the area that they are
responsible of by increasing or decreasing the number of the Mobile Chargers that
belong to their group. This procedure may be distributed or centralized. In the cen-
tralized case, the computation is performed by a computationally powerful network
entity, e.g., the Sink. In contrast, in the distributed case, each Special Charger locally
communicates with its neighbors to learn about their energy status and then calcu-
lates the coordination action. In the distributed case, we assume that two adjacent
Special Chargers can exchange one of their border Mobile Chargers. More specif-
ically, imagine that SCy is in charge of the following group of Mobile Chargers:
G ={MCy,...,MC;} and the SCyy; has: €1 = {MCiyy,...,MCii.}, ¢ > 0.
After computation, if there is going to be a coordination action then either M C; will
change group and go under SCyy’s responsibility, or M C;; will be under SCy’s
responsibility.

Trajectory: Every Special Charger has a group of several Mobile Chargers that
it can charge. However, some of its corresponding Mobile Chargers may be more
critical than others, so it should decide which one should be charged next in order to
manage efficiently the available energy.

Charging Policy: When a Special Charger has estimated which Mobile Charger
should be charged, then it estimates how much energy should be given to it.

20.5.1 Protocols for 1-D Networks

20.5.1.1 The Model in 1-D Networks

In 1-D networks we compare our protocol to a state-of-the-art protocol ([18]). In order
to conduct a fair comparison in 1-D networks, we assume a quite identical model
(and not the one described in Sect.20.3). More specifically, we consider N sensor
nodes that are uniformly distributed, unit distance apart, along a one-dimensional
line network. All sensor nodes have the same energy consumption rate and the same
battery capacity, denoted by b. Also, there are K Mobile Chargers of battery capacity
B which consume ¢ amount of energy per unit distance. Moreover, the Sink serves
as data collector as well as an energy source. The only difference is that we assume
that the Sink has finite energy supplies denoted as E,,,; in contrast to the proposed
model in [18] where the Sink has unlimited energy supplies.

20.5.1.2 PushWait Algorithm

The PushWait algorithm ([18]) assumes that the Mobile Chargers start from the
Sink with full batteries, charge sensors, finally come back to the Sink, and then get
themselves charged by the Sink. Both the movement of the Mobile Chargers and
the process of wireless charging share the same pool of energy. Also, there are K
rendezvous points denoted as L; (1 <i < K) where in each one a Mobile Charger
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stops moving forward. A noticeable point is that all Mobile Chargers return to the
Sink after each scheduling cycle (in order to make the network able to run forever,
i.e., in each scheduling cycle they have exactly the same performance).

PushWait follows two main steps:

e MC; charges sensors between L;,; and L; to their full batteries. At L;, MC;
transfers energy to the rest Mobile Chargers, MC;_1, MC;_», ..., M C; until they
are at their full energy capacity. Then MC; waits at L;, and all of the other
i — 1 MCs keep moving forward.

o After MC;_y, MC;_5, ..., MCy return to L; where M C; waits for them, MC;
evenly distributes its residual energy among i M Cs (including M C;). This will
make them just have enough energy to return to L; .

The above algorithm needs a specific number of Mobile Chargers in order to
charge in a round all N sensors. This is provided via a linear system that, given the
number of sensors N, computes the number of necessary Mobile Chargers.

20.5.1.3 1-D No Knowledge No Coordination (1D-NKNC)

In our hierarchical protocol, we use the same number of chargers that are used in
PushWait, for a fair comparison. If K is the number of Mobile Chargers used in
PushWait algorithm, given that network contains N sensor nodes, in our protocol,
we separate them into two groups (Mobile Chargers and Special Chargers) as follows:

M=qg-K and S=(1—-¢q)-K

where g € (0.75, 1) since we assume that the number of Special Charger is signifi-
cantly lower than the number of Mobile Chargers.

Note that only in this special case of 1-D network deployment, all Chargers
(Mobile and Special) have the same battery capacity B. We divide the line network
into M equal sized segments, one for each Mobile Charger. Each Mobile Charger is
responsible for charging the sensor nodes in its area. We group the Mobile Chargers
in S groups, one for each Special Charger. Each Mobile Charger charges the sensor
nodes in its area sequentially over the line graph and when it arrives at the last node,
it follows the opposite direction in order to reduce movement overhead. When the
energy level of a Special Charger is low enough, i.e., its energy is enough for just
moving to the Sink, it visits the Sink and gets charged. Mobile Chargers do not roam
out of their region. Since the number of Special Chargers is significantly lower than
the number of the Mobile Chargers, the energy consumed for movement is much
lower and our protocol improves the efficiency ratio.

Coordination: There is no coordination between Special Chargers. In this pro-
tocol the Special Chargers do not change the Mobile Chargers initially assigned to
them.
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Trajectory: Each Special Charger charges its corresponding Mobile Chargers
sequentially. When it arrives to the last one, it changes direction and charges them
in reverse order. Also, when it arrives at the first one, it changes direction again and
so on. When its energy drops under a specific level, it visits the Sink, gets recharged
and then returns back to its previous position.

Charging Policy: Since in 1-D networks we assume a uniform consumption rate
between nodes, there is a uniform consumption rate between Mobile Chargers. Thus,
in order to reduce the movement overhead, Special Chargers charge each Mobile
Charger at a maximum level.

In sensor networks with a limited amount of initial energy (stored in the Sink)
it is important to exploit this energy optimally. The energy is consumed both for
the Chargers’ movement and for sensing activities. In this case, (1-D networks), in
order to improve the efficiency ratio, our goal is to reduce the energy consumed for
movement, denoted by E°"*"¢¢¢ and increase the amount of energy obtained by the
nodes denoted by EP®!°¢d_The efficiency ratio is defined as follows:

) ) E payload
efficiency_ratio = Foverhead
The PushWait algorithm proposed in [18] assumes that the Sink has unlimited
energy supplies and so the authors investigated how many Mobile Chargers are
needed to charge all sensor nodes in a scheduling cycle. In each cycle, Mobile Charg-
ers charge all the sensor nodes and come back to the Sink without residual energy
(only one Mobile Charger may have a small amount of residual energy). This algo-
rithm ensures that the movement is minimized and thus, the achieved efficiency_ratio
is optimal. In this work, we assume that the Sink has limited amount of energy and
thus the PushWait algorithm runs for a specific number of scheduling cycles. Unlike
PushWait, we do not have cycles and we compute the overall efficiency_ratio which
is the rate of the total amount of energy obtained by sensor nodes over the total
amount of energy consumed for both movement of Special Chargers and Mobile
Chargers.

For instance, if we run PushWait algorithm with input E,,,,; = 2000J, B = 8017,
b=2J, N =29, c =3J/m, then the output is K = 7 and efficiency_ratio= 0.11.

After that, we run 1D-NKNC with input: E,,,; = 2000J, B =80J,b =2J,N =
29,¢ =3J/m,q = 0.75 and thus, M = 5 and S = 2. The output s efficiency_ratio =
0.15, which is higher.

If in our method we change the model and apply a nonuniform battery capacity
deployment, i.e., equip the Special Chargers with larger battery capacity but reduce
the battery capacity of the Mobile Chargers such that the total battery capacity main-
tains the same K - B, the efficiency ratio can become higher. That is because the
Special Chargers will reduce the amount of times that they return to the Sink to get
recharged and so reduce the energy consumed for movement. Actually, the efficiency
ratio has a threshold behavior as shown in Fig.20.2. The efficiency ratio is higher
only when the battery capacity of each Special Charger takes a value lower than the
threshold which is normal since if the battery capacity of the Special Chargers is
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