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ABSTRACT
Vital signs (e.g., heart and respiratory rate) are indicative for health
status assessment. Efforts have been made to extract vital signs
using radio frequency (RF) techniques (e.g., Wi-Fi, FMCW, UWB),
which offer a non-touch solution for continuous and ubiquitous
monitoring without users’ cooperative efforts. While RF-based vital
signs monitoring is user-friendly, its robustness faces two chal-
lenges. On the one hand, the RF signal is modulated by the periodic
chest wall displacement due to heartbeat and breathing in a nonlin-
ear manner. It is inherently hard to identify the fundamental heart
and respiratory rates (HR and RR) in the presence of higher order
harmonics of them and intermodulation between HR and RR, espe-
cially when they have overlapping frequency bands. On the other
hand, the inadvertent body movements may disturb and distort
the RF signal, overwhelming the vital signals, thus inhibiting the
parameter estimation of the physiological movement (i.e., heartbeat
and breathing). In this paper, we propose DeepVS, a deep learning
approach that addresses the aforementioned challenges from the
non-linearity and inadvertent movements for robust RF-based vital
signs sensing in a unified manner. DeepVS combines 1D CNN and
attention models to exploit local features and temporal correlations.
Moreover, it leverages a two-stream scheme to integrate features
from both time and frequency domains. Additionally, DeepVS uni-
fies the estimation of HR and RR with a multi-head structure, which
only adds limited extra overhead (<1%) to the existing model, com-
pared to doubling the overhead using two separate models for HR
and RR respectively. Our experiments demonstrate that DeepVS
achieves 80-percentile HR/RR errors of 7.4/4.9 beat/breaths per
minute (bpm) on a challenging dataset, as compared to 11.8/7.3
bpm of a non-learning solution. Besides, an ablation study has been
conducted to quantify the effectiveness of DeepVS.

CCS CONCEPTS
• Applied computing → Bioinformatics; Health informatics;
• Computing methodologies → Neural networks.

KEYWORDS
Vital Signs; RF; Deep Learning; CNN; Attention Mechanism

This work is supported in part by NSF grants 1951880, 2028952, 2119299.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
BCB ’22, August 7–10, 2022, Northbrook, IL, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9386-7/22/08. . . $15.00
https://doi.org/10.1145/3535508.3545554

ACM Reference Format:
Zongxing Xie, Hanrui Wang, Song Han, Elinor Schoenfeld, and Fan Ye. 2022.
DeepVS: A Deep Learning Approach For RF-based Vital Signs Sensing. In
13th ACM International Conference on Bioinformatics, Computational Biology
and Health Informatics (BCB ’22), August 7–10, 2022, Northbrook, IL, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3535508.3545554

1 INTRODUCTION
Heart and respiration rates (HR, RR) are two fundamental vital
signs for human health status assessment. While such vital signs
are usually measured at hospital visits, people start to value the
continuous vital signs data collected in individuals’ home environ-
ment, that enable insightful profiling, detecting potential health
problems, or tracking the progression of chronic diseases. Wear-
ables (e.g., Apple Watch, Fitbit) are popular for continuous vital
signs monitoring. However, they require frequent charging and
wearing, adding to physical and cognitive challenges to compliance,
especially among older adults, the population that may benefit the
most from the continuous vital signs monitoring. To achieve com-
fortable solutions for longitudinal monitoring, researchers have
explored RF-based vital signs sensing designs [8] including using
Wi-Fi [13, 17], FMCW [2, 18], and UWB [15, 19]. Such work has
demonstrated the feasibility of RF-based vital signs sensing. In addi-
tion, they do not expose imagery privacy nor require users to wear
any device or pay cooperative efforts, promising for continuous
in-home monitoring.

However, two key challenges remain in achieving robustness
of RF-based vital signs sensing for broader applications in practi-
cal scenarios. First, because the received RF signal is composed of
reflections from objects or body parts at different distances, the
heartbeat and respiration signals are mixed in a nonlinear manner,
thus hard to separate and identify their fundamental components
due to in the presence of higher order harmonics and intermodula-
tion between HR and RR [21]. Second, while RF signal is sensitive
to the chest wall displacement for vital signs sensing, the large body
movement will overwhelm the signal modulated by minute physi-
ological movements, thus distorting the parameter estimation of
HR/RR. This may happen frequently but unconsciously in realistic
scenarios during vital signs monitoring. In practice, it is infeasible
to find a an analytical model that directly characterizes the vital
signs from the noisy RF signal given the aforementioned challenges
from the non-linearity and the inadvertent body movement.

In this paper, we propose DeepVS, a hybrid deep learning scheme
that combines 1D CNN [6] and attention models [16] to exploit
local features and temporal correlations to address the aforemen-
tioned challenges from non-linearity and inadvertent movements
for robust RF-based vital signs sensing in a unified manner. More-
over, it leverages a two-stream scheme to integrate features from
both time and frequency domains. Additionally, DeepVS unifies the
estimation of HR and RR with a multi-head structure, which only
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Figure 1: Overview of DeepVS framework. In a typical setup, the RF
sensor emits RF signals into the environment and receive the echoes
reflected by the subject in the field of view (FoV). By downconversion
from RF, the baseband signal is obtained in the In-phase and quad-
rature (I-Q) plane for phase demodulation. The phase signal in the
time domain changes periodically corresponding to the physiologi-
cal movements, and several prominent frequency components can
be easily detected in the frequency domain with Fourier Transform.
Because the signal in a single time window may be disturbed and
distorted from time to time, we stack signals of several consecutive
time windows in a sequence as the input to DeepVS for vital signs
estimation. DeepVS exploits 1D CNN to extract local features in both
time and frequency domain in a two-stream scheme, the attention
module to capture temporal correlations, and two regression layers
in a multi-head scheme to estimate HR and RR respectively.

adds limited extra overhead (<0.1%) to the existing model, compared
to doubling the overhead using two separate models for HR and RR
respectively. Our experiments demonstrate that DeepVS reduces
80-percentile RR/HR errors by 37.3/32.8%, as compared to 11.8/7.3
bpm of a non-learning solution [20]. Besides, an ablation study has
been conducted to quantify the effectiveness of DeepVS.

Specifically, we summarize our key contributions as follows:
• We propose a unified deep learning framework for robust RF-
based vital signs sensing by combining CNN and attention
models, integrating the local features and temporal correla-
tions from time/frequency domains to address the challenges
from non-linearity and body movements simultaneously.

• We evaluate DeepVS using 80k data samples collected over
1 month in typical home environments. Results show that

DeepVS achieves 80-percentile RR/HR errors of 7.4/4.9 bpm
on a challenging dataset with half the overhead compared
to using two individual models for HR and RR separately.

2 BACKGROUND AND RELATEDWORK OF
RF-BASED VITAL SIGNS SENSING

In this section, we first describe the background of RF-based vital
signs sensing with signal modeling and sources of challenges, and
then discuss the related work.

2.1 Background
The rationale of RF-based vital signs sensing lies in that the minute
chest wall displacement due to physiological movements (i.e., heart-
beat and respiration) changes the propagation distance of the re-
flected RF signal, thus the phase of the received RF signal, from
which we can extract vital signs. The one-way signal propagation
distance can be modeled as:

𝑑 (𝑡) = 𝑑0 + 𝐷 (𝑡)
= 𝑑0 + 𝑑𝑏 (𝑡) + 𝑑𝑟 (𝑡) + 𝑑ℎ (𝑡),

(1)

where 𝑑0 is the initial distance between the RF sensor and the
targeted chest wall; 𝐷 (𝑡) is the whole displacement attributed to
𝑑𝑏 , 𝑑𝑟 and 𝑑ℎ , the variations by body movements, respiration and
heartbeat respectively.

Ideally, when the body movement is negligible, the phase of the
received RF signal is linearly modulated by the chest wall displace-
ment, and can be modeled as:

𝜙𝐷 (𝑡) = 2𝜋 𝑓𝑐𝐷 (𝑡)/𝑐, (2)
where 𝑓𝑐 is the center frequency of the RF signal, and 𝑐 is the

speed of light. By extracting the frequency components from the
modulated phase, we are able to extract heart and respiratory rates.

However, robust vital signs sensing is greatly challenged by
the non-linearity and disturbance from inadvertent movements
in realistic scenarios. Under non-linear channels, the perceived
phase may be approximated by the Taylor series in terms of the
displacement 𝐷 (𝑡) as follows:

𝜙𝐷 (𝑡) =
2𝜋 𝑓𝑐
𝑐

∞∑︁
𝑖=1

𝑎𝑖𝐷
𝑖 =

2𝜋 𝑓𝑐
𝑐

(𝑎1𝐷 (𝑡) + 𝑎2𝐷2 (𝑡) + . . .), (3)

where 𝑎𝑖 is the coefficient of the i-th order term. Higher order terms
lead to the intermodulation effect, producing new components at
frequencies that are the linear combination of HR and RR (i.e.,
{𝑚HR± 𝑛RR|𝑚,𝑛 ∈ N0}) and hard to be distinguished from true
vital signs. The presence of the large body movements 𝑑𝑏 (𝑡) would
further complicate the problem of vital signs sensing, as it will be
dominating𝐷 (𝑡) compared to the minute physiological movements.

2.2 Related Work
Since the concept of RF-based vital signs sensing was introduced
back in the 1970’s [12], it has been widely studied as new RF tech-
niques emerge including UWB [15], FMCW [2], and Wi-Fi [13, 17].
However, the aforementioned challenges (in §2.1) from the non-
linearity and inadvertent body movements remain serious obstacles
for robustness in practical scenarios.

For the non-linearity challenge, not treated sufficiently in the
literature, some effort from the electrical engineering community
has demonstrated that certain spectral patterns can be leveraged
to distinguish the vital signs components from the interference
of intermodulation and noise. Heuristic-based methods [15] have
been proposed to detect the “path”, defined as a set of consecutive,
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approximately equally spaced spectral peaks, indicating the exis-
tence of harmonics, such that the frequency interval of the most
powerful “path” is the estimate of vital signs. To further push the
limit, a probabilistic weighting framework [20] was proposed to
dynamically combine an ensemble of vital signs estimators, based
on a set of heuristics in terms of the prominence of spectral peaks,
the existence of harmonics, and the temporal locality of vital signs.
However, heuristic methods may not always be able to capture the
varying patterns.

For the challenge from the disturbance due to the body move-
ments, proposals can be categorized into two types. One is detecting
and excluding the distorted signal. Existing methods usually formu-
late it as a classification task [21], and devise different features such
as spectral energy [2] or temporal waveform [8, 13] to assess and de-
termine the signal quality thus availability for vital signs extraction.
The other type is reconstructing the vital signal in the presence of
body movements. While traditional blind source separation meth-
ods [4] usually fail to meet the end, early proposals with delicate
placements of two radars [10, 11] showed encouraging results in
handling the interference from body movements. However, realis-
tic application scenarios in daily environments pose difficulties for
such tricky placements to achieve ideal performance. Researchers
reported promising results of vital signs reconstruction with recent
advances in deep learning [3, 7, 22]. BreathListener [22] exploited
a GAN architecture [5] to reconstruct the respiration waveform in
driving environments. RF-SCG [7] introduced a 1D CNN model to
reconstruct the heartbeat signal by optimizing the loss function of
template matching. MoVi-Fi [3] leveraged a Contrastive Learning
scheme [9] to achieve the nonlinear ICA [9] thus separating the
signal of vital signs from the body movements. However, they usu-
ally focused on reconstructing either the heartbeat or respiration
waveform but not the end-to-end estimation of both HR and RR in
a unified manner.

3 DEEPVS FRAMEWORK
In this section, We introduce DeepVS, a deep learning framework
for reliable vital signs estimation facing the challenges of non-
linearity and body movements in a unified manner. Figure 1 shows
the overview of DeepVS framework, which has three major com-
ponents: the convolutional module, the attention module, and the
multi-head regression module. We describe the details of these
components in the following subsections.

3.1 1D CNN Module
The 1D CNN module is organized in a two-stream scheme to
process the time domain input 𝑋𝑇 and frequency domain input
𝑋 𝐹 in parallel. Recall that the input (as illustrated in Figure 1) is
stacked with a sequence of consecutive time windows of signals
in the time/frequency domain. To be specific, 𝑋𝑇 ∈ R𝐿×𝑀 and
𝑋 𝐹 ∈ R𝐿×𝑁 , where 𝐿 is the number of consecutive time windows
in a sequence, and𝑀 and 𝑁 are the number of temporal and spec-
tral samples in one time window, respectively. We use 1D CNN
to capture mainly two kinds of local features, both of which indi-
cate the existence of vital signs: the periodic variations in the time
domain and the condensed spectral peak in the frequency domain.

3.2 Attention Module
We concatenate the output of the CNN module from time domain
and frequency domain together to achieve the fused embedding
(𝑋 ∈ R𝐿×𝑑𝑖𝑛 , 𝑑𝑖𝑛 = 𝑀 + 𝑁 ) as the input to the attention module.

In the attention module, we employ a self-attention mechanism
from the encoder block of Transformer [16], which integrates the

information within the entire sequence to capture temporal corre-
lations across different time windows, in the form of a weighted
sum, defined as:

Attention (𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾T√︁
𝑑𝑘

)
𝑉 , (4)

where 𝑄 = 𝑋W𝑄 ∈ R𝐿×𝑑𝑘 , 𝐾 = 𝑋W𝐾 ∈ R𝐿×𝑑𝑘 , 𝑉 = 𝑋W𝑉 ∈
R𝐿×𝑑𝑉 are queries, keys, values, by projecting the input (𝑋 ∈ R𝐿×𝑑𝑖𝑛 )
according to parameter matrices W𝑄 ∈ R𝑑𝑖𝑛×𝑑𝑘 , W𝐾 ∈ R𝑑𝑖𝑛×𝑑𝑘 ,
andW𝑉 ∈ R𝑑𝑖𝑛×𝑑𝑣 . 𝑑𝑘 is the dimension of queries and keys, and 𝑑𝑣
is the dimension of values, while

√︁
𝑑𝑘 is a scaling factor for smoother

gradients. In implementation, we use 8-head attention [16].

3.3 Multi-head Regression Module
The output of the attention module is a series of vectors in a se-
quence of length 𝐿. We apply an average pooling to aggregate
information of each vector and obtain the sequence level feature
representation (𝐸 ∈ R𝐿). It becomes the input to the multi-head
regression module, which consists of two fully connected layers
(𝐹𝐶𝑖 (𝐸) = 𝐸W𝑖 + 𝑏𝑖 , W𝑖 ∈ R𝐿×1 is weight matrix and 𝑏𝑖 is a bias
term), one for HR and the other one for RR in parallel. The end-to-
end DeepVS is trained by optimizing the mean squared error against
ground truth as the loss function propagated from two heads.

4 EVALUATION
In this section, we first describe the data collection and datasets of
RF-based vital signs sensing. Thenwe show the overall performance
and ablation study.

4.1 Data Collection and Datasets
For RF-based vital signs data collection, we follow the same setting
as [21] using a COTS UWB sensor (XeThru X4M03 [14]) as the
RF front end, which samples the target chest wall displacement
at 10 Hz. We obtain the ground truth of vital signs from a FDA
approved medical device, Masimo Pulse Oximeter [1]. We use a
sliding window of 30 seconds at 1 second increments and stack 30
consecutive time windows in a sequence as one data sample, thus
the time domain input is of shape (30, 300) and frequency domain
input (30, 150). We conduct data collection in home environments
with 8 participants, following a pre-established protocol that pro-
tects the anonymity of the participants. We build two data sets.
The first data set (denoted as 𝐷1) has in total 80, 568 samples for
training. It was collected with 8 participants and each spent about
1 hour for data collection during sedentary behaviors (e.g., reading
and typing) with intermittent body movements. Additionally, it in-
cludes vital signs data collected during sleep over two nights from
one participant. The second data set (denoted as 𝐷2) is for testing
independent from𝐷1, and it has in total 1877 samples collected over
30 minutes during which participants have casual movements in
sedentary behaviors, more challenging than settings in [20]. Note
that, while both training (𝐷1) and testing (𝐷2) data sets include
data collected during sedentary behaviors with intermittent body
movements, they have different patterns (e.g., the duration and
frequency of body movements), thus the testing data set will fail
the overfitted model.

4.2 Overall Performance
We evaluate the overall performance of DeepVS on the data set
𝐷2, which is independent from the training data 𝐷1. Figure 2(a)
and Figure 2(b) show the Bland-Altman plots of predicted HR and
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Figure 2: The Bland–Altman plots indicate the agreement between
HR/RR and ground truth. The differences between prediction and
ground truth of HR/RR are reasonably bounded within 95% limits
of agreement (Mean±1.96𝑆𝐷).
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Figure 3: CDF curves of the absolution errors show that DeepVS
outperforms VitalHub for both HR and RR. Specifically, DeepVS has
shorter tails than VitalHub, which indicate the better robustness
achieved by DeepVS when dealing with challenging cases.

RR against the ground truth in data 𝐷1. Although they are not
perfectly spreading flat indicating a perfect agreement, their 95%
limits of agreement (mean±standard deviation of the difference)
are bounded in a reasonable range.

We also compare the performance of DeepVS with a recent non-
learning based SOTA solution VitalHub [20] (which were also de-
signed to tackle the challenges from non-linearity and disturbance
of bodymovements simultaneously) in terms of the absolution error
against the ground truth. As shown in Figure 3(a) and Figure 3(b),
DeepVS has shorter tails in the error distribution of both HR/RR
than VitalHub. specifically, DeepVS reduces 80-percentile erros of
HR/RR to 7.4/4.9 bpm from 11.8/7.3 bpm by VitalHub. It implies
that DeepVS can better deal with challenges of non-linearity and
body movements than VitalHub with heuristic-based algorithms.

4.3 Ablation Study
To demonstrate the effectiveness of DeepVS, we build 6 variants
by referencing DeepVS framework (see Figure 1): 𝑎 and 𝑏 remove
the time (T) and frequency (F) domain channels, respectively; 𝑐 and
𝑑 remove the CNN and attention modules, respectively; 𝑒 and 𝑓
have individual regression modules for HR and RR, respectively.
Table 1 shows mean and standard deviation of absolution errors,
the number of parameters and average inference latency of each
setting.

Table 1: Ablation Study

Settings HR err. RR err. #param latency
𝑎 (w/o T) 5.67 ± 4.76 3.63 ± 2.47 148610 2.24 ms
𝑏 (w/o F) 5.68 ± 5.30 3.72 ± 2.13 153410 2.33 ms
𝑐 (w/o cnn) 5.86 ± 4.71 3.25 ± 2.09 154114 2.32 ms
𝑑 (w/o attn.) 6.15 ± 4.37 3.80 ± 2.23 29026 1.84 ms
𝑒 (HR only) 5.29 ± 4.62 - 166497 2.71 ms
𝑓 (RR only) - 3.43 ± 2.09 166497 2.71 ms
DeepVS 5.16 ± 3.82 3.20 ± 2.35 166528 2.72 ms

We have three main observations from the results. 1) Combining
inputs from time and frequency domain works better than using
the individual input of either T or F. 2) Integrating local features
and temporal correlations by combining the CNN and attention
modules improves the accuracy. While the performance without the
attention module is reasonably good with relatively small overhead,
it has long-tail error from challenging cases. 3) Using the multi-head
scheme with only negligible additional overhead, DeepVS has better
estimation performance of both HR and RR than regression of HR
or RR only, because it is optimized by both sources. In summary,
DeepVS achieves the robustness of vital signs sensing by integrating
different sources of information in a unified manner.

5 DISCUSSION
As a preliminary exploration, DeepVS leaves a few directions to
further studies. First, we only focus on the RF signal from a single
user, while dealing with multi-user scenarios is more challenging.
If the signal reflected from multiple users can be separated using
spatial resolution with the given RF configurations, then the model
works on the separated individual signals in the same way as on
the single user. Otherwise, an extra step to achieve blind source
separation will be necessary before using the current model for
vital signs sensing. Second, we are yet to demonstrate the medical
usefulness of DeepVS with potential applications such as sleep
monitoring and health event detection. Finally, the generalizability
of the model may be an issue when the data distribution of the
target task differs a lot from the training data. A combination of
heuristics and learning based solution may be considered to address
this problem.

Code availability.We open source DeepVS: https://github.com/
SBU-MoCA/DeepVS_bcb22.

6 CONCLUSION
We propose a hybrid framework by combining CNN and attention
models to address key challenges from non-linearity and body
movements for RF-based vital signs sensing in a unified manner.
Experiments show that our proposed DeepVS largely reduce the 80-
percentile error of HR/RR estimation compared to VitalHub from
11.8/7.3 bpm to 7.4/4.9 bpm.
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