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ABSTRACT
Non-touch vital sign sensing is gaining popularity because it does
not require users’ cooperative efforts (e.g., charging, wearing) thus
convenient for longitudinal monitoring. In recent radio-based heart
and respiration rate (HR and RR) sensing using Wi-Fi, millimeter
wave (mmWave), or ultra-wideband (UWB), inevitable user move-
ments or background moving objects cause large disturbances to
the much weaker respiratory and heart signals. Such “corrupted”
signals must be detected and excluded to avoid making erroneous
measurements. Despite several attempts, reliable signal quality de-
tection (SQD) remains unresolved. In this paper, we spent over 80
hours to manually examine 50268 data samples collected from 8 par-
ticipants. We find that heart and respiration signals are not always
simultaneously available, which breaks an important assumption
in prior work. We propose a 2-bit SQD to classify their “availability”
separately. We further quantify the contributions of and correlation
among a comprehensive set of features in both time and frequency
domains, and use a forward selection strategy to identify an optimal
and much smaller feature set for multiple common classification al-
gorithms. Extensive experiments show that our 2-bit SQD achieves
91/95% precision, 88/91% recall in detecting available RR/HR signals,
as compared to a flat spectrum detector (FSD) [3] and a spectrum-
averaged harmonic path detector (SHAPA) [24] in prior work, and
reduces the 80-percentile RR/HR errors from 10/18 bpm to 3.5/4.0
bpm, 3∼4 fold reductions.
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1 INTRODUCTION
Basic vital signs such as heart and respiration rates (HR, RR) play
an important role in human health status assessment [5]. Contin-
uous vital signs data collected in individuals’ home environment
are invaluable for detecting potential health problems, and provide
insights for managing medication plans, especially for older adults
who face a myriad of chronic diseases and health conditions. How-
ever, continuous vital sign monitoring remains difficult to achieve.

Such longitudinal in-home monitoring requires robust and pas-
sive sensing. Wearables (e.g., Apple Watch, Fitbit) require frequent
charging and wearing, thus difficult to maintain compliance, espe-
cially among physically and cognitively challenged older adults. Re-
cent radio-based sensing designs [11] exemplified by Wi-Fi [19, 32],
frequency-modulated continuous wave (FMCW) [3] and UWB [24]
solutions require zero cooperative efforts from users, thus holding
promise for longitudinal in-home monitoring.

Although such work has demonstrated feasibility in lab environ-
ments (e.g., the subject remains stationary and clear from moving
objects), robustness in real daily environments faces great chal-
lenges from signal corruption. Inadvertent body motion, moving
objects, multi-path reflections etc. can cause large disturbances,
making the signal corrupted beyond recognition by even well-
trained human experts. Such corrupted signals cause large errors
and pollute longitudinal data, thus must be detected and excluded.

Existing SQDs [3, 11, 35] rely on simple heuristics and usually
use a single feature such as spectral energy or temporal waveform
for classification. Such naive methods may ignore available signals,
or include corrupted ones in face of complex dynamics such as non-
linear channels, heart-respiration intermodulations [18]. They also
assume that the presence of RR and HR are always simultaneous,
i.e., either they are both “available” or both “corrupted.” However, by
careful manual examination of large amounts of data samples, we
find that about 29% of the time, one signal can be present while the
other is corrupted. Thus a single binary detector may incorrectly
throw out available signals, or include corrupted ones.

To tackle this problem, we propose a 2-bit SQD that examines the
availability of HR, RR individually. We create a comprehensive set
of signal features in both time and frequency domains, rigorously
quantify their uniqueness and importance, and identify a small
optimal feature set for each of several common classification algo-
rithms. To evaluate the proposed 2-bit SQD, we conduct extensive
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(a) System layout. (b) In-home sedentary scenarios.

Figure 1: Our non-contact vital sign monitoring system consists of
a commercial UWB SoC as the RF front end and a co-located Kinect
XBox (with RGB camera covered for privacy) whose depth sensor
provides human detection and location. Together they enable auto-
mated sensing without users’ cooperative efforts.

experiments in home environments. Figure 1 shows the system and
scenarios for non-contact vital sign monitoring adopted in this pa-
per. We use a commercial UWB system on a chip (SoC) as the radio
frequency (RF) front end, which emits impulse radio waves and
received echoes from the field of view (FOV). Our system targets
the scenarios where users are in sedentary activities, during which
they stay quasi-stationary and their vital signs can be demodulated
from the received radio echoes, while the disturbed signal during
the non-stationary period will be detected and excluded by SQD.
Our experimental results show that compared to existing single
feature based detectors, our 2-bit SQD is more robust, and reduces
end-to-end RR/HR errors at 80-percentile by 3∼4 folds.

Specifically, we make the following contributions in this work:
• We conduct over 80 hours’ careful manual examination on
50268 samples in 840 minutes data from 8 participants. We
find that 29% of the time the availability of HR, RR signals
are not the same, breaking an implicit assumption made in
all prior work and necessitating 2-bit SQD that treats HR,
RR separately for reliability.

• We create a comprehensive sets of 29 signal features in both
time and frequency domains, quantify their correlations to
identify redundant features, and measure their individual
contributions to detection. Using a forward selection strat-
egy, we find for each of several common classifiers, a much
smaller feature subset (usually 3–10 features) can achieve
optimal detection.

• We evaluate the end-to-end vital sign estimation perfor-
mance using our 2-bit SQD in typical home environments.
We achieve 91/95% precision and 88/91% recall for RR/HR
on previously unseen subjects’ data, and 3.5/4.0 𝑏𝑝𝑚 80-
percentile error, 3∼4 fold reduction compared to over 10/18
bpm errors at 80-percentile using existing detectors.

2 RELATED WORK
Traditional measurement technologies of vital signs (heartbeat and
respiration rates) are contact-based, including those using elec-
trocardiogram (ECG) [26], photoplethysmogram (PPG) [30] and
ballistocardiogram (BCG) [13]. Wearables usually leverage such
technologies, and require constant wearing, charging efforts, diffi-
cult to comply over long time, especially for older adults. We use a
non-contact vital signs sensing system with radio-based techniques

targeting quasi-stationary settings. It requires no cooperative ef-
forts (e.g., putting on a device), thus more suitable for longitudinal
in-home monitoring. Our main focus in this work is SQD, how to re-
liably detect and exclude “corrupted” signals to improve robustness
of vital signs measurements.

Morphological features (such as systolic peaks, maximum slopes)
modulated by cardiovascular activities and extracted from ECG,
PPG or BCG signals have demonstrated reliable heart rate estima-
tion [13, 26, 30]. However, the radio perceived physiological signal
is modulated by chest wall movements, a combination of respira-
tory and heart activities, and the waveform is dominated by the
much stronger respiration signal. Thus such morphology-based
detection is not applicable to radio-based vital signs sensing.

Different methods have been proposed to detect corrupted sig-
nals. Threshold-based methods reject the motion artifact according
to motion level, quantified based on signal patterns in the time do-
main [19, 34] or frequency domain [3, 11]. A representative one is
the flat spectrum detector (FSD [3]), which uses the peak-to-average
ratio of the frequency spectrum to indicate the motion level. Signals
disturbed by motion artifacts will have relatively small peak-to-
average ratio as the energy is spread over the whole spectrum. If
the motion level is greater than a predetermined threshold, the
signal is excluded. However, we observe such fixed thresholds are
unreliable to precisely reject motion artifacts. SHAPA [24] seeks
to detect the availability of vital signs based on a heuristic that
the presence of multiple orders of harmonics indicates vital signs
are available. Although a strong evidence, SHAPA may exclude
signals where only vital signs fundamental components are present
and can be extracted, resulting in low recall. We also notice that all
such work implicitly assumed that respiration and heartbeat signals
are either both available or both unavailable, which we debunk by
careful manual examination. We further devise separate SQDs for
respiration and heartbeat, and identify optimal feature sets using
rigorous feature selection to greatly improve the reliability of vital
signs estimation.

3 BACKGROUND
In this section, we describe the background of signal modeling in
UWB-based vital signs extraction and formulate a scoped problem.

3.1 UWB-based Vital Signs Extraction
The displacement of the chest wall, as a result of the combination
of heartbeat and respiration, can be extracted from received UWB
signals and modeled in the equation:

𝑑 (𝑡) = 𝑑0 + 𝐷 (𝑡)
= 𝑑0 + 𝑑𝑟 sin (2𝜋 𝑓𝑟 𝑡) + 𝑑ℎ sin (2𝜋 𝑓ℎ𝑡) ,

(1)

where 𝑑0 is the nominal distance between the UWB sensor and the
targeted chest wall;𝑑𝑟 and𝑑ℎ are the chest displacement amplitudes,
and 𝑓𝑟 and 𝑓ℎ the rates of respiration and heartbeat, respectively.

Changing displacement of the chest wall causes the delay of
the reflected UWB signal 𝜏𝐷 (𝑡) = 2𝑑 (𝑡)/𝑐 to change. Therefore,
the phase of the reflected signal is modulated by such periodic
displacement, and can be modeled as:

𝜙 (𝑡) = 𝜙0 + 𝜙𝐷 (𝑡), (2)
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where 𝜙0 is the initial phase of the signal reflected from a nominal
distance 𝑑0, 𝜙𝐷 (𝑡) = 2𝜋 𝑓𝑐𝐷 (𝑡)/𝑐 is the phase modulated by the
physiological movements, and 𝑓𝑐 is the center frequency of the
UWB signal. By extracting the frequency components from the
modulated phase, we are able to extract RR/HR.

3.2 Problem Formulation
As derived in §3.1, the physiological signal can be obtained via phase
demodulation. The signal is inherently periodic because both heart-
beat and respiration are periodic activities. Therefore, vital signs
can be extracted with existing spectral analysis techniques (e.g.,
Fourier Transform). While the approach appears straightforward,
reliable vital sign estimation is greatly complicated by inadvertent
movements and non-linear channels in the real world.

Since the human body is relatively large compared to the wave-
length of UWB signals (a few centimeters), it is necessary to model
human body as a sum of multiple scatterers rather than a single
point scatterer. The perceived signal is in the superposition of
echoes bounced off every body part. Small motions of any body
parts in proximity of the chest wall could lead to dominating dis-
turbance in the physiological signals, resulting in corrupted signals.
SQD is a must to exclude erroneous vital sign estimations from
such corrupted signals.

Real world signal channels are often non-linear, adding another
challenge for robust SQD. The perceived phase under such non-
linear channels can be more complex than 𝜙𝐷 (𝑡) = 2𝜋 𝑓𝑐𝐷 (𝑡)/𝑐 . A
complex non-linear signal can be approximated by its Taylor series
as follows:

𝜙𝐷 (𝑡) =
2𝜋 𝑓𝑐
𝑐

(𝑎1𝐷 (𝑡) + 𝑎2𝐷2 (𝑡) + 𝑎3𝐷3 (𝑡) + . . .), (3)

where 𝑎𝑖 is the coefficient of the i-th order term. The higher order
terms result in intermodulation products between heartbeat and
respiratory signals. Take the second order item for example:

𝐷2 (𝑡) =𝑑2𝑟 sin(2𝜋 𝑓𝑟 𝑡)2 + 𝑑2ℎ sin(2𝜋 𝑓ℎ𝑡)
2

+ 2𝑑𝑟𝑑ℎ sin(2𝜋 𝑓𝑟 𝑡) sin(2𝜋 𝑓ℎ𝑡).
(4)

The products of trigonometric functions are equivalent to the fol-
lowing sums, according to trigonometric formulas:

sin(2𝜋 𝑓𝑟 𝑡)2 =
1
2 − 1

2 cos(4𝜋 𝑓𝑟 𝑡),

sin(2𝜋 𝑓ℎ𝑡)2 =
1
2 − 1

2 cos(4𝜋 𝑓ℎ𝑡),

sin(2𝜋 𝑓ℎ𝑡) sin(2𝜋 𝑓𝑟 𝑡) =
1
2 cos(2𝜋 (𝑓ℎ − 𝑓𝑟 )𝑡)

− 1
2 cos(2𝜋 (𝑓ℎ + 𝑓𝑟 )𝑡) .

(5)

As indicated in the underlined items in above equations, intermodu-
lationmanifests as new spectral components of linear combinations
of heart and respiratory rates (i.e., {𝑚𝑓ℎ ± 𝑛𝑓𝑟 |𝑚,𝑛 ∈ N0}), at fre-
quencies close to heart, respiration rates, making it difficult to tell
which are true vital signs.

Simply including the corrupted signal for vital signs extraction
will introduce erroneous measurements, thus subsequent mean-
ingless and misleading analysis results. Therefore, robust SQD is a

Our radio sensor

Masimo for 
comparison

Masimo data record
(19/75)

Real-time data of our system
(RR/HR: 17.3/75.9)

Figure 2: A typical setup for non-contact vital sign monitoring and
data collection. The subject sits on the chair at a distance from the
radio sensor. The fingertipMasimo pulse oximeter [1] is used to pro-
vide ground truth for comparison.

critical part for reliable vital sign monitoring. In this paper, we pro-
pose a robust 2-bit SQD to exclude corrupted signals thus erroneous
vital sign measurements.

4 2-BIT SIGNAL QUALITY DETECTION
In this section, We first describe our data collection, then descrbie
the design of the 2-bit SQD.

4.1 Data Collection
We use the following system and protocol for data collection to
create the datasets for the design and evaluation of 2-bit SQD.

4.1.1 Wireless Physiological Sensing System. We use a COTS UWB
sensor (XeThru X4M03 [2]) as the RF front end, which transmits
impulse radio waves within the frequency band 7.25–10.2 GHz
(centered at 8.75 GHz). The UWB sensor produces 10 frames per
second (fps), and each frame includes samples of the echoes re-
flected from objects within a range of 10 meters. To detect the
distance to the human body thus “zooming in” corresponding sig-
nals, we use Kinect XBox’s depth sensor, which integrates a human
body pose recognition model [28] to recognize and localize human
bodies present in the field of view. Both sensors stream data to the
same backend PC via serial ports for further processing. Alongside
the radio sensing system, we use a FDA approved medical device,
Masimo Pulse Oximeter [1], as the physiological reference system
to obtain ground truth.

Figure 2 shows a typical setup for wireless physiological moni-
toring. The UWB sensor sits on top of a Kinect XBox One sensor for
wireless physiological sensing, and the Masimo device is placed on
the fingertip to measure instantaneous heartbeat and respiratory
rates as the ground truth. We use a sliding window of 30 seconds
at 1 second increments to generate data samples, and align each
sample with the ground truth according to the timestamp.

4.1.2 Protocol. We conduct data collection in home environments.
In total 11 participants contribute to data collection, following a pre-
established protocol that protects the anonymity of the participants.
During data collection, we ask the participants to freely perform
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three common sedentary activities (i.e., reading, typing and resting
on the chair), at varying distances (1-3 meters) and orientations
(0-90 degrees) relative to the sensing system.

We collect three data sets. The first data set (denoted as 𝐷1) has
in total 50268 samples. It is collected with 8 out of 11 participants
over two weeks for preliminary tests of SQD. Each participant
spends about 1 hour for data collection at 9 different combinations
of distances and orientations in sedentary activities. The second
data set (denoted as𝐷2) has in total 4877 samples. It is collected with
the rest 3 participants to evaluate the robustness of the SQD model
against unseen subjects. Each participant spends about 30 minutes
for data collection at randomly selected distances and orientations
in sedentary activities. The third data set (denoted as𝐷3) has in total
26450 samples. It is collected with 2 same participants in D1. Each
participant spends about 30 minutes per day intermittently over 2
months. This data set is to evaluate the end-to-end performance
for longitudinal vital sign monitoring.

4.2 Signal Quality Detection
We first inspect the data characteristics, then devise a set of optimal
features and train models for 2-bit SQD.

4.2.1 Data Characteristics. To understand the data characteristics,
we first manually label the availability of each samples in 𝐷1. We
have one expert to annotate the availability of each sample for
respiration and heart rate extraction respectively (denoted as the
labels of RR/HR hereafter). During the manual labeling process, the
availability is determined based on signal patterns, such as how
periodic and continuous the signal is in the time domain, and/or
how condensed the spectrum is in the frequency domain around the
frequencies of RR/HR. It takes over 80 hours to annotate the labels
of RR and HR for all 50268 samples in data set 𝐷1. The manual
labeling process is repeated twice (each takes over 40 hours) to
mitigate occasional label errors due to subjective mistakes. After
such repeated manual labeling, we confirm that the label errors are
mostly eliminated by examining randomly selected samples: the
averaged error ratio has been reduced from above 10% to less than
1% based on 5 batches of 200 randomly selected samples.

Interestingly, we note that the labels of RR and HR often differ
from each other, which is a phenomenon not identified in existing
literature. In data set 𝐷1, we observe only 71% of the labels of RR
agree with the labels of HR. To quantify the level of agreement
between the labels of RR and HR, we use Cohen’s Kappa (𝜅) [17],
which is a more robust measure than simple percent agreement
calculation, as it takes into account the possibility of the agreement
due to randomness:

𝜅 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

= 1 − 1 − 𝑝𝑜
1 − 𝑝𝑒

, (6)

where 𝑝𝑜 = 1
𝑁

∑
𝑘 𝑛

𝑅𝑅,𝐻𝑅

𝑘
is the observed agreement between the

labels of RR and HR, 𝑝𝑒 = 1
𝑁 2

∑
𝑘 𝑛

𝑅𝑅
𝑘
𝑛𝐻𝑅
𝑘

is the hypothetical prob-
ability of chance agreement [17, 31], 𝑛𝑅𝑅,𝐻𝑅

𝑘
denotes how many

times the labels of both RR and HR are assigned to the same class
𝑘 ∈ {0 𝑓 𝑜𝑟 𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒, 1 𝑓 𝑜𝑟 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒}, 𝑁 is the total number of
samples to inspect, 𝑛𝑅𝑅

𝑘
and 𝑛𝐻𝑅

𝑘
denotes how many labels of RR

and HR are assigned to class 𝑘 respectively.

The higher the Cohen Kappa (𝜅), the more agreement between
two labels, and the value of 1 indicates a complete agreement. The
calculated 𝜅 of 0.48 indicates a moderate agreement [22] between
the labels of RR and HR. This necessitates two separate SQDs for
RR and HR. Since they together produce 2 bits to indicate the
respective Boolean states of the availability of RR and HR, we name
our method “2-bit SQD”.

4.2.2 Feature Extraction. The physiological movements (i.e., res-
piration and heartbeat) being continuous and periodic is a critical
pattern to distinguish available signals from unavailable ones. A list
of feature extractors are devised to extract discriminative features
(as listed in Table 1) from the stored data to describe critical patterns
in both time and frequency domains.

Table 1: Feature 𝐹1-𝐹29 are extracted with different combinations of
feature extractors and inputs in the time and frequency domains.

Feature Extractor
Input

𝑅𝑖𝑒 𝑃𝐴𝑅 𝑚𝑃𝐴𝑅 𝑃𝑁𝑅 𝑉𝑎𝑟 𝐸𝑛𝑡 𝑆𝑘𝑒 𝐾𝑢𝑟

𝑇 𝐹1 𝐹2 𝐹3 𝐹4
𝑆0 𝐹5 𝐹6 𝐹7 𝐹8 𝐹9 𝐹10 𝐹11
𝑆1 𝐹12 𝐹13 𝐹14 𝐹15 𝐹16 𝐹17
𝑆2 𝐹18 𝐹19 𝐹20 𝐹21 𝐹22 𝐹23
𝑆3 𝐹24 𝐹25 𝐹26 𝐹27 𝐹28 𝐹29

• Riemann sum (“𝑅𝑖𝑒”). The Riemann sum of the absolute val-
ues of time series is a critical indicator of the continuity [23],
which is a common pattern of the available signal; while the
corrupted signal likely has large spikes.

• Peak-to-average Ratio (“𝑃𝐴𝑅”). The peak-to-average ratio of
the power spectrum in the frequency domain indicates the
sharpness of the spectrum. A periodic signal in the time
domain translates to a spectrum with condensed energy in
limited frequency bands, while a noisy signal spreads the
energy over the entire spectrum.

• Multi-peaks-to-average Ratio (“𝑚𝑃𝐴𝑅”). Because the perceived
signal reflected from the chest wall is modulated by a super-
position of respiration and heartbeat, there exist multiple
peaks in several different spectral bands. The ratio ofmultiple
such peaks to the average can indicate the signal availability.
Empirically, we use the sum of peaks whose magnitude is
above the 75-percentile of the spectrum to calculate the ratio
of multiple peaks to the average.

• Peak-to-noise Ratio (“𝑃𝑁𝑅”). We find “𝑃𝐴𝑅” and “𝑚𝑃𝐴𝑅”
may not be representative when there exist small jitters
in the power spectrum of the available signal due to inter-
modulation effects between respiration and heartbeat. To
supplement such cases, we use the peak-to-noise ratio, calcu-
lated with the averaged floor of the power spectrum, which
is empirically set to the lowest 25% of the power spectrum.

• Variance (“𝑉𝑎𝑟”). In the time domain, the corrupted signal
with large spikes will have larger variance than the avail-
able signal with continuity; in the frequency domain, the
corrupted signal will have a flat spectrum, thus relatively
smaller variance than available signals with energy con-
densed around the frequencies of vital signs in the spectrum.
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(a) AUC scores of individual features for RR.
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(b) AUC scores of individual features for HR.

Figure 3: The difference in AUC scores between RR and HR of each
individual feature indicates that the same feature is not equally ef-
fective in detection of RR and HR. Features 𝐹12-𝐹16 are more effec-
tive in detection of RR, while features 𝐹24-29 are more effective in
detection of HR.

• Entropy (“𝐸𝑛𝑡”). Inherently, Shannon’s Entropy indicates the
level of randomness. Unavailable signals from disturbances
have more randomness than available ones with periodic
vital signs.

• Skewness (“𝑆𝑘𝑒”). Skewness is a measure of the asymmetry
of the distribution with the third standardized moment. The
corrupted signal will have more asymmetric distribution in
the time domain due to larger spikes, and more symmetric
distribution in the frequency domain due to flatter spectrum.

• Kurtosis (“𝐾𝑢𝑟”). Similarly, kurtosis describes the “tailed-
ness” of a probability distribution from outliers using the
fourth standardized moment. The corrupted signal in the
time domain has large spikes, which add to outliers in the
distribution, thus lower value of kurtosis. The corrupted sig-
nal in the frequency domain appears flatter as its energy
spreads over the whole spectrum, which results in a higher
kurtosis compared to the available signal with condensed
energy around the frequencies of vital signs.

Each UWB data sample is a time series (denoted by “𝑇 ”) of the
phase values in the echo from the chest wall in a 30-second window.
The phase value is sampled at 10 𝐻𝑧 , and the window moves at
1-second increments. According to the Nyquist–Shannon sampling
theorem [20], the Fourier transform (given 10 𝐻𝑧 sampling rate)
produces a spectrum in the frequency range of 0–5𝐻𝑧, which trans-
lates to a physiological rate range of 0–300 beats/breaths per minute
(bpm). The original spectrum within the full range of 0–300 bpm is
denoted by “𝑆0”. Besides, the spectrum within the range of RR 0–30
bpm is denoted by “𝑆1”, the spectrum within the range of the funda-
mental HR 50–150 bpm denoted by “𝑆2”, and the spectrum within
the range of the second harmonic of HR 100–300 bpm denoted by
“𝑆3”. Since there exists disagreement between the availability of RR
and HR, we apply feature extractors to extract features in respec-
tive spectrum (𝑆1, 𝑆2 and 𝑆3) specific to RR/HR, in addition to the
original time series (𝑇 ) and the full spectrum (𝑆0). Table 1 shows
“combos” of feature extractors and inputs to generate features.

4.2.3 Effectiveness and Redundancy of Features. To understand the
effectiveness of the extracted features for SQD, we use each feature
individually to see how well it can distinguish between available
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Figure 4: The correlation between pairs of features 𝐹𝑖 and 𝐹 𝑗 is indi-
cated by the cell located in the coordinate (𝐹𝑖 , 𝐹 𝑗 ). The darker a cell
is, the more correlated the corresponding pair of features are.

and corrupted signals, using data set 𝐷1 and the AUC metric [8].
The AUC score usually ranges in value from 0.5 to 1. The higher
the AUC score, the more discriminative the corresponding feature
is to distinguish between available and corrupted signals; while an
AUC score of 0.5 indicates that the feature has no discrimination
capacity but random prediction. We apply 5-fold cross validation to
mitigate the variance due to data distribution [14]. Figure 3(a) and
Figure 3(b) show AUC scores of individual features for detection of
RR and HR. Notably, every individual feature performs differently
for the detection of RR and HR, and two subsets (𝐹12− 16, 𝐹24− 29)
seem more effective for RR, HR respectively. Therefore, we use
different subsets of features to devise SQDs for RR and HR.

We also evaluate the redundancy between different feature vari-
ables using Pearson correlation [4]. The Pearson correlation coeffi-
cient between feature variables 𝐹𝑖 and 𝐹 𝑗 is calculated as:

𝜌𝑖, 𝑗 =
Cov(𝐹𝑖 , 𝐹 𝑗 )

𝜎𝑖𝜎 𝑗
,

where Cov is the covariance, 𝜎𝑖 and 𝜎 𝑗 are standard deviations of 𝐹𝑖
and 𝐹 𝑗 respectively. The coefficient value is between −1 and 1. The
value of 1 indicates positive correlation between the pair of features;
the value of 0 indicates totally no correlation; and the value of −1
indicates negative correlation. We use the absolute value of the
coefficient because both positive and negative correlations indicate
a certain level of redundancy between the pair of features. The re-
sulting correlation matrix is shown in Figure 4. Interestingly, higher
correlation is observed among features extracted from the same
input (e.g., features 𝐹5–𝐹11 extracted from 𝑆0; 𝐹12–𝐹17 from 𝑆1;
𝐹18–𝐹23 from 𝑆2; and 𝐹24–𝐹29 from 𝑆3), indicating such features
contain more redundant information. Including more redundant
features will not contribute to higher classification performance,
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Figure 5: The curves show the changes in AUC scores of classifiers
along the step-wise forward selection procedure with increasing
number of features for detection ofRR in (a) andHR in (b). TheAUC
score increases marginally after 2 or 3 features, until it reaches the
peak with the number of features as indicated in the label of each
classifier.

but may introduce more noise and reduce the performance. We
need to select optimal subsets from these features for 2-bit SQD.

4.2.4 Feature Selection for Signal Quality Detection. We apply the
step-wise greedy forward selection strategy [9, 15] to evaluate the
contributions of features and select an optimal subset of features
that achieves the best detection performance. The forward selec-
tion method starts by choosing the first feature that produces the
best AUC score [8] among all feature candidates. Then, among the
remaining candidates, the next best feature that contributes the
most increase of AUC score when combined with selected features,
is selected. We repeat the above step and progressively add the
more features to the subset of selected features, until we exhaust
all remaining feature candidates.

We empirically choose to investigate 5 popular machine learning
models as the classifiers of our 2-bit SQD. They are Support Vector
Machine with linear kernel [7] (denoted as “Linear SVM”), Decision
Tree [29], Random Forest [25], Neural Net (configured as a 3-layer
perceptron classifier with the activation function of ReLu) [10], and
AdaBoost [27].

Figure 5(a) and Figure 5(b) show the changes in AUC scores
as more features are selected. For all classifiers, we consistently
observe that the AUC scores rise with the selection of more features
at first. Then it increases only marginally after 2 or 3 features, until
it reaches the peak with the number of features as indicated in the
label of each classifier (from 3 to 18).

There are two reasons behind the drop in AUC score with further
increasing numbers of features: 1) redundant features add little
new information but mostly noise detrimental to performance;
2) with more features, a machine learning model needs to tune
more parameters during training, and it becomes more likely to be
under-trained given the limited size of training data.

We will select the respective optimal feature subset for each
classifier when the best AUC score is achieved. It is noted for most
classifiers, 𝐹12 and 𝐹28 are two most effective features for classi-
fication of RR, while 𝐹24 and 𝐹4 are two most effective ones for
HR. It implies that, while the features extracted from the respective
spectrum bands of RR/HR are most effective, features with less
correlation contribute more to supplementary information thus
increments in performance.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Linear SVM (AUC=0.920)
Decision Tree (AUC=0.844)
Random Forest (AUC=0.947)
Neural Net (AUC=0.927)
AdaBoost (AUC=0.919)

(a) ROC comparison for RR.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Linear SVM (AUC=0.985)
Decision Tree (AUC=0.951)
Random Forest (AUC=0.978)
Neural Net (AUC=0.986)
AdaBoost (AUC=0.980)
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Figure 6: ROC curves of different classifiers with respective optimal
feature subsets are close to each other for either RR in (a) or HR
in (b). It shows that with carefully selected features, the impact of
difference in the classification algorithms is limited.

While it is possible to choose a smaller feature subset (e.g., the
first 3-5 features that already approaches optimal AUC) with a
marginal loss in classification performance, we use the identified
optimal feature subsets (most are with 3-10 features) for each classi-
fier and train them as SQDs. We will evaluate these SQDs for their
end to end performance next.

5 EVALUATION
In this section, we first conduct experiments to evaluate the classifi-
cation performance of the SQDs in §5.1 on the testing data collected
from unseen subjects (𝐷2), then we evaluate the end-to-end perfor-
mance of vital sign monitoring in §5.2 on the data collected over 3
months (𝐷3). In all experiments, we use the classification models
trained on data 𝐷1, with the subset of features selected in §4.2.4.

5.1 Classification Performance
We evaluate the classification performance on the data set 𝐷2,
which contains subjects unseen in the training data 𝐷1. Figure 6(a)
and Figure 6(b) show the ROC curves of respective trained classifiers
to detect RR and HR in data 𝐷2. We observe that the ROC curves
of different classifiers are near each other with very close AUC
scores (mostly over 0.91), despite using different feature subsets.
This shows that with careful feature selection, the classifiers can
all perform similarly well for unseen subjects.

We also evaluate the gain achieved by consensus filtering [16]
(denoted by “𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠”), which takes advantage of the diversity
in classifiers and classifies a sample as “available” only when all
classifiers says so. We compare the performance of 2-bit SQD with
two representative methods from the literature – the flat spectrum
detector (FSD) [3] and Spectrum-averaged Harmonic Path detector
(SHAPA) [24]. Notably, all existing methods are 1-bit solutions,
which assume RR andHR are either both “available” or “unavailable”
concurrently. Since existing methods are not open-sourced, we try
our best to implement them for comparison.

FSD is a threshold-basedmethod, which uses the peak-to-average
ratio to quantify the sharpness of the spectrum to indicate the peri-
odicity of the signal. Varying the threshold value can cause different
classification performances. We use the threshold when the best
F1-score is obtained with the data set 𝐷1. SHAPA is a heuristic-
based method, which determines the signal availability according
to the existence of “harmonic paths” due to the inherit non-linearity
characteristic. A harmonic path is detected if there exist three or
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more near equally spaced spectral peaks, whose frequencies are
approximately an integer multiple of the inter-peak distance in
terms of frequency [24]. The peaks with magnitudes above the
75-percentile of the spectrum are selected according to [24]. While
it was proposed for both the detection and estimation of vital signs,
we only compare its detection performance with our proposed SQD.

Table 2: The classification performance of trained classifiers are
much improved compared to existing methods FSD and SHAPA.

Detector RR HR
Prec. Rec. Prec. Rec.

Linear SVM 0.87 0.86 0.96 0.91
Decision Tree 0.87 0.82 0.93 0.91
Random Forest 0.91 0.88 0.95 0.91
Neural Net 0.89 0.88 0.96 0.92
AdaBoost 0.88 0.84 0.95 0.92
Consensus 0.93 0.80 0.96 0.91
FSD 0.83 0.79 0.85 0.80
SHAPA 0.51 0.22 0.63 0.37

Table 2 shows the classification performance tested on data 𝐷2
withmetrics of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (i.e., 𝑇𝑃

𝑇𝑃+𝐹𝑃 , denoted by “Prec.”) and𝑅𝑒𝑐𝑎𝑙𝑙
(i.e., 𝑇𝑃

𝑇𝑃+𝐹𝑁 , denoted by “Rec”). Precision indicates the fraction of
truly “available” samples in those detected as “available.” A high
precision is necessary to ensure the estimation uses mostly truly
available signals, thus low erroneous measurements. Recall is the
fraction of detected available samples among all truly available
ones. A high recall ensures most truly available signals are included
for estimation, thus high coverage over time.

The performance of the existing methods may differ from the
reported results in the original paper, as the data source is different.
The performance of FSD is relatively reasonable (0.79-0.85) while
not as good as the SQDswith optimal feature subsets (mostly around
0.90 or higher). However, SHAPA is much worse (0.22-0.63) than
others. It is because the harmonic path exists only for a small
fraction of available signals, leading to a very low recall (i.e., a small
fraction of the true positive (TP) samples). This stringent criteria of
availability also reduces the amount of false positive (FP). But if its
level is comparable to TP, thus the precision ( 𝑇𝑃

𝑇𝑃+𝐹𝑃 ) is still low.
The difference in classification performance among our trained

SQDs is marginal as shown in both Figure 6 and Table 2. Using
consensus filtering over predictions of all classifiers further im-
proves the precision marginally at the cost of decreased recall. The
classification results show that the proposed 2-bit SQD is robust
to unseen data, and achieve much improved performance than
existing methods.

5.2 End-to-end Performance
To evaluate the impact of the SQDs on the end-to-end vital sign
estimation performance, we use the longitudinal data 𝐷3 which
contains more variations over 2 months’ period.

The RR and HR estimations are produced using the same vital
signs estimation method (which has been extensively evaluated
in [33], and its detailed design is beyond the scope of this paper),
while only changing SQDs. Only the readings of RR/HR classified
as available by the SQD will feed the estimation method, and the
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Figure 7: CDF curves of E2E performance with different SQDs are
close to each other.

Table 3: E2E vital signs estimation errors (bpm) at 80-percentilewith
different SQDs. The difference in the E2E performance with differ-
ent SQDs is marginal.

Detector RR HR
Linear SVM 3.72 4.61
Decision Tree 5.72 4.97
Random Forest 3.51 4.01
Neural Net 3.41 4.13
AdaBoost 3.72 4.29
Consensus 2.83 4.01
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Figure 8: E2E performance comparison of our random forest based
2-bit SQD with existing work FSD, SHAPA, and without any SQD.

resulting vital signs data are compared against the ground truth
with the metric of errors in “beats per minute” (bpm).

We first compare the end-to-end performance using different
classifiers with respective optimal feature sets, as well as the con-
sensus filtering. As shown in Figure 7, all the classifiers achieve
similar performance, due to close scores of precision and recall in
Table 2. The errors in Table 3 show that 80-percentile errors vary
between 2-5 bpm, with the best for RR and HR around 2.83 and 4.0
bpm, respectively.

While the consensus filtering is only marginally better than Ran-
dom Forest in the E2E performance of RR, it consumes predictions
from all 5 classifiers, which is (about 5 times) more complex com-
pared to a single classifier. To balance between complexity and
performance, we decide to only keep the trained Random Forest
for 2-bit SQD. The E2E RR/HR monitoring performance using our
proposed 2-bit SQD is then compared with two existing approaches
(FSD [3] and SHAPA [24]) as well as results without any SQD.

Figure 8 shows the results of different CDF curves, which clearly
shows our 2-bit SQD achieves the best results, with much reduced
overall errors for both RR and HR (i.e., the curve is above others,
with smaller errors on X axis at any given percentile on Y axis). Us-
ing Random Forest with the derived feature subsets as the 2-bit SQD
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reduces the 80-percentile RR/HR error to 3.5/4.0 bpm, from 15/22
bpm of the baseline without SQD. Compared to the 80-percentile
error of 16/18 bpm with FSD and 10/20 bpm with SHAPA, our pro-
posed 2-bit SQD achieves about 3∼4-fold reduction in E2E RR/HR
errors compared to the better one between FSD and SHAPA. The
E2E results show that, our proposed 2-bit SQD can reliably detect
available signals thus controlling the measurement errors of RR/HR,
which makes it more practically useful for longitudinal vital sign
monitoring in home.

6 DISCUSSION
Practical Concerns of Wireless Sensing. An early study [6]
found that exposure to RF has no detrimental effects on health.
Our system targets longitudinal in-home vital signs data collection,
and we introduce 2-bit SQD to exclude disturbed signals to avoid
erroneous vital signs measurements while keeping the valid ones.
The fact that people spend the majority of time in sedentary be-
haviors, as indicated in [21], allows our system to collect valid vital
signs data when they stay stationary over a reasonably long dura-
tion for tracking the daily trends. We will investigate the medical
usefulness in the future work with analysis over long-term records
of vital signs.

Strength and Generalizability of 2-bit SQD. As 2-bit SQD
allows decoupled detection of RR and HR, it is inherently more
flexible and robust than other single-binary detection methods
when there exists disagreement between the availability of RR and
HR. We use a commodity UWB sensor as the RF front end in our
wireless sensing system. However, the issues discussed in this paper
(e.g., disturbances, intermodulation) are common to other wireless
techniques (e.g., FMCW, mmWave). In future, we will evaluate the
effectiveness of the proposed 2-bit SQD to other wireless sensing
platforms.

Trade-offs between Complexity and Performance. In this
paper, we use the subset of features with the best AUC score. How-
ever, it is noted that, before it reaches the best AUC, the increase in
AUC score is actually marginal after the selection of the first 2 or 3
features. This may further reducing computing complexity at the
cost of hopeful sligtly lower classfication accuracy. We will leave it
to future work to find a proper balance between the two based on
larger amounts of data collection.

Further Improvement in Accuracy. While the idea of 2-bit
SQD is verified, we use mostly statistical features in time and fre-
quency domains. We will explore more categories of features (e.g.,
local patterns using wavelet analysis, representations learned from
neural networks) classification algorithms to further improve the
performance of SQD. Although we control of error of RR/HR mea-
surement at 80-percentile to a reasonable level (3.5/4.0 bpm), the
error beyond 80-percentile is still large. Since it is impractical to
eliminate false positive samples completely, we will leverage prior
knowledge about the past history and trend of vital signs (e.g.,
continuity using LSTM [12]) to supplement SQD for more reliable
measurement of vital signs.

More Subjects for Data Diversity. The diversity of our data
is limited due to the COVID-19 pandemic. We were able to only
recruit a limited number of participants. As the situation eases
with warmer weather and vaccination, we will further recruit more

participants to increase the diversity of data, possibly including
residents in nearby communities for more diversities in age, health
status, and body build.

7 CONCLUSION
We propose a 2-bit signal quality detector (SQD) for robust wireless
non-touch vital sign monitoring. We identify and quantify the dis-
agreement of the availability between RR and HR signals, breaking
an implicit assumption made in all prior work. We propose to treat
RR and HR separately, examine a rich set of time and frequent do-
main features, and identify the optimal feature subset for a number
of common classification algorithms. Experiments show that our
proposed 2-bit SQD improves signal quality detection, and achieves
about 3∼4 fold reduction in E2E RR/HR errors at 80-percentile
compared to existing work.
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