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Basic vital signs such as heart and respiratory rates (HR and RR) are essential bio-indicators. Their longitudinal in-home
collection enables prediction and detection of disease onset and change, providing for earlier health intervention. In this
paper, we propose a robust, non-touch vital signs monitoring system using a pair of co-located Ultra-Wide Band (UWB) and
depth sensors. By extensive manual examination, we identify four typical temporal and spectral signal patterns and their
suitable vital signs estimators. We devise a probabilistic weighted framework (PWF) that quantifies evidence of these patterns
to update the weighted combination of estimator output to track the vital signs robustly. We also design a “heatmap” based
signal quality detector to exclude the disturbed signal from inadvertent motions. To monitor multiple co-habiting subjects
in-home, we build a two-branch long short-term memory (LSTM) neural network to distinguish between individuals and their
activities, providing activity context crucial to disambiguating critical from normal vital sign variability. To achieve reliable
context annotation, we carefully devise the feature set of the consecutive skeletal poses from the depth data, and develop a
probabilistic tracking model to tackle non-line-of-sight (NLOS) cases. Our experimental results demonstrate the robustness
and superior performance of the individual modules as well as the end-to-end system for passive and context-aware vital
signs monitoring.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing systems and tools; • Applied
computing → Health informatics; Bioinformatics.

Additional Key Words and Phrases: Non-touch vital signs monitoring; passive sensing, longitudinal in-home monitoring

1 INTRODUCTION
Basic vital signs including respiration and heart rates are predictors for assessing overall changes in health
status [11], and a myriad of medical conditions including respiratory, cardiac, and sleep conditions [45, 51].
Continuous vital signs data collected in individuals’ home environment can be analyzed to monitor disease

onset/progression/resolution, and the impact of new or changed medications. Such in home assessment can have
tremendous benefits for anyone living with a chronic health condition, especially for older adults who face a
myriad of chronic diseases and health conditions

Longitudinal in-home monitoring requires low-cost, robust and passive sensing. Traditional hospital equipment
such as electrocardiograms (EKG) are expensive, are not designed for continuous in-home data collection, and
require well-trained medical personnel to set up and monitor the output. Despite their popularity, wearables
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Fig. 1. VitalHub leverages depth camera for body detection and context annotation. The location of detected human body is
used to segment the UWB signal correspodning to the chest wall of the interested subject, and vital signal is extracted for
vital signs estimation.

(e.g., Apple Watch, Fitbit) have inconvenient and restraining daily maintenance overheads (e.g., charge, wear),
especially difficult among physically and cognitively challenged older adults.

Recent radio-based passive-sensing solutions [29] exemplified by Wi-Fi [45, 58, 79], FMCW [5], and UWB [53,
64] hold promise for longitudinal in-home monitoring. Temporal and spectral methods extracting vital signs
against multipath [79], cluttered environments [39] are proposed.
However, robustness against harmonics and intermodulation has not received sufficient attention. Because

neither heartbeat nor respiratory signals are purely sinusoidal and the phase of RF signals for vital signs
extraction exhibits non-linearity, high-order harmonics and intermodulations (i.e., linear combinations of heart
and respiration rates) exist, and frequently carry energy stronger than the fundamental heart rate. They produce
high spectral peaks within the normal heart rate range, e.g., 50–150 beat per minute (bpm). Thus, spectral methods
simply pick the highest peaks to identify the heartbeat signal easily fail (1/3 of the time in our experiments).
Making matters worse, we observe that their frequencies and magnitudes are time-varying, and the pattern keeps
changing over time, defying simple predictions. These issues are not described nor appear tackled in recent radio
sensing work. The electrical engineering community has conducted some related studies [21, 64], but in-depth
validation and conclusive comparison are still lacking.

Similarly, robustness against signal corruption remains elusive. Due to inevitable large body motion, the signal
might be corrupted beyond recognition by even well-trained humans. Such signals must be detected and excluded
to avoid producing erroneous results. Existing methods [5, 29] rely on spectral energy or temporal waveform
assumptions that are susceptible to dynamic changes, thus not reliable enough.

Longitudinal in-home monitoring also needs to address two other issues: 1) differentiate multiple co-habiting
subjects in proximity, reliably extract and associate vital signs data to each of them; 2) identify the physical
activity context to disambiguate pathological and normal changes in vital signs (e.g., the heart rate increases
after exercises or food is normal but during sleep apnea [45, 51] is abnormal).
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In this paper, we propose VitalHub (as shown in Figure 1), a robust vital sign monitoring system meeting
the requirements of longitudinal in-home monitoring using a pair of co-located UWB and depth sensors. Based
on a manual examination of over 6000 data samples, we identify four typical temporal and spectral patterns
(present in 98.55% of the data) and a suitable heart/respiration rate estimator for each. To handle harmonics and
intermodulation, we devise a probabilistic weighted framework (PWF) that quantifies the cumulative evidence of
these patterns to adaptively update the weighted combination of estimator outputs to track the vital signs robustly.
To detect corrupted signals, we generate a 2D “heatmap” representing the likelihood of different heart/respiration
rate estimates and train a ResNet [28] model to produce a confidence value of how likely the signal is corrupted.
The depth sensor provides multiple functions: 1) recognize human bodies and their relative depths, which

enable us to identify which “range bins” (i.e., signals reflected from objects within certain depth ranges) correspond
to the human bodies for the segmentation and extraction of vital signals as illustrated in Figure 1; 2) differentiate
co-habiting subjects from skeletal walking patterns [70] for proper data association; and 3) recognize body poses
to produce context of physical activities. Unlike RGB cameras, the depth sensor does not have fine visual details,
thus more privacy-friendly to subjects.
We have implemented a VitalHub prototype and conducted extensive experiments. We collected data from 8

volunteers in 56 sessions (2–10𝑚𝑖𝑛 per session) in both stationary (e.g., sitting still) and non-stationary (e.g.,
natural upper body swaying) poses at 3 different distances/angles. We spent over 72 man-hours to manually label
more than 40,000 30s time-windowed signals whether they were corrupted beyond human recognition to provide
training data.

Our PWF aided by the detector achieves 1.5/3.2 bpm error at 80-percentile for respiration and heart rates, even
though individual estimators may produce 10–20 bpm errors in heart rates. 1 These are very close to 1.2/1.5
bpm errors from an idealistic oracle that always knows whether the signal is corrupted, which are the best
instantaneous range bin and estimator (none of which practically feasible).
We make the following contributions in this work:

• We systematically describe the challenges of non-touch vital signs monitoring using a low-cost COTS UWB
sensor in realistic in-home scenarios. The challenges manifest in the form of dynamic signal patterns with
harmonics and intermodulation interference, making robust heart rate estimation difficult, for which we
do not find sufficient description nor treatment in the literature.

• We design a probabilistic weighted framework (PWF) that adaptively adjusts the weights in combining the
outputs of four estimators based on quantitative evidence of respective patterns, to address the challenges
caused by the harmonics and intermodulation interference for heart rate estimation. Extensive experiments
show that our proposed system achieves within 0.3/1.7 bpm error to the upper limit of an idealistic oracle,
demonstrating the robustness of PWF.

• To better understand the contributions of our vital signs monitoring pipeline, we conduct comparative
evaluation with related work. Specifically, we compare VitalHub with three representative methods dealing
with harmonics and intermodulation issues. We show that VitalHub achieves ≤5bpm error 98.5% of the
time in heart rate estimation, while others only 51.2–81.3%, and we share insights how assumptions they
rely on may not hold in reality. We also compare our heatmap based signal quality detector against other 4
common methods, and find it achieves near-human performance at 96% for both precision and recall in
detecting and excluding corrupted signals caused by inadvertent motions, while others at best 89/83%.

• We develop a context annotation module, including a two-branch LSTM recurrent neural network and
a probabilistic model, for identity tracking and activity recognition with a feature set derived from the
skeleton data, using a depth camera independent of the ambient lighting conditions. Experiments show

1The respiration rate is more accurate due to the stronger energy.
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that the LSTM model outperforms baseline classifiers and achieves 90% median accuracy for differentiating
8 people from skeletal walking patterns, and 96% F1-score for recognizing 6 common daily activities.

VitalHub produces robust measurements for respiration and heart rates against harmonics and intermodulation.
It reliably differentiates co-habiting subjects to associate data, and generates activity contexts, thus offering
a suitable solution for longitudinal in-home vital signs data collection valuable for future customized health
analytics (e.g., the detection of anomalous deviation from a user’s normal patterns of vital signs during certain
daily activities).

2 DESIGN CONSIDERATIONS

2.1 Design Goals
To achieve longitudinal in-home vital signs monitoring, we identify several goals as follows:

• Robustness. Vital signs should be robustly extracted against dynamic changes including corruptions,
strong harmonics and intermodulation, and in the presence of multiple co-habiting people.

• Passive, non-touch sensing. The monitoring should not require active user efforts such as charging
batteries or wearing devices. This is critical for older adults who would benefit the most from longitudinal
monitoring but many are physically and cognitively challenged for active efforts.

• Context awareness.Co-habiting subjects must be distinguished from each other so as to properly associate
the data to the corresponding individuals. The activity context of the subjects is needed to help disambiguate
abnormal changes (physical or mental) from normal ones.

• Privacy-friendly. We have conducted 5 discussion groups, each 10-15 participants (a total of 57 older
adults) about their perception on technologies for in-home health monitoring. They come from both urban
and suburban areas, with diversity in gender, age (60 to 80+), and socioeconomic status. Each time the
participants were asked to self complete a paper-based questionnaire at the beginning, so their opinions
were not influenced or biased by our later presentation. In questionnaires, we found people did not want
to be monitored by regular RGB cameras which show fine grained images/videos. In discussions they
overwhelmingly expressed strong disinterests and privacy concerns, no matter who is watching, even close
family members like adult children living separately. However, they were more receptive to coarse-grained
silhouettes from depth sensors because no visual details of facial expression, clothing were available.

2.2 Hardware Choices
To achieve the above goals, we choose a co-located UWB and depth sensor pair as the hardware platform. The
UWB signal is sensitive to tiny displacements of the chest wall due to the heartbeat and respiration. The UWB
system is found to be highly immune to multipath effects with energy spanning a wide frequency bandwidth [40],
and requires less complexity in the architecture than FMCW ones [8, 76] for wireless sensing. 2 A less complexity
in the architecture usually implies a less expensive COTS solution for low-cost deployment, thus we choose a
UWB sensor [7] as the RF frontend for non-touch vital signs monitoring.
To balance the requirements of context-awareness and privacy-friendliness, we adopt a depth camera to 1)

detect and locate human bodies, so as to help select the range bins in the received UWB signals corresponding to
the chest walls; 2) distinguish multiple people simultaneously present in the Field-of-View (FoV) for data-identity
association; and 3) produce context information without using intrusive RGB images. Notably, the depth camera
in our implementation uses IR based time-of-flight method for depth sensing, and the human body detection [70]

2To produce the range profile, the UWB based system needs only a down-conversion mixer; In contrast, the FMCW based system needs
1D-FFT in addition to the down-conversion mixer, because its time of flight (TOF) has to be linearly translated from the frequency shift.
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is based on the depth image without RGB data. Therefore, the features of VitalHub enabled by the depth camera
are independent of the ambient lighting conditions, so it works well at both day and night.

2.3 Background of UWB based Vital Signs Extraction
This section provides necessary background regarding vital signs extraction via UWB signal modeling. Heart and
respiratory rates are two of the five vital signs collected at each physical examination [11]. It is the combination
of heartbeat and respiration that comprises chest displacements. The instantaneous distance (𝑑 (𝑡)) of the chest
wall away from the UWB sensor can be measured with high sensitivity for vital signs extraction, and can ideally
be expressed [63] as:

𝑑 (𝑡) = 𝑑0 + 𝐷 (𝑡)
= 𝑑0 + 𝑑𝑟 sin (2𝜋 𝑓𝑟 𝑡) + 𝑑ℎ sin (2𝜋 𝑓ℎ𝑡) ,

(1)

where 𝑑0 is the nominal distance between the UWB sensor and the targeted chest wall (i.e., provided by the
depth sensor to select the proper “range bin”), 𝐷 (𝑡) is the chest wall displacement; 𝑑𝑟 and 𝑑ℎ are the displacement
amplitudes, and 𝑓𝑟 and 𝑓ℎ the rates of respiration and heartbeat, respectively.
The instantaneous channel response ℎ(𝑡, 𝜏) at time 𝑡 with a short delay 𝜏 can be formulated as:

ℎ(𝑡, 𝜏) = 𝛼𝐷𝛿 (𝜏 − 𝜏𝐷 (𝑡)) +
∑
𝑖=1

𝛼𝑖𝛿 (𝜏 − 𝜏𝑖 ) , (2)

where 𝛼𝐷 and 𝛼𝑖 represent the magnitudes of the channel response of the target and other static objects, and
𝜏𝐷 (𝑡) = 2𝑑 (𝑡)/𝑐 and 𝜏𝑖 are corresponding delays (𝑐 the speed of light). It indicates that the channel response of
the target can be spatially distinguished from the clutter according to the range/TOF. The received signal 𝑠 (𝑡, 𝜏)
can be derived as a convolution of the channel response and the transmitted impulse 𝑝 (𝜏), as:

𝑠 (𝑡, 𝜏) = 𝑝 (𝜏) ∗ ℎ(𝑡, 𝜏)

= 𝛼𝐷𝑝 (𝜏 − 𝜏𝐷 (𝑡)) +
∑
𝑖=1

𝛼𝑖𝑝 (𝜏 − 𝜏𝑖 ) . (3)

Therefore, the segment of received signal 𝛼𝐷𝑝 (𝜏 − 𝜏𝐷 (𝑡)) shifts in the phase according to the two-way echo
delay 𝜏𝐷 (𝑡) = 2𝑑 (𝑡)/𝑐 due to the chest displacement, and two vital signs (heart and respiratory rates) can be
extracted from the phase. The phase can be modeled as:

𝜙 (𝑡) = 𝜙0 + 𝜙𝐷 (𝑡), (4)

where 𝜙0 is the initial phase of the received signal at the nominal distance 𝑑0, 𝜙𝐷 (𝑡) = 2𝜅𝐷 (𝑡) is the phase
modulated by the physiological movements, and 𝜅 = 2𝜋/𝜆 denotes the angular wavenumber, determined by the
wavelength 𝜆 of the carrier wave.

2.4 Robustness Challenges
Robust vital sign extraction based on the derived phase model in (4) is challenging due to the following issues.
First, the perceived phase can be noisy due to imperfect hardware. As the UWB signal is sampled at extremely
high frequencies (23.328 GHz in our case), imperfect synchronization between the transmitter and receiver would
result in a sampling time offset (STO), thus a time-variant phase drift 𝜙𝑆𝑇𝑂 (𝑡). Therefore, the phase model (4)
needs to be updated as:

𝜙 (𝑡) = 𝜙0 + 𝜙𝐷 (𝑡) + 𝜙𝑆𝑇𝑂 (𝑡), (5)
and this makes direct extraction difficult especially when the phase drift from desynchronization becomes larger
than that (𝜙𝐷 (𝑡)) from physiological motion.
Second, the chest wall movements due to either heartbeat or respiration are not purely sinusoidal, thus

harmonic components exist for both. As normal heart rates span a wide range (e.g., 50–150 bpm), the higher
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order harmonics of respiration can co-exist in the same range. Larger respiration motions also produce strong
harmonics, making it difficult to decide the correct fundamental frequency of heart rate. To address this issue,
we will introduce a probabilistic weighting framework (in §4.3.2), which adaptively reduces the interference of
respiration harmonics to the heart rate estimation.
Third, in realistic scenarios, the phase of the received signal is more complex than linearly proportional to

the chest wall displacement 𝜙𝐷 (𝑡) = 2𝜅𝐷 (𝑡). We start our reasoning with the scattering model of the human
body for vital signs extraction [50, 82, 95]. The human body is more complex than a point scatterer. Rather, it
has a 3D shape and should be modeled as a collection of point scatterers at different depths [50]. Therefore, the
received signal is a superposition of the scattered signals from different body parts which may interfere with
each other, constructively or destructively. If we categorize the scattered signals into two sets, one is modulated
by physiological movements (denoted by𝑀), and the other is static (denoted by 𝑁 ), the resulting signal can be
expressed as:

𝑠 (𝑡) =
∑
𝑚∈𝑀

𝛼𝑚𝑒
−𝑗 (𝜙𝑚+2𝜅𝐷 (𝑡 )) +

∑
𝑛∈𝑁

𝛼𝑛𝑒
−𝑗𝜙𝑛

= 𝛼�̄�𝑒
−𝑗𝜙�̄�𝑒−𝑗2𝜅𝐷 (𝑡 ) +𝛼�̄�𝑒−𝑗𝜙�̄� ,

(6)

where the first term varies over time according to the physiological movements, and the second term indicates
static, thus DC components. The subscripts𝑚 and 𝑛 denote the elements from the set𝑀 and set 𝑁 separately,
�̄� and 𝑛 denote their resulting summed terms respectively, and 𝜙 denotes the phase offset from the relative
distances between point scatterers. Then the phase of the resulting signal 𝑠 (𝑡) can be obtained from the in-phase
signal (𝐼 (𝑡) = ℜ{𝑠 (𝑡)}) and quadrature signal (𝑄 (𝑡) = ℑ{𝑠 (𝑡)}) with the arctangent demodulation method:

𝜙𝐷 (𝑡) = arctan
𝑄 (𝑡)
𝐼 (𝑡) = arctan

𝛼�̄� cos(2𝜅𝐷 (𝑡) + 𝜙�̄�) + 𝛼�̄� cos(𝜙�̄�)
𝛼�̄� sin(2𝜅𝐷 (𝑡) + 𝜙�̄�) + 𝛼�̄� sin(𝜙�̄�)

. (7)

Therefore, the resulting phase of the received signal 𝑠 (𝑡) can be expressed as a nonlinear function in terms of
𝐷 (𝑡), which can be approximated by its Taylor series as follows:

𝜙𝐷 (𝑡) =
∞∑
𝑖=1

𝑎𝑖𝐷
𝑖 (𝑡) = (𝑎1𝐷 (𝑡) + 𝑎2𝐷

2 (𝑡) + 𝑎3𝐷
3 (𝑡) + . . .), (8)

where 𝑎𝑖 is the coefficient of the i-th order term. The higher order terms in the Taylor series of the nonlinear
signal result in the intermodulation products between heartbeat and respiratory signals [39]. Take the second
order term for example:

𝐷2 (𝑡) =𝑑2
𝑟 sin(2𝜋 𝑓𝑟 𝑡)2 + 𝑑2

ℎ
sin(2𝜋 𝑓ℎ𝑡)2 + 2𝑑𝑟𝑑ℎ sin(2𝜋 𝑓𝑟 𝑡) sin(2𝜋 𝑓ℎ𝑡). (9)

According to the product-to-sum formulas, the trigonometric functions in (9) can be expressed as:

sin(2𝜋 𝑓𝑟 𝑡)2 =
1
2
− 1

2
cos(4𝜋 𝑓𝑟 𝑡),

sin(2𝜋 𝑓ℎ𝑡)2 =
1
2
− 1

2
cos(4𝜋 𝑓ℎ𝑡),

sin(2𝜋 𝑓ℎ𝑡) sin(2𝜋 𝑓𝑟 𝑡) =
1
2

cos(2𝜋 (𝑓ℎ − 𝑓𝑟 )𝑡) −
1
2

cos(2𝜋 (𝑓ℎ + 𝑓𝑟 )𝑡).

(10)

As indicated in the underlined items in (10), intermodulation components manifest as spectral components
at frequencies which are linear combinations of heart and respiratory rates (i.e., {𝑚𝑓ℎ ± 𝑛𝑓𝑟 |𝑚,𝑛 ∈ N0}). Such
components could exist in the normal heart rate range, making it even more difficult to determine the correct
frequency component of heartbeat. The coefficients 𝑎𝑖 in (8) are time-variant, resulting in unpredictable and
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Fig. 2. The overall framework of VitalHub. Two parallel data streams from the UWB and depth sensors are complementary
and combined for passive and context-aware vital signs monitoring. The pre-processing module segments vital signals out of
the UWB signal reflected from the cluttered environment according to the corresponding location of the target chest wall
from the depth data stream. The signal quality detection module suspends vital signs estimation upon corrupted signals
caused by disturbances from random body movements. The vital signs estimation module addresses the robust challenges,
and the vital signs data will be automatically annotated with the corresponding identification and activity context for future
customized analytics.

dynamic magnitudes of intermodulation components. Therefore, a method that relies on certain assumptions on
signal patterns may fail under different patterns.

3 VITALHUB OVERVIEW
Figure 2 illustrates the overall framework of VitalHub, which fuses inputs from a pair of co-located UWB and
depth sensors to tackle challenges described in §2.4 for robust and context-aware vital signs monitoring. So there
are two streams of data (i.e., UWB and depth data) processed in parallel, and combined organically.

To process the UWB data stream for vital signs extraction, we first develop a pre-processing pipeline (detailed in
§4.1) to deal with STO issues and extract the vital signal (i.e., the phase change in UWB signal due to physiological
motions). Then we introduce a signal quality detector (detailed in §4.2) to tell signals where vital signs are
“available” for estimation from corrupted ones due to inadvertent movements, even in the presence of harmonics
and intermodulation. Moreover, we propose a probabilistic weighted framework (PWF) in vital signs estimation
(detailed in §4.3) to specifically deal with the challenges in robust heart rate estimation in the presence of dynamic
signal patterns.
While the UWB sensor is sensitive to minute movements for vital signs estimation, it is relatively “blind”

to the context information (e.g., where the subject of interest is located, which subjects are present, and what
activities each subject is conducting). We leverage the complementary characteristics of the depth sensor to
achieve context-awareness.

We process the depth data to support unambiguous monitoring in cohabiting scenarios to correctly associate
respective context (e.g., identities and activities) to the UWB echo pulses from different subjects. To be specific,
we leverage a human pose recognition model [70] to detect the body parts thus the poses of the subjects present
in the FoV of the depth sensor. It outputs 3D positions of body joints as a representation of skeletal pose. We
use the predicted position of torso to help locate the segments of UWB signals corresponding to the chest wall
for vital signal extraction (explained in §4.1). We further leverage spatial and temporal features of consecutive
skeletal poses to generate the context information (detailed in §5). Context is needed for the completeness of the
passive and context-aware monitoring system.
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4 VITAL SIGNS MONITORING
In this section, we describe the vital signs monitoring module, which consists of three stages: 1) signal pre-
processing to extract vital signals from received noisy UWB echoes; 2) signal quality detector; and 3) vital sign
estimation to robustly measure heart/respiration rates in presence of unpredictable and dynamic signal patterns.

4.1 UWB Signal Pre-processing
We design a UWB signal pre-processing pipeline to extract vital signals (i.e., phase changes due to physiological
movements) from the reflected UWB pulses.
Signal Segmentation. This step locates the segments of received UWB signals corresponding to the target

(i.e., chest walls). The pulses reflected from different distances are received at different arrival times. Thus we
segment signals into range bins each corresponding to a different 5 𝑐𝑚 depth range. 3 Our UWB sensor has a
range of 10𝑚, leading to about 200 range bins. As illustrated in Figure 1, we leverage the human body distance
measurement from context annotation module (in §5) to decide which range bin corresponds to which identified
human body, thus further processing signals in those bins.
Vital Signal Sanitization. Next we remove the time-variant phase drift 𝜙𝑆𝑇𝑂 (𝑡) due to sampling time offset

(STO) (analyzed in §2.4). Because 𝜙𝑆𝑇𝑂 (𝑡) is caused by unknown jitters in the sampling system, it is impossible
to describe with a mathematical model. Fortunately, the same jitters exist in signals from all range bins, and the
direct path (i.e., the signal received from the transmitter, without reflection from any object). The direct path
signal can be expressed as 𝜙𝑟 (𝑡) = 𝜙𝑟0 +𝜙𝑆𝑇𝑂 (𝑡), where 𝜙𝑟0 is the inital phase of the direct path signal and is static.
Therefore, we can simply use 𝜙𝑟 (𝑡) as a reference to cancel out 𝜙𝑆𝑇𝑂 (𝑡) as follows to obtain sanitized vital signals
in the form of relative phases:

𝜙 ′(𝑡) = 𝜙 (𝑡) − 𝜙𝑟 (𝑡) = 𝜙𝐷 (𝑡) + 𝜙0 − 𝜙𝑟0, (11)
where 𝜙0 and 𝜙𝑟0 are both static, and 𝜙𝐷 (𝑡) is the phase modulated by the physiological movements from which
we estimate vital signs.

4.2 Signal Quality Detector
Next we describe how to detect whether the signal is corrupted beyond recognition, or vital signs are still
“available”. Large body motions (e.g., swaying) cause severe disruptions in the signal. Such “unavailable” signals
must be detected and excluded to avoid producing erroneous results. Motion detection [5, 45, 90] based on
periodicity in the time domain and/or condensed energy in the frequency domain have been proposed. However,
strong respiration harmonics and intermodulation can dominate and mingle with such features from the much
weaker heartbeat, and thresholding-based detectors cannot reliably tell them apart.

We propose a 2-D “heatmap” based detector that incorporates the spectral amplitudes at different frequencies.
The heatmap 𝐻𝑀 (𝑓𝑟 , 𝑓ℎ) borrows the concept of “joint probability distribution” and the value of each pixel is
defined at the respiration/heart rate candidate pair {𝑓𝑟 , 𝑓ℎ}:

𝐻𝑀 (𝑓𝑟 , 𝑓ℎ) =
∑

𝑧∈Z(𝑓𝑟 , 𝑓ℎ)
𝐴(𝑧), (12)

where 𝐴(𝑧) denotes the spectral amplitude of the signal at the frequency of 𝑧, and Z(𝑓𝑟 , 𝑓ℎ) is a set of potential
harmonic and intermodulation frequencies, which can be expressed as {𝑚𝑓ℎ ± 𝑛𝑓𝑟 |𝑚,𝑛 ∈ N0}. When the signal
is not corrupted much, harmonic and intermodulation frequencies of (𝑓𝑟 , 𝑓ℎ) close to the true respiratory and
heart rates would have significant energy. Thus 𝐻𝑀 (𝑓𝑟 , 𝑓ℎ) would gain relative large values of 𝐴(𝑧). This will
visually appear as vertical and horizontal lines of large 𝐻𝑀 values in the heatmap. We show three representative
samples in Figure 3, 4, and 5 for “available”, partially “available”, and “unavailable” signals. In Figure 3, the ground
3The 5𝑐𝑚 size is decided based on the amplitude of motion, the penetration effects of signals and errors in distance measurement.
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(b) 2-D Heatmap.

Fig. 3. An “available” sample: the heatmap shows an obvious red horizontal line near 20 bpm on RR, and a red vertical line
near 60 bpm on HR. It matches the ground truth.

0 100 200 300
Frequency (bpm)

0.00

0.02

0.04

Am
pl

itu
de

(a) FFT Spectrum.

’contour_gd_rr20hr75_18.txt’

 60  80  100  120  140

HR (bpm)

 0

 5

 10

 15

 20

 25

 30

R
R

 (
b
p
m

)

(b) 2-D Heatmap.

Fig. 4. A partially “available” sample: the heatmap shows a red horizontal line near the 20 bpm ground truth RR but no
strong vertical line around 75 bpm ground truth HR.

0 100 200 300
Frequency (bpm)

0.00

0.01

0.02

Am
pl

itu
de

(a) FFT Spectrum.

’contour_gd_rr17hr85_555.txt’

 60  80  100  120  140

HR (bpm)

 0

 5

 10

 15

 20

 25

 30

R
R

 (
b
p
m

)

(b) 2-D Heatmap.

Fig. 5. An “unavailable” sample: the heatmap is noisy and shows no obvious lines around ground truth RR and HR of 17 and
85 bpm.

truth RR and HR are 21 and 60 bpm. The heatmap shows a horizontal line near 20 bpm on RR and a vertical line
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near 60 bpm on HR with red color (i.e., larger values). Such visual patterns are used to detect whether a signal is
“available”. 4

To learn the spatial-invariant features from the 2-D heatmap, we adopt the ResNet-18 model as the detector.
The ResNet [28] model was initially proposed for image recognition, and takes 3-channel image data (i.e., RGB
images) as input. We modify the first convolutional layer to process the heatmap, which is in the format of
1-channel grey-valued image. We also adjust the final layer (i.e., fc layer with softmax) to output a vector of
two numbers (𝛼, 𝛽), both within [0, 1], indicating the normalized probabilities of availability and unavailability.
The larger one determines the binary classification result of signal availability. Therefore, the probability of
availability 𝛼 can be used to indicate the signal quality.
The method of training and validation of the signal quality detector is described in §7.1. Signals detected as

“available” are passed for vital signs estimation.
However, signals from the range bin that was directly located by the depth camera may not be suitable for vital

signs estimation due to the offset error of the depth measure and the imperfect placement between UWB and
depth sensors. Based on our preliminary experiments as described in §7.1 and especially in Figure 10, we note
that adjacent range bins need to be considered to measure vital signs with better signal quality. To be specific, we
flag a period as “available” when at least one range bin among 7 adjacent range bins (i.e., within ±15 𝑐𝑚 range) is
classified as “available”. With 𝛼 as the signal quality indicator, we select a range bin with the largest 𝛼 among
adjacent range bins for vital signs estimation during “available” period.

4.3 Vital Signs Estimation
As the phase of the UWB signal reflected from the chest wall changes corresponding to the physiological motions,
we are able to extract the respiration and heartbeat. Given the center frequency of UWB signal 8.75 𝐺𝐻𝑧 in
our design, a 0.2-0.5𝑚𝑚 displacement caused by heartbeat [68] translates to 2.1°–5.3° change in phase, while
4-12𝑚𝑚 displacement caused by respiration [19] translates to 42.0°–126.0° change in phase [38]. The heartbeat
signal is orders of magnitude weaker than and totally buried by respiration signal in time domain. The difference
in the typical frequency ranges between respiration (∼6–18 𝑏𝑝𝑚) and heartbeat (∼50–150 𝑏𝑝𝑚) allows them
to be extracted separately. Figure 6 shows that with fine-tuned bandpass filters applied upon the phase signal,
the respiration and heartbeat can be easily recognized from the FFT spectrum. While the example case looks
straightforward, to robustly measure vital signs is still an open challenge. We will introduce estimation methods
for respiration rate and heart rate respectively.

4.3.1 Respiration Rate Estimation. As the respiration frequency is usually from 0.1 to 0.3 𝐻𝑧, we use a 2-order
butterworth bandpass filter with a pass band of 0.1–0.8 𝐻𝑧 to remove the DC component and high frequency
noise. Since the whole chest moves upon respiration, it has larger radar cross section (RCS) and displacement.
Thus the phase signals are stable enough that we can easily estimate the respiration rate by counting the peaks.
We use a time window of 30 𝑠 (which usually contains 5–8 breathing cycles), and calculate the time intervals
between adjacent peaks. Then we average the interval to obtain the respiration rate 𝑓𝑟 .

4.3.2 Heart Rate Estimation. Extracting the heart rate is more challenging due to its much smaller RCS and
displacements, thus much weaker magnitudes in both temporal and spectral domains. As explained earlier (in
§2.4), harmonics and intermodulation from respiration can easily dominate the heartbeat signal and their patterns
are dynamic.

To robustly measure the heart rate, we propose a probabilistic weighted framework (PWF) that 1) incorporates
four heart rate estimators each suitable to one of four identified temporal and spectral patterns; 2) adaptively

4Horizontal lines near 10 bpm on RR exist because the true 20 bpm respiration peak could be interpreted as second order harmonic. Still, such
incorrect lines have weaker supporting evidences, thus smaller values and fainter colors.
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Fig. 6. An example segment of vital signal for spectral analysis.

combines heart rate candidates generated by the estimators with the quantified cumulative evidence of each
pattern; and 3) leverages limits in heart rate temporal changes to smooth continuous measures.
Heartbeat Signal Extraction. In this step, we filter noises and respiration signals, and enhance the heartbeat

signal for estimation. While the heartbeat signal presents periodic changes, the noise behaves randomly and can
be modeled as Gaussian. We use auto-correlation [69] to zero-out the noise and enhance the periodic pattern
of heartbeat. We observe that because of its higher frequency, heartbeat causes larger changes among adjacent
sampling points than respiration. We use the second order difference to make the heartbeat more prominent.

Then we use the Discrete Wavelet Transform (DWT) as the filter bank [79] to extract heartbeat signals because
DWT can retain the inherently irregular shape of the vital signals while the conventional filters (e.g, Butterworth
filter [34]) would smooth the shape and result in loss of information for temporal analysis. We progressively split
the signal into approximation coefficients (from the low-pass filter) and detail coefficients (from the high-pass filter)
with the previously decomposed coefficients and reconstruct the signal with the coefficients in the interested
frequency range (0.625–5 Hz, which covers both fundamental and second order harmonics). With 𝐿 iterations
(corresponding to 𝐿 scales), an approximation coefficient 𝛾 (𝐿) and a sequence of detail coefficients 𝜐 (1) , 𝜐 (2) , ..., 𝜐 (𝐿)
are calculated in (13). {

𝛾
(𝐿)
𝑘

=
∑

𝑛∈Z 𝑠 [𝑛]𝜑
(𝐿)
2𝐿𝑛−𝑘 , 𝐿 ∈ Z,

𝜐
(𝑙)
𝑘

=
∑

𝑛∈Z 𝑠 [𝑛]𝜓 𝑙

2𝑙𝑛−𝑘 , 𝑙 ∈ {1, . . . , 𝐿},
(13)

where 𝜑 denotes the scaling function and𝜓 the wavelet. The heartbeat signal can be reconstructed using inverse
DWT:

𝑠 [𝑛] =
∑
𝑘∈Z

𝛾
(𝐿)
𝑘
𝜑
(𝐿)
2𝐿𝑛−𝑘 +

𝐿∑
𝑙=1

∑
𝑘∈Z

𝜐
(𝑙)
𝑘
𝜓 𝑙

2𝑙𝑛−𝑘 . (14)

In VitalHub, we select Daubechies(db4) wavelet as the mother wavelet [22], and split signal into 4 levels.
The detail coefficients 𝜐 (3) + 𝜐 (4) (ranging from 0.625 Hz to 2.5 Hz) are used to reconstruct the heartbeat signal.
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The coefficients 𝜐 (4) + 𝛾 (4) (ranging from 1.25 Hz to 5 Hz) are used to reconstruct the second order harmonic
component of the heartbeat signal.
Ensemble of Heart Rate Estimators. Based on manual examination of over 6000 data samples, we identify

four typical temporal/spectral patterns (present in 98.55% of the data) and identify a suitable estimator of the
fundamental heart rate based on each domain pattern, including 1) zero-crossing (ZC), 2) peak interval (PK), 3)
local maximum detection in the spectrum of the heart rate range (LMD), and 4) spectral peak detection in the
range of the heartbeat signals’ second order harmonic (SOH).
The first two handles two temporal patterns. ZC estimates the heart rate by counting the number of zero-

crossings in a time window, dealing with a periodic pattern of temporal changes between negative and positive
values. Higher order harmonics of respiration may cause more negative-to-positive transitions, thus falsely higher
heart rate. PK measures the average interval between adjacent local maxima in a time window, thus the heart
rate. It is relatively immune to signals of larger energy, but sensitive to high frequency jitters.

The latter two handles two spectral patterns. When the fundamental spectral peak of heartbeat has significant
energy [5], LMD detects such high peaks in the heart rate range (50–150 bpm). When higher order harmonics
or intermodulation of respiration has strong energy, they may overwhelm the heart peak in this range. SOH
selects spectral peaks in the range of the second order harmonic of the heartbeat (100-300 bpm), then halve
them as estimates. We observe that respiration harmonics and intermodulation have much weaker energy in this
range [64]. Due to partial overlap with the heartbeat fundamental frequency range, sometimes respiration may
still produce significant peaks thus erroneous heart rate estimation.

Using a sliding window, we produce a heart rate candidate set 𝐶𝑡 at time 𝑡 , including 𝐶𝐹
𝑡 , 2 estimates from ZC,

PK and 3 largest peaks from LMD, and 𝐶𝑆
𝑡 , 3 largest peaks from SOH. Unless explicitly stated, a candidate 𝑐𝑚𝑡 is

chosen from the combined set 𝐶𝑡 = 𝐶
𝐹
𝑡 ∪𝐶𝑆

𝑡 .
Probabilistic Heart Rate Tracking. We formulate the continuous heart rate estimation as tracking the

“trend” of changes, with the state update equation as follows:

𝑥𝑡 = 𝑥𝑡−1 + ¤𝑥𝑡−1△𝑡 + 𝜀𝑝 , (15)

where 𝑥𝑡−1 is the state (i.e., heart rate) we have estimated at time 𝑡 − 1, 𝑥𝑡 is the heart rate predicted at time 𝑡 , △𝑡
is the estimation interval (set to 1 second in our configuration), and 𝜀𝑝 ∼ N(0, 𝜎2

𝑝 ) is the process noise. Because
errors accumulate over time, the predictions must be calibrated using evidences from observations.
The four temporal/spectral patterns are present most of the time (> 98%), thus the heart rate candidate set

𝐶𝑡 very likely includes the correct one. The key is to determine which one. We quantify the evidence of each
candidate 𝑐𝑚𝑡 to determine its weight and calibrate predictions.

• Respiration Harmonics. Assume the fundamental respiration frequency is 𝑓 𝑟𝑡 , then its harmonics are rep-
resented as 𝐻𝑟

𝑡 = {𝑓 𝑟𝑡 , 2𝑓 𝑟𝑡 , ..., 𝑁 𝑓 𝑟𝑡 }, where 𝑁 is empirically limited at 5 because those beyond the 5th are
negligible [64]. The closer a candidate is to any respiration harmonic, the less likely it is true, which can be
formulated in the following weight:

𝑃𝑟 (𝑐𝑚𝑡 ) = 1 − 𝑔𝑟 (min
𝑛

(𝑎𝑏𝑠 (𝑐𝑚𝑡 − 𝑛 · 𝑓 𝑟𝑡 )), (16)

where 𝑛 ∈ {1, 2, ..., 𝑁 }, 𝑔𝑟 (·) ∼ 𝑁 (0, 𝜎2
𝑟 ) is a Gaussian distribution and 𝜎𝑟 is empirically set to 2.

• Heartbeat Harmonics. Heartbeat signal also has harmonics, while random noise and may not. Thus the
existence of high order harmonics can be used as an evidence of the heart beat fundamental frequency 𝑓ℎ .
As the heartbeat signal is relatively weak, we only consider its second order harmonic. This weight can be
calculated as follows:

𝑃ℎ (𝑐𝑚𝑡 ) = 𝑔ℎ (min
𝑛

(𝑎𝑏𝑠 (𝑐𝑚𝑡 − 𝑐𝑛𝑡 )), (17)

𝑃ℎ (𝑐𝑛𝑡 ) = 𝑔ℎ (min
𝑚

(𝑎𝑏𝑠 (𝑐𝑚𝑡 − 𝑐𝑛𝑡 )), (18)
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where 𝑐𝑚𝑡 ∈ 𝐶𝐹
𝑡 , 𝑐𝑛𝑡 ∈ 𝐶𝑆

𝑡 , 𝑔ℎ (·) ∼ 𝑁 (0, 𝜎2
ℎ
) is another Gaussian, and 𝜎ℎ is empirically set to 2.

• Peak Prominence. We observe that real peaks are usually “sharp” (i.e., higher prominence), even though
the amplitude may be small. While we have estimations from both the time domain (i.e., ZC, PK) and the
frequency domain (i.e., LMD, SOH), we use the prominence of the spectral peaks of the heartbeat signal
reconstructed according to (14) at the corresponding (estimated) frequencies to regulate their weights,
because the spectral pattern (i.e., the distribution of the peak prominence) is resilient to noise and can serve
as a reliable indicator for selecting the vital signs candidates estimated from either temporal or spectral
methods. We use an exponential distribution to represent this weight:

𝑃𝑝 (𝑐𝑚𝑡 ) = 1 − 𝑒−𝛼 ·𝑝 (𝑐𝑚𝑡 ) , (19)
where 𝑝 (𝑐𝑚𝑡 ) is the peak prominence which quantifies how much the candidate 𝑐𝑚𝑡 peak stands out due to
its height and location relative to other nearby peaks, and the scale factor 𝛼 is empirically set to 1.

• Temporal locality. The heart rate is not likely to change abruptly in a short time (e.g., one second), and
the next heart rate is usually close to the current one. Therefore, we quantify how close a candidate is to
previous estimation as:

𝑃𝑙 (𝑐𝑚𝑡 ) = 𝑔(𝑎𝑏𝑠 (𝑐𝑚𝑡 − 𝑥𝑡−1)), (20)
where 𝑔𝑙 (·) ∼ 𝑁 (0, 𝜎2

𝑙
) is another Gaussian. 𝜎𝑙 is the variance of heart rate trend.

We define the likelihood of a candidate to be the heart rate as the cumulative evidence in a product form:
L𝑚

𝑡 = 𝑃𝑟 (𝑐𝑚𝑡 ) · 𝑃ℎ (𝑐𝑚𝑡 ) · 𝑃𝑝 (𝑐𝑚𝑡 ) · 𝑃𝑙 (𝑐𝑚𝑡 ) (21)
The normalized weight for a candidate is expressed as:

𝜔𝑚
𝑡 =

L𝑚
𝑡∑𝑀𝑡

𝑗=1 L
𝑗
𝑡

,𝑚 = 1, 2, ..., 𝑀𝑡 , (22)

Then, we take the weighted average of all the candidates as a new measurement:

𝑐𝑡 =
∑

𝑐𝑛𝑡 ∈𝐶𝑡

𝜔𝑛
𝑡 · 𝑐𝑛𝑡 . (23)

We observe that the error of the weightedmeasurement can be considered zero-mean Gaussian (using Kolmogorov-
Smirnov statistic statistic found at 0.036, less than 0.05, the threshold when two distributions are considered the
same [25]). Therefore, we apply Kalman Filter to iteratively repeat the following steps to update the heart rate at
discrete time steps upon each new candidate set:

𝐾𝑡 =
𝜎2
𝑡−1

𝜎2
𝑀
+𝜎2

𝑡−1
,

𝜎2
𝑡 = (1 − 𝐾𝑡 ) 𝜎2

𝑡−1,

𝑥𝑡 = 𝑥𝑡 + 𝐾𝑡 (𝑐𝑡 − 𝑥𝑡 )
(24)

where 𝐾𝑡 is the Kalman Gain, 𝜎2
𝑀
and 𝜎2

𝑡 are the variances of measurement noise (from 𝑐𝑡 ) and process noise
initialized with 𝜎2

𝑝 .

5 CONTEXT ANNOTATION
To enable context-aware cohabited monitoring, subject identities and activities must be labeled with the detected
vital signs. The meaning of context annotation is two-fold for health analytics over continuous vital signs
measurements: 1) Only when correctly associated with the corresponding identities, the recorded vital signs
data can be used for meaningful customized analytics. 2) With the annotated activity context, it helps detect
anomalous deviations from a user’s normal distribution (e.g., a user’s vital signs will rise during exercise, but
will become stabilized during sleep), and reduce false alarms. We present an effective, privacy-friendly user
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identification approach based on human walking skeleton data, and a probabilistic model for continuous user
identity tracking under occlusions. Leveraging the same set of features, we recognize the physical activities as
context information for each individual.

5.1 User Identification
To capture both spatial and temporal features while a user is walking, we leverage the skeleton data from a short
period (a few steps’ walking when the user enters the monitoring zone) as input for recognition, rather than
individual frames.
Features. We leverage the dynamic body joints locations tracked from depth sensor as features for user

identification. We calculate the vectors between adjacent body joints to obtain the features V = {®𝑣0, ®𝑣1, ..., ®𝑣𝑁−1},
where ®𝑣𝑖 = [𝑥𝑖 − 𝑥 𝑗 , 𝑦𝑖 − 𝑦 𝑗 , 𝑧𝑖 − 𝑧 𝑗 ] is the vector from joint 𝑖 to joint 𝑗 , and 𝑁 is the number of pairs of joints
we use. Accordingly, we can also calculate the lengths for all the vectors as L = {𝑙0, 𝑙1, ..., 𝑙𝑁−1}, where 𝑙𝑖 = |®𝑣𝑖 |,
and the angles at major joints whose angle changes indicate specific activities (e.g., certain changes in neck
angle indicate nodding). A = {𝑎0, 𝑎1, ..., 𝑎𝑀 }, where 𝑎𝑖 = 𝑐𝑜𝑠−1 ( ®𝑣𝑖 ·®𝑣𝑗

| ®𝑣𝑖 | · | ®𝑣𝑗 | ). We choose the combination of {V,L} as
features because it shows best performance in the evaluation. We choose a time window of 2 seconds (i.e., 120
frames with 60 𝑓 𝑝𝑠) to balance the recognition latency and accuracy, and each training sample has a dimension
of (120 × (3 + 1) × 𝑁 ). To reduce noise in the feature data, we use a Savitzky-Golay filter [20] to smooth data and
filter out jitters among adjacent frames.
Identification Model. We design a deep recurrent model with stacked-LSTM layers [30], each with 128

hidden units, and a fully connected layer with Softmax activation to output prediction results. We choose to use
stacked-LSTM layers because it has been found to have better capacity to learn useful features from abstract
sequential data [10]. We empirically tune and finalize our model with two stacked LSTM layers to balance the
tradeoff between the model capacity and computing complexity based on our preliminary experiments. With
batch normalization [65], our model is free of the vanishing gradient issue. We choose to use stacked-LSTM
layers because it has been found to have better capacity to learn useful features from abstract sequential data [10].
We empirically tune and finalize our model with two stacked LSTM layers to balance the tradeoff between the
model capacity and computing complexity based on our preliminary experiments. While the LSTM [30] itself is
robust to the vanishing gradient issue by its nature, we apply batch normalization [65] in the training phase to
further prevent and get rid of the vanishing gradient issue. We train the model using cross-entropy loss [18] and
Adam optimizer [37]. With the input of a series of features set {V,L}, both static features (e.g., limb lengths) and
dynamic features (e.g., the walking pattern) can be effectively used for reliable user identification.

5.2 Probabilistic Identity Tracking
The identities of each skeleton data must be tracked continuously. Naively running LSTM inference continuously
is inefficient and error prone, and the situation becomes even worse when non-line-of-sight (NLOS) happens due
to occlusions. We propose a lightweight probabilistic identity tracking algorithm which keeps tracking identities
of each user from earlier LSTM inferences to reduce complexity and improve accuracy.
The basic intuition is that human movements are continuous, thus we can predict the trajectories based on

previous locations and directions upon transient occlusions. Given 60 𝑓 𝑝𝑠 of depth sensor, the moving distances
between two adjacent frames are small enough that the skeletons can be easily tracked. We only need to recover
the identities when occlusions happen (e.g., one user blocks the line-of-sight of another).

As shown in Figure 8, when there’s only one user A in the field-of-view (FoV), the identity can be tracked easily
by tracking the skeleton. When both A and B are present, B may lose his identity if occluded by A when B is
walking. The problem becomes more complex when more users are present. We formulate this into a probabilistic
estimation problem leveraging the user movement trajectories: we predict the “next appear” locations of the
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Fig. 8. An example of user identity tracking.

users when they are occluded, and estimate the identity probabilities based on how close the predicted “next
appear” locations are to where the lost skeletons reappear in the FoV. Specifically, it works in three steps:
1. User Movement Prediction.We choose the user’s head location coordinate 𝑥𝑘𝑡 to represent the 𝑘-th user’s

location at time 𝑡 . Given the user’s location 𝑥𝑘𝑡−1 at time 𝑡 − 1 and the control signal 𝑢𝑘𝑡 = (𝑣𝑘𝑡 , 𝜔𝑘
𝑡 ) where 𝑣𝑘𝑡 is

the moving speed and 𝜔𝑘
𝑡 is the heading direction (estimated from the existing trajectory), the current predicted

location 𝑥𝑘𝑡 of 𝑘-th user is estimated as a displacement plus a Gaussian noise:

𝑥𝑘𝑡 = 𝑥𝑘𝑡−1 + 𝑢𝑘𝑡 △𝑡 + 𝜀. (25)

2. Identity Probability Update.When users are occluded, we keep predicting the “next appear” locations
using Equation (25). Note that, the longer the user disappears, the more predictions we make, the lower the
accuracy. As shown in Figure 8, user 𝐵 and 𝐶 walk in opposite directions, and are both occluded by user 𝐴. 5 �̂�
and 𝐶 are the predicted locations for 𝐵 and 𝐶 , respectively. Suppose one skeleton 𝑆 appears again at location 𝑥𝑆𝑡
after the occlusion, we need to recover the identity for 𝑆 . In such case, we denote the probability for 𝑆 to be user
𝐵 or 𝐶 as 𝑃𝑆�̂� and 𝑃𝑆𝐶 , which can be estimated as follows:

𝑃𝑆�̂� = 𝑔(𝑥𝐵𝑡 ) · 𝑒−𝛼 ·𝜏 , (26)

5Cases of more concurrent user occlusion are solved similarly and we do not repeat.
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where 𝑔(.) ∼ 𝑁 (𝑥𝑆𝑡 , 𝜎2) is a Gaussian distribution, 𝑒−𝛼𝜏 is a time decaying factor and 𝜏 is the eclipsed time of the
occlusion. Similarly, we can estimate 𝑃𝑆𝐶 .

3. User Identity Recovery. After we get 𝑃𝑆�̂� and 𝑃𝑆𝐶 , we first sort the probabilities and find the maximum
one 𝑃𝑚𝑎𝑥 and compare it to a threshold 𝜖 , which is the minimum probability we need to recover 𝑆 . If 𝑃𝑚𝑎𝑥 < 𝜖 , it
means we do not have enough confidence to recover 𝑆 to either of the occluded users. In such cases, we need to
run LSTM model to obtain the identity from skeleton features. In general, a larger 𝜖 makes identity recovery
more robust, but is more compute expensive. If 𝑃𝑚𝑎𝑥 ≥ 𝜖 , we further compare the difference between 𝑃𝑚𝑎𝑥 and
the second highest probability 𝑃𝑠𝑒𝑐𝑜𝑛𝑑 . The user’s identity is recovered only when 𝑃𝑚𝑎𝑥 − 𝑃𝑠𝑒𝑐𝑜𝑛𝑑 ≥ 𝜂, where
𝜂 is another threshold used to ensure sufficient difference in probabilities to avoid ambiguity among multiple
identities. A larger 𝜂 makes identity recovery more robust but incurs more computation to reach the threshold.
We set 𝜖 = 0.8 and 𝜂 = 0.5 empirically to balance robustness and computation. In practice, once the users are
recognized by initial LSTM inferences, the probabilistic tracking algorithm can track the identities efficiently, and
invoking compute-heavy LSTM inferences only occasionally.

5.3 Activity Context Recognition
Knowing the concurrent activity (e.g., exercising or sleeping) is critical to detect health anomalies given the same
vital sign changes (e.g., increased heart rates). We apply transfer learning with the LSTM model trained in §5.1
to recognize the activity. Since the pre-trained LSTM model has learned sophisticated features from sequential
skeleton data, we feed them to a new fully connected layer (classifier) to recognize different activity categories. As
shown in Figure 7, the sequential skeleton data feed the shared forward path of LSTM model, and the extracted
feature vector generates predictions of both user identity and activity.

6 TESTBED
In this section, we describe the implementation of our testbed and experimental setup for evaluation.

6.1 Implementation
VitalHub adopts a COTS IR-UWB sensor XeThru X4M03 [48] as its frontend for wireless sensing. The transmitted
pulse is configured to be within tbe frequency band 7.25-10.2 GHz centered at 8.75 GHz, and the sampling
frequency is 23.328 GHz. The frame rate of the UWB sensor is configured to be 10 frame-per-second (fps), and
each frame includes samples of the echo pulses reflected from the objects within the range of 10 m. Kinect XBox
serves as the depth sensor in VitalHub. Its SDK incorporates the human body pose recognition model [70] to
detect human bodies present in the field of view at 60 fps. Both modalities stream data to the same backend PC
via serial port. For computations of the whole pipeline, we use a laptop ROG Strix GL704 as the backend PC,
which has an Intel i7-8750 2.2GHz CPU, 16GB RAM and NVIDIA RTX 2060 GPU. We implement deep learning
models with PyTorch and run them using the GPU on the laptop.

6.2 Experimental Setup
Figure 9(b) shows the hardware setup of a Kinect XBox One sensor with RGB camera covered and a co-located
UWB sensor. We conduct experiments in a room with a size of 4.5 × 9𝑚2 (shown in Figure 9(a)).

We invited 8 students as participants for data collection ( heights 156–192 cm, weights 49–108 kg ), following a
pre-established protocol that protected the anonymity of the students. We use two FDA approved medical devices,
Nonin LifeSense II [55] and Masimo Pulse Oximeter [2] that can measure instantaneous heart and respiratory
rates as the ground truth. We use the time stamps to obtain the alignment between such instantaneous vital
signs estimation and the corresponding ground truth over time. Although results for each module are presented
separately, VitalHub inherently integrates and produces data in a holistic pipeline concurrently.
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Fig. 9. The experiment environment and hardware setup.

7 MICROBENCHMARKS
Before we delve into the end-to-end evaluation of VitalHub for vital signs monitoring, we start with a few
microbenchmarks to demonstrate the performance of signal quality detector and context annotation. Then, to
evaluate the end-to-end performance in §8, the data are retrieved according to the recognized identities based
on context annotation; the pre-trained signal quality detector is used to filter in the time domain (i.e., sliding
windows) and in the space domain (i.e., range bins) for robust vital signs estimation against inadvertent motions.

7.1 Signal Quality Detector
We first evaluate the signal quality detector for the classification of signal availability. Then we demonstrate how
the detector can boost the performance of vital signs monitoring by reducing erroneous results from corrupted
signals.
Classification.We compare the heatmap based detector (HM) against 4 existing detectors based on moving

average (MABD) [90], moving variance (MVBD) [90], average variance energy (AVE) [45], and flat spectrum
(FSD) [5].

We build a balanced data set consisting of 20, 000 data samples, with equal number of “available” and “unavail-
able” samples randomly selected from 40, 782 manually labeled ones. Each data sample is the vital signals in a
30-second time window from one of 7 adjacent range bins centered at the depth sensor reported human body
distance. We label a data sample as “available” if well-trained human observation identifies sufficient temporal
periodicity and/or spectral peaks for both respiration and heartbeat, even under strong noises; otherwise, it is
“unavailable”. Therefore, for an identified “available” data sample, we know for sure the vital signs information
exists. Thus failure to extract accurate readings indicates limitations of estimation algorithms.
We use precision (𝑃 ), recall (𝑅) and F-score (= 2 𝑃 ·𝑅

𝑃+𝑅 ) as metrics. Precision is the fraction of true positives
among all identified positives, defined as 𝑃 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 ; recall is the fraction of identified positives among all true
positives, defined as 𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 . A high precision means unavailable data is unlikely to be falsely identified as
“available”; and a high recall means the available data can be correctly identified thus utilized for monitoring.
F-score quantifies the balance between precision and recall.

We apply 5-fold cross validation, and in each iteration we take 80% of the data set for training our detector or
searching thresholds of others, and the rest 20% for testing. For fair comparison, each threshold is selected when
respective F-score is maximized. The HM detector uses Adam optimizer [18] that minimizes cross entropy [37] as
loss function, which measures the discrepancy between predicted and actual labels.
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Table 1. Precision, recall and F-score of signal quality detectors.

Precision (%) Recall (%) F-score (%)
𝑀𝐴𝐵𝐷 93.11 47.80 63.17
𝑀𝑉𝐵𝐷 80.08 49.17 60.93
𝐴𝑉𝐸 97.82 50.90 66.59
𝐹𝑆𝐷 89.37 83.39 86.28
𝐻𝑀 96.41 96.29 96.35

1m 2m 3m 4m 5m0m

0m

1m

1m

2m

2m

(a) Room layout and measurement locations. (b) CDF of error measurements.

Fig. 10. Kinect key body joints measurement accuracy.

Table 1 shows that the time domain methods MABD, MVBD and AVE have relatively low recall. This is because
the temporal signal is dominated by respiration signal in the shape, and sensitive to noises (e.g., environment,
body movements). Achieving high precision requires “strict” selection, thus low recall and loss of available data.
The frequency domain method FSD has better performance, but still about 10% worse than our HM detector.
It assumes that the spectral peak sharpness (i.e., how condensed is the energy) indicates the availability of
both respiration and heartbeat signals, however it is not always the case. Besides, respiration harmonics and
intermodulation can also reduce the sharpness even if both respiration and heartbeat signals are available.

The HM detector requires more computation. The generation of and inference on the heatmap take 72.49± 6.99
𝑚𝑠 and 7.26 ± 6.84𝑚𝑠 respectively, short enough for real-time measurements updated every 1 second.

Range Bin Selection. We observe that the distance reported by the depth sensor may not give the range bin
with the best signal quality. To test the depth sensor’s accuracy, we select a set of locations within the 4.5𝑚 of
the depth camera (Figure 10(a)). We ask the testing volunteer stand at each location, and we measure the ground
truth distance to the head, chest, left arm and left leg using a laser measurement tool.

The errors of the depth sensor for four body parts are shown to be 10 𝑐𝑚 at 80-percentile (Figure 10(b)), which
is about twice the size of a range bin (5.14 𝑐𝑚). Thus we search 7 adjacent range bins (±15 𝑐𝑚) centered at the
depth camera reported one, and select the one with the highest signal quality indicator 𝛼 (provided by the trained
HM detector).
Ablation Study. To study the effectiveness of the signal quality detector on the end-to-end system, we compare

the performance in vital signs estimation with the progressive ablation of range bin selection (Sel.) and availability
classification (Clf.) against an impractical “Oracle” that always knows whether the signal is available, which is
the best range bin, and best estimator (among the four used in PWF) at each moment.
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Fig. 11. Boosted performance with signal quality detector.

Figure 11 shows obvious performance degradation each time bin selection or classification is removed. With
both of them, VitalHub achieves end-to-end respiratory and heart rate estimation at 1.5/3.2 bpm errors at 80-
percentile, very close to 1.2/1.5 bpm errors by the idealistic oracle. This shows the necessity of the detector, which
enables VitalHub to approach the “ceiling” of the oracle.

7.2 Context Annotation
We first compare the accuracy of different features and machine learning models (§7.2.1), then the effectiveness
of identity tracking under occlusions (§7.2.2), finally the accuracy of activity recognition (§7.2.3).

7.2.1 User Identification. Considering VitalHub targets in-home deployment, we invite 8 volunteers (use as the
maximum number of family members) to collect walking skeleton data for evaluation of user identification. Each
contributes 5𝑚𝑖𝑛𝑠 data, resulting in a total of 18,000 frames at 60 fps. To generate the training data, we use a time
window of 2 seconds with a step of 0.1 𝑠 . Thus the total training data size is around 5×60𝑠

0.1𝑠 × 8 = 24000 samples.
Another 2 minutes’ data from each volunteer are collected separately as testing data.

Precision, Recall, F-score.We adopt the same metrics as in §7.1 to evaluate the identification model. Table 2
shows the results of different feature combinations (described in §5) under our LSTM model. The combination
{V,L} outperforms all others, thus selected as final features.

Table 2. Precision, recall and F-score of different features.

Precision (%) Recall (%) F-score (%)
{V} 85.60 85.12 85.01

{V,A} 63.24 57.80 56.19
{V,L} 86.98 85.49 85.37

{V,L,A} 80.47 77.97 78.14

Different Classifier Models.We compare the performance of different classifiers using the same test data set
with the feature of {V,L}. Linear Discriminant Analysis (LDA), K-Nearest Neighbor (KNN), Decision Tree (DT),
Naive Bayesian (NB) and Support Vector Machine (SVM) are used as baseline classifiers to compare with our
LSTM based model. Notably, all the models have been carefully examined and configured with optimal settings
regarding the respective parameters of interest. Specifically, LDA is configured with a threshold of 0.0002 for
the solver of Singular Value Decomposition; KNN is configured with the distance metric of Minkowski and the
number of neighbors of 5; DT is configured with the Gini impurity as the criterion of split; NB is configured with
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Fig. 14. Traces of identities being tracked in the presence of occlussions.

Gaussian distribution; SVM is configured with the regularization parameter C of 1.0 and tolerance for stopping
of 0.001; LSTM is configured with the number of stacked layers of 2. Figure 12 shows the accuracy of each model.
Our LSTM based model outperforms baseline significantly with a median accuracy around 90%. The only outlier
in LSTM result is caused by excessive movements during data collection, causing large variations in raw data.
Different Number of Trials. To avoid “pollution” from false identifications, the model makes decisions only

when a successive 𝑁 trials produce the same result, at the cost of lower recall. Figure 13 shows the precision,
recall and F-score with different number of trials. We choose 3 trials as the precision is close to 100% and the
recall is acceptable to still generate enough data in longitudinal monitoring. In such setting, 3 LSTM prediction
cycles take about 6 𝑠 to recognize a user.

7.2.2 Identity Tracking and Maintenance. To evaluate the robustness of our probabilistic identity tracking, we
asked volunteers to simulate the occulsion cases discussed in §5.2. Results show our algorithm can resume the
identities instantly when users reappear after temporary occlusions (∼ 2 seconds). Figure 14 shows one example
when two participants walk across the FOV of the depth camera, their respective traces are being tracked correctly
and continuously even they occlude each other. The LSTM re-identification after long occlusions require multiple
cycles thus longer time (e.g., 3 cycles take ∼ 6 seconds), and re-identification succeed for all cases we test. These
show our identity tracking algorithm is effective and robust.

7.2.3 Activity Context Recognition. We collect 32,828 and 19,478 samples, with the same format as in the user
identification, for training and testing data of the following activities: eating (ET), lying (LY), running (RN),
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Fig. 15. Activity recognition confusion matrix.
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Fig. 16. Performance of individual estimators.

sitting (ST), standing (SD), and walking (WK). Every participant is asked to perform each category of activities
repeatedly during data collection. The results are shown in Figure 15. Overall, it achieves 96.27% precision, 96.09%
recall, and 96.10% F1-score. A small portion of running samples are falsely recognized as standing or walking for
transitions in between. Such performance is sufficient for longitudinal in-home monitoring.

8 END-TO-END VITAL SIGNS MONITORING
In this section, we compare different methods in estimating vital signs and dealing with non-linearity issues (e.g.,
harnomics, intermodulation, and dynamic signal patterns as described in §2.4), then we study the impact of user
and environment factors to end-to-end vital sign monitoring performance.

8.1 Estimators and Non-linearity Study
8.1.1 Individual Estimators. We evaluate the effectiveness of all the 4 estimators for heart rate estimation
(Figure 16). We define a “working ratio” metric as the fraction of time when an estimator has < 5 𝑏𝑝𝑚 error,
which is an acceptable error range for long-term monitoring. The second order harmonic estimator (SOH) has
the highest working ratio, because the second order harmonic of the heart rate is spectrally free of the high
order harmonics of respiration. Temporal methods zero-crossing (ZC) and peak interval (PK) have relatively
low working ratio due to sensitivity to noise and interference. However, they produce more gradual changes
in output compared to spectral methods LMD and SOH, helping avoid large jumps between spectral peaks for
smooth tracking. VitalHub combines all of them and achieves over 98% working ratio. This demonstrates the
effectiveness of the PWF framework combining less reliable estimators to achieve more robust estimation.
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Fig. 18. VitalHub, SHAPA and HMLD on HR estimation.
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Fig. 19. VitalHub and Wibreathe on HR estimation.

8.1.2 Robustness against Harmonics and Intermodulation. We identify two representative methods, SHAPA [53]
and HMLD [93], dealing with harmonics and intermodulation and compare with them. They leverage the
frequency relation between harmonics. SHAPA tries to find three spectral peaks (i.e., “harmonic path”) with
1 : 2 : 3 ratio in frequency with magnitude larger than some preset threshold. HMLD tries to find a pair of stable
spectral peaks with 1 : 2 ratio in frequency. Figure 18 shows while VitalHub reaches 98% working ratio, SHAPA
and HMLD deliver only 51.2% and 76.3% respectively. Both methods rely on presumed signal patterns, which
may not always happen in reality.

SHAPA is very sensitive to SNR. The preset threshold is supposed to filter out most noise peaks while leaving
those from fundamental and harmonics of heartbeat. However, when SNR is low, even with a well tuned threshold
(one that just below all harmonic peaks), noise can easily cause incorrect estimation. Figure 17(a) shows the
threshold set at the minimum magnitude of all harmonic peaks. However, many noise peaks exist above the
threshold, and some present a better 1 : 2 : 3 relation than the real heart rate and its harmonics. Thus the algorithm
chooses an incorrect harmonic path (62, 124, 186) instead of the true harmonic path (56, 110, 164). HMLD has
similar problems: Figure 17(b) shows a wrong estimation (94) which is the intermodulation of heartbeat (56) and
respiration (19). The above shows that designs relying on presumed signal patterns are not robust enough.

8.1.3 Dealing with Unpredictable and Dynamic Signal Patterns. We implement WiBreathe [61] for comparison as
it is a most related work that identifies and addresses unpredictable and dynamic vital signal patterns. We caution
that WiBreathe was designed for respiration only, so the comparison serves not to criticize, but to shed light
on how applicable its techniques are for heart rate. WiBreathe adaptively combines several estimators’ output,
under the assumption that the majority of them would produce correct estimations. For fairness, we compare
only the strategies in combining estimator outputs, while all other components such as preprocessing pipelines
are the same. Figure 19 shows that the working ratio of WiBreathe can be up to 81.3% of the time, much lower
than VitalHub’s 98%. We find the majority of the HR candidates from the estimators can be incorrect, causing
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Fig. 20. Vital signs estimation under different distances.
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Fig. 21. Vital signs estimation under different orientations.

WiBreathe fail to make the correct estimation. Our PWF strategy uses the cumulative evidence thus can still
select the correct candidate even it is not in the majority but possessing stronger evidence, thus dealing with
dynamical signal patterns more effectively.

8.2 User and Environment Factors
8.2.1 Impact of Distances. We vary the distance between 1.5–4.5𝑚 with a step length of 1𝑚, while keeping
the orientation of the subject at 0 degree (facing frontally). The results are shown in Figure 20. We can see that
respiratory and heart rate estimations are very stable even at 4.5𝑚, up to the range of the depth sensor.

8.2.2 Impact of Orientations. We vary the orientation of the subject at 0, 45, and 90 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 while keeping 2.5𝑚
distance (shown in Figure 21). Interestingly, we observe that HR accuracy is not affected much by the orientation,
but RR error at 90 𝑑𝑒𝑔𝑟𝑒𝑒 more than triples. This is because the breathing chest movement in the mediolateral
axis (i.e., side) is only around 0.6–1.1𝑚𝑚 [77], much smaller than that in the front, thus more susceptible to
errors.

8.2.3 Impact of Ambient RF sources. To evaluate the impact of ambient RF sources, we compare the performance
in two settings: low Wi-Fi traffic where Wi-Fi signal comes from nearby buildings but no Wi-Fi device running
indoors, and intense Wi-Fi traffic where 3 Raspberry Pis, 4 laptops, 4 smartphones and 2 Wi-Fi routers keep
streaming data indoors. Figure 22 shows negligible decrease in the respiration and heart rate measurement. This
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Fig. 22. Impact of different ambient RF environment.

is because UWB spreads the energy on a wide frequency bandwidth thus narrow band Wi-Fi signals in 2.4/5𝐺𝐻𝑧
do not present severe interferences.

8.2.4 Multi-User Minimum Resolvable Distance. The minimum resolvable distance, i.e., how close adjacent
subjects can be without interfering each other, is a very critical factor for co-habiting scenarios. We invite 3
volunteers, separated at 1𝑚 initially, gradually decreased at 10 𝑐𝑚 steps, until any two of them appear identical in
measurement, meaning they are too close for the system to differentiate. We find all 3 volunteers can be reliably
monitored even when separated at only 20 𝑐𝑚, with performance comparable to the single user setting.

9 DISCUSSION
Extensible Framework. In our vital sign monitoring module, we combine several estimators’ output and
leverage prior knowledge about vital signs to produce a weighted sum estimation to deal with the challenges
from harmonics and intermodulation. Our framework can easily accommodate more estimation methods and
other prior knowledge to improve the performance as advances are made in these fields. Evidence for signal
patterns suitable for such methods will be quantified to update respective weights.
Body Motions. VitalHub measures vital signs only in quasi-stationary settings (e.g., talking, typing, watching

TV) where the displacement of the chest wall due to physiological movements (i.e., heartbeat and respiration) are
the main sources of distance thus phase changes. However, in non-stationary settings, large body movements (e.g.,
swaying of body) can overwhelm physiological movements, causing severe disturbances to phase changes and
making it impossible to directly extract vital signs. We adopt a signal quality detector to flag the periods where
the signal is “unavailable” to exclude corrupted signals that can degrade the accuracy of vital sign measurements.
In longitudinal monitoring, even after discarding such corrupted data, there is still sufficient amount to detect
health status changes because of the continuous, long term measurements.

Recently regular RGB cameras or a pair of radio sensors before and behind the body are used to measure and
cancel random body movements [27, 44]. Due to privacy reasons, in our surveys people have expressed serious
concerns on regular cameras. Using a pair of radio sensors may constrain the space where users can stay, but the
general approach combining signals from multiple sensors seems promising dealing with large movements. We
plan to investigate how to allow unconstrained movements in-home while dealing with large motions.
Trade-offs between Precision and Recall. We observe that for small fractions of time (less than 4%), the

signal quality detector may fail. When this happens, none of the estimators can produce a correct heart rate
estimate. If this continues long enough, the PWF may fail to smooth out such erroneous output and converge
to some wrong heart rate estimate. This problem can be alleviated by combining signals in consecutive time
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windows, but at the cost of reduced recall of the data. We will study this in the future to see how to achieve a
proper balance.
Sensing Range and Orientation. The effective range of the current prototype is limited by the UWB and

depth sensors we use. The depth sensor has a LOS distance of 4.5 meters, whereas the UWB one has a range of
near 10 meters (with some penetration capability). The range is limited by the lesser of the two. Nevertheless, it
is still sufficient for room-size monitoring in-home with the system mounted on the wall thus most of the area
covered in LOS. Our identity tracking algorithm can also help mitigate blockage due to cross-walking. We will
explore depth sensors of longer ranges and radio-only solutions for context annotation.
The current prototype also produces higher errors in respiration rate when the orientation of the subject

is near 90 degrees. This is mainly because the chest movement in the mediolateral dimension (0.6-1.1𝑚𝑚) is
comparable to the displacement attributed to the heartbeat [77]. We will study multi-sensor deployment so the
90-degree orientation of the subject can be avoided by at least one sensor.
Azimuth and Elevation Separation. The current prototype can only separate signals of different distances.

Two people at same distance but different orientations are not separated. This is because the UWB sensor we
use has only a single pair of transmitter and receiver, so it cannot differentiate azimuth and elevation. Proper
placement of the sensor kit is needed to reduce the chances when subjects are at similar distances. Some
research [91] has studied how to extract vital signs from entangled signals with blind signal separation [17]
(e.g., Independent Component Analysis [16]). We will explore the robustness of such approaches, and MIMO,
multi-sensor configurations for azimuth and elevation separation.
More Subjects and Real Patients. The diversity of our 8-subject pool is a bit limited. We deployed VitalHub

in our university hospital for pilot test. However, due to COVID-19 we are unable to obtain sufficient data. We
will resume the study on larger subject pools and real patients once the pandemic eases enough.

10 RELATED WORK
We describe the main work in vital signs monitoring and context information recognition, and how VitalHub
compares.
Vital Signs Monitoring. Traditional medical equipment such as electrocardiography (ECG) and echocardiog-

raphy [26] are accurate but too expensive and difficult to operate in home. VitalMon [35] uses geophones to sense
bed vibrations from ballistic forces of sleeping subjects. Wearables using photoplethysmogram (PPG) sensors (e.g.,
pulse oximeters [2], watches [1] and wrist bands [23, 33]) require continuous skin contact and regular recharging.
Some inertial sensor based methods [6, 49] place smartphones on the chest. Such touch-based sensing restrains
the free roaming of users [32], presents cognitive and physical challenges for older adults living alone, thus not
suitable for longitudinal passive in-home monitoring.
Researcher have proposed four types of methods for contactless ubiquitous vital sign monitoring: remote

PPG [32, 62], acoustic [51, 60, 75, 87], WiFi [45, 46, 58, 79] and other RF based methods [15, 52, 72, 89]. Remote PPG
measures the heart rate from an RGB video of the user’s face [32]. It has privacy issues and may be impacted by
skin color, make-up and lighting. Both passive [75, 87] and active [51] acoustic methods leveraging smart speakers
or phones have been studied for respiration rate monitoring. Acousticcardiogram (ACG) [60] uses frequency
modulated continuous wave (FMCW) sonar front end smartphones to monitor both heart and respiratory rates.
It targets near-field monitoring at a maximum distance of 30 cm.

WiFi based methods leverage channel state information (CSI) [45, 46, 79] or received signal strength (RSS) [3, 31,
58]. RF methods have exploited techniques including mmWave [15, 89], doppler radar [52, 72], FMCW radar [5, 82],
and UWB radar [43, 71, 84, 88]. Some of them monitor only respiration [3, 31, 52, 58, 72]. We observe respiration
harmonics and intermodulation disrupt spectral based heart rate estimation severely, yet we do not see this
described or treated sufficiently in the above work. We use a UWB sensor which has extremely short pulses and
wide bandwidth, making it inherently more robust to interference and multipath [40].
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The challenge of harmonics and intermodulation is analyzed in [39]. Work in electronics engineering commu-
nity [21, 36, 53, 64, 93] has proposed methods based on certain assumptions of the signal’s temporal, spectral
patterns (e.g., magnitudes between fundamental and harmonic components, gradual changes in the heart rate).
We observe such patterns are far from stable, thus these methods (e.g., finding pairs of stable spectral peaks
with 1 : 2 ratio in frequency) often fail. WiBreathe [61] adaptively selects an output from multiple respiration
estimators closest to the previous estimate. It assumes at least one estimator gives good estimation, which we
find does not hold for heartbeat due to much weaker spectral energy, thus easily dominated by respiration
harmonics and intermodulation. We combine multiple estimators by quantifying respective evidence of their
suitable patterns in a probabilistic framework to enable robust heart rate tracking.
Most radio sensing based work targets quasi-stationary settings, while non-stationary settings remain an

open issue [83, 86]. To detect large motions, many methods use a fixed threshold for phase change or spectrum
sharpness [5, 29, 45, 51, 87, 90]. Motion-related sensors [57] and RGBD-cameras [54] are used as well. Such
additional sensors add to the system cost and complexity, and fixed thresholds cannot handle complex signal
dynamics. Our heatmap feature incorporates the full spectral characteristics of the vital signs and uses a deep
neural network to achieve near human performance.

There are efforts to directly measure and cancel motion disruptions using accelerometers [9, 59], regular RGB
cameras and radio sensor pairs before/behind the body [27, 44]. They require wearable sensors, or cause privacy
concerns and constraints on the user’s free roaming, thus not preferred for long-term in-home monitoring. We
plan to explore multi-sensor collaboration to keep robust measurements under motion while retaining passive,
low-cost sensing.
Context Information Recognition. Body pose thus activity recognition by non-touch means has been

an active research area. Lots of work leverages visual data, including RGB images, videos, and depth [12, 47].
OpenPose [12] tracks body poses with a single RGB image or reconstructs 3D skeletal poses with multiple
cameras. FaceNet [66] extracts facial features [97, 98] from RGB images for identification. Caesar [47] detects
complex activities with multiple non-overlapping cameras. Despite the technology maturity, many people are
uncomfortable living under cameras due to privacy concerns.
Inertial sensors have been used for tracking activities including dancing, smoking and exercise [13, 24, 56].

Visible light is used for skeleton reconstruction [41] with instrumentation of photodiodes or LED panels on the
ceiling or floor, which may not be convenient in-home.

WiFi [73, 74, 78, 80, 81, 92, 96] and other RF [4, 14, 42, 94] are studied for human activity and motion sensing.
E-eyes [80], mD-Track [81] uses WiFi signals to recognize and track indoor human activities. CrossSense [92]
applies transfer learning to effectively reuse the learned knowledge across different sites. CARM [78] correlates
WiFi CSI dynamics and human activities for recognition. Widar3.0 [96] estimates velocity profiles of gestures
for cross-domain gesture recognition. WiMU [73] recognizes the gestures of multiple users simultaneously, and
WiAG [74] recognizes the gestures irrespective of the user’s position or orientation. Among RF-based methods,
EAR [14] uses ambient RF signals for human activity sensing. Li et al. [42] feed RFID data into a CNN for activity
recognition. RF-Pose3D [94] and RF-Capture [4] track the 3D positions of a person’s skeleton even under full
occlusion from the RF sensor.
We choose depth camera in the current prototype because it can produce mature and robust skeletal pose

tracking [67], and easily acceptable by people due to lack of fine-grained visual features. It offers distance report,
skeleton tracking, user identification and activity recognition simultaneously. RF-Pose3D [94] and RF-Capture [4]
achieve such goals using customized FMCW radios with antenna arrays. We plan to study how to extend our
UWB based system for robust and low-cost context recognition.
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11 CONCLUSION
We present VitalHub, a robust, non-touch, passive sensing system for longitudinal in-home vital signs monitoring
leveraging UWB and depth sensors. We describe how respiration harmonics and intermodulation cause strong
disturbances to robust heart rate monitoring. We propose a probabilistic weighted framework that adaptively
combines an ensemble of estimators based on the quantified cumulative evidence of their suitable temporal and
spectral signal patterns. Besides, we introduce a LSTM-based neural network and a probabilistic tracking model
to provide reliable context annotation (i.e., identification and activity recognition) using privacy-preserving
skeleton features. Extensive experiments show that VitalHub achieves 1.5/3.2 “breaths/beats per minute” (denoted
by “bpm”) errors at 80-percentile for RR/HR, approaching the 1.2/1.5 bpm error “ceiling” of an idealistic but
impractical oracle. We also share insights on why existing methods do not handle harmonics and intermodulation
well. In addition, our context annotation module achieves 90% median accuracy for differentiating 8 subjects
(while the number of cohabiting persons in one home would usually be less than 8) based on skeletal walking
patterns, and above 96% precision for classifying among 6 common daily activities. With the automatic context
annotation, the vital signs record can be valuable for future customized analytics (e.g., the detection of anomalous
changes in vital signs from a user’s normal distribution of daily routines/activities). We believe VitalHub offers a
suitable solution for longitudinal in-home vital signs monitoring.
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