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Abstract In this paper we present PEAS, a randomized
energy-conservation protocol that seeks to build resilient sen-
sor networks in the presence of frequent, unexpected node
failures. PEAS extends the network lifetime by maintaining
a necessary set of working nodes and turning off redundant
ones, which wake up after randomized sleeping times and re-
place failed ones when needed. The fully localized operations
of PEAS are based on each individual node’s observation of
its local environment but do not require per neighbor state at
any node; this allows PEAS to scale to very dense node de-
ployment. PEAS is highly robust against node failures due to
its simple operations and randomized design; it also ensures
asymptotic connectivity. Our simulations and analysis show
that PEAS can maintain an adequate working node density
in presence of as high as 38% node failures, and a roughly
constant overhead of less than 1% of the total energy con-
sumption under various deployment densities. It extends a
sensor network’s functioning time in linear proportional to
the deployed sensor population.
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1. Introduction

Advances in communication, computation and sensing have
brought into reality small, inexpensive sensors such as
Berkeley motes [1] and single-chip specs [2]. These sensors
typically have constrained computing power, small mem-
ory space, and limited battery energy. When such nodes are
deployed in an adverse environment with high degrees of
humidity, temperature, or even intentional destructions from
malicious adversaries, unexpected node failures are likely to
happen in addition to the more predictable failures due to en-
ergy depletion; the occurrence of node failures may become
norms rather than exceptions of the network. Sensor network
applications, on the other hand, desire a robust sensing sys-
tem with extended life time. Building a resilient, long-lived
sensor network with such small, fallible sensors poses a great
research challenge.

This paper presents PEAS (Probing Environment and
Adaptive Sleeping), a simple, distributed protocol that can
build and maintain a resilient, long-lived sensor network out
of large quantities of unreliable, short-lived sensor nodes.
PEAS extends a network’s functioning time by keeping only
a necessary set of sensors in the working mode and putting
the rest into sleeping. Sleeping nodes wake up once in a while
to probe their neighborhoods and replace any failed working
nodes as needed. To be robust and implementable on small
sensors with stringent resources, PEAS maintains a minimal
amount of state at each node and involves very simple op-
erations. Sensor nodes keep no per-neighbor node state, nor
any information about the topology or lifetime estimations
of their neighbors; they achieve distributed coordination by
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a simple probing mechanism. A node only needs to find out
whether any working neighbor exists within a local probing
range to decide whether it should be turned off or not. The
wakeup frequencies of sleeping nodes are self-adjusted to
both maintain adequate working node density and minimize
energy consumption. As shown by our analysis and simula-
tion results, PEAS ensures asymptotic network connectivity;
it can extend a sensor network’s functioning time in linear
proportional to the number of deployed nodes, using less
than 1% of the total energy consumption and withstanding
up to 38% of node failures.

Different from the protocols designed for ad-hoc networks
that assume dynamic changes in connectivity but no frequent
node failures, PEAS targets at a harsh working environment
in which node failures happen frequently. PEAS design also
differs from existing energy-saving protocols that exploit
node redundancy, such as GAF [3], SPAN [4], ASCENT
[5], and AFECA [6]. The fore-mentioned protocols are tar-
geted for either ad-hoc networks or a relatively stable sensor
network environment where nodes do not fail unexpectedly.
Although they all maintain a stable number of working nodes
in the presence of battery depletions, their operations either
depend on the predictability of individual nodes’ lifetimes, or
require each node maintain state for every neighbor. In con-
trast, PEAS assumes that the density of deployed nodes may
be orders of magnitude higher than that of the working ones,
and that individual nodes may fail unexpectedly. These two
assumptions make it infeasible to keep per neighbor node
state or to reliably predict a node’s lifetime.

The rest of the paper is organized as follows. We present
the design of PEAS in Section 2 and analyze its connectiv-
ity, complexity in Section 3. We address several practical
implementation issues in Section 4, and present the perfor-
mance evaluation of PEAS and compare it with GAF [3] in
Section 5. Related work is discussed in Section 6, followed
by the conclusion section. We would like to clarify that
PEAS’ role in a sensor network is to maintain a desired level
of working sensor density to ensure the sensing coverage
and network connectivity. The actual sensing data delivery
is carried out by a separate data forwarding protocol, such as
those described in [7, 8].

2. PEAS design

2.1. Overview

PEAS works for ad hoc sensor networks that consist
of large numbers of densely-deployed, small, inexpensive
sensors. Such networks find applications in forest fire moni-
toring, military surveillance, ocean environmental sampling,
etc. Due to adverse external factors, these nodes may suf-
fer frequent and unpredictable failures. The network relies

on a certain degree of redundancy in working nodes for ro-
bust functioning. Nodes are usually deployed at much higher
densities than the minimum required for extended system
lifetime. We assume that each sensor node can vary its trans-
mission power to choose a power level to cover a circular
area given a radius.1

The goal of PEAS is to extend system lifetime by exploit-
ing the high redundancy in deployment, while being robust
against severe, unpredictable node failures. The basic ap-
proach is to turn off redundant nodes. Two main issues are
how to decide which nodes to turn off and how long they
sleep. The two components of PEAS, Probing Environment
and Adaptive Sleeping, address these issues, respectively.

To decide which sensors to turn off, nodes need to coordi-
nate among themselves. This is typically achieved based on
each node’s knowledge about its neighborhood, such as each
neighbor’s location, connectivity, etc. However, in a dense
network with frequent, unpredictable node failures, keeping
track of each neighbor’s status can be very difficult; the con-
strained memory and energy resources of each node further
aggravate the situation. We thus strive to avoid per neigh-
bor state, eliminating the burden of maintaining such state.
The real challenge is, without the knowledge of each neigh-
bor, how do nodes achieve distributed coordination? This
is what Probing Environment answers. It utilizes a probing
mechanism by which a node discovers whether a working
one exists in a certain probing range and decides whether it
should be turned off. It determines the topology of working
nodes while requiring minimum amount of knowledge of
local neighborhood.

The next observation is that, how long nodes sleep decides
how quick a dead working node can be replaced because
only when sleeping nodes wake up can they replace dead
working neighbors. Each unexpected death of working nodes
causes an interruption in sensing and communication. The
lengths of such interruptions should be kept within what
are tolerable from the application’s perspective. Adaptive
Sleeping decides when a sleeping node should wake up. It
keeps the aggregate wake up rate of the sleeping neighbors
of each working node at appropriate levels desired by the
application, in order to meet application requirements and
minimize the control overhead.

2.2. Probing environment

We describe Probing Environment in this section. Each node
in PEAS has three operation modes: Sleeping, Probing and
Working. The state transition diagram among these three
modes is shown in Fig. 1. After nodes are deployed, they

1 Existing hardware e.g., MOTES, already allows variable transmission
power [1]. We discuss how PEAS works with fixed transmission power
in Section 4.
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REPLY from another working node
Working

hearing a REPLY, sleeps for another random time

wakes up and broadcasts a PROBE

no REPLY for the PROBE

Probing
Sleeping

Fig. 1 State transition diagram of operations at each node

are initially in the Sleeping mode. Each node sleeps for an
exponentially distributed duration generated according to a
probability density function (PDF) f (ts) = λe−λts , where λ

is the probing rate of the node and ts denotes the sleeping
time duration.

After a node wakes up, it enters the Probing mode. A prob-
ing node seeks to detect whether any working node is present
within a certain probing range Rp. The probing node uses an
appropriate transmission power to broadcast a PROBE mes-
sage within its local probing range Rp. Any working node(s)
within that range should respond with a REPLY message,
also sent within the range of Rp. It is possible that multiple
working nodes exist within Rp when a node probes. To re-
duce collisions, each working node waits for a small random
time before it sends back the REPLY.

If the probing node hears a REPLY, it goes back to the
Sleeping mode for another random period of time ts, gener-
ated according to the same PDF. λ is adjusted according to
the Adaptive Sleeping algorithm in Section 2.3 based on the
feedback information carried in the REPLY. If the probing
node does not hear any REPLY, it enters the Working mode
and starts functioning.

Figure 2 gives a simple example for illustration. At time
t1, nodes 2 and 3 are in the working mode. Node 1 wakes
up and broadcasts a PROBE message within a probing range
Rp. Because no working nodes exist within Rp, node 1 starts
working. At time t2, sleeping node 4 wakes up and probes.

1

2

3

2

3

4

1

REPLY

PROBE

Rt

Rp

Time t1: 2 and 3 are working, 1 probes and starts

1

2

3

1

3

6

Time t2: 4 probes and 2 replies. 4 goes back

to sleeping.

Time t4: 6 probes and replaces 2Time t3: 2 fails or exhausts energy

working

Fig. 2 An example of probing environment

Because node 2 is within node 4’s probing range, it responds
with a REPLY message. Upon hearing the REPLY, node 4
sleeps again. Then node 2 dies at time t3, and node 6 wakes up
at time t4. After probing, node 6 starts working and replaces
node 2. Through the above example, we can see the result of
this probing is to keep a distance of at least Rp between any
two adjacent working neighbors. Thus nodes can only work
when they are far enough from existing working ones.

It is possible that PROBE and REPLY messages are still
lost due to factors such as collisions or link errors. In such
cases, a probing node supposed to sleep again will start
working, unnecessarily wasting energy. To correct such er-
rors, working node react to REPLYs sent by its working
neighbors that respond to probing nodes. Because REPLYs
are also sent within a distance of Rp, two working nodes are
less than Rp away if they can hear the REPLYs from each
other. One of them should be turned off. In practice, if either
of the two can turn off the other, they may take turns to work
and cause an unstable working node topology. Many routing
protocols have to rebuild routing state in new working nodes
and suffer from unstable topologies. We favor the one that
has been working for a longer time to stabilize the topology:
Each working node records the time when it started work-
ing. It calculates and includes the time Tw — how long it has
been working—in its REPLYs. When a working node hears
a REPLY, it goes to sleep only if its Tw is less than that of the
sender’s. So nodes that have been working for longer times
can turn off new working ones, but not vice versa.

The above design has some parameters that need to be set.
The initial value of λ decides how quickly the network ac-
quires enough number of working nodes during the boot-up
phase and how fast dead working nodes are replaced. For in-
stance, the application requires the network start functioning
1-minute after deployment and 50% of the deployed nodes
are needed. Based on the PDF, we can calculate that an initial
λ of 0.012 ensures that 50% of the nodes wake up at least
once within the first minute after deployment. Since PEAS
adjusts the probing rates, we may choose a higher λ to ensure
a fast-functioning network.

The probing range Rp determines the redundancy of work-
ing nodes. It is specified by the application based on its
requirements for both robust sensing and robust communi-
cation. These two functions may require different densities
of working nodes. For example, a type of sensors can de-
tect animals within 10 m and transmit up to 20 m. Suppose
the application decides that working nodes should be spaced
at most 3 m for robust sensing, but 6 m are enough for ro-
bust communication. The application may simply choose the
probing range Rp as the smaller value of 3 m2. The choice

2 Designing sensor hardware that balances these two functions is not
the topic of this paper. We expect hardware developers to address this
issue.
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of Rp also affects network connectivity; it must be less than
the maximum transmitting range Rt to avoid disconnection.
This is to be analyzed in Section 3.

2.2.1. Design rationale

We make two important decisions in the design of Probing
Environment: (1) a node’s location decides whether it should
be turned on or not, and (2) the sleeping time of a node is
randomized. We now explain the rationale.
Location-dependent rule. Location-based probing rule en-
sures that adjacent working nodes keep appropriate dis-
tances, which translate into desired redundancy for resilient
sensing and communicating functions. This feature is im-
portant because excessively dense working nodes not only
increase collisions, but also unnecessarily waste precious en-
ergy resources. Whereas too sparse working nodes may not
satisfy the required degree of redundancy for robustness, e.g.,
frequent node failures cause part of the field unmonitored.

Unlike related schemes for conventional ad hoc networks
that choose to turn on nodes with more energy or more
neighbors [3, 4], PEAS does not favor such nodes. This is
motivated by the characteristics of the kind of sensor net-
works it targets. The system relies on the collective behavior
of nodes to fulfill the same task reliably. As long as PEAS
maintains enough working nodes, they can perform required
sensing and communication tasks, thus the capability of in-
dividual node does not matter. However, in conventional
ad hoc networks, each node may belong to a different user,
thus attention must be paid not to exhaust the energy of
individual nodes.

We want to point out that there is a tradeoff between ro-
bustness and optimality. In the design, we intentionally make
choices that lead to simplicity, thus better robustness. Al-
though it is possible to turn off redundant nodes and achieve
certain optimality utilizing per neighbor state about local
topology, PEAS avoids such state. It achieves distributed
coordination by keeping distance between working nodes.
This simple design enables PEAS to adapt to high deploy-
ment densities and to be implementable on very small nodes.
Further analysis about the effectiveness of probing will be
given in Section 3.
Randomized sleeping time. A node in PEAS sleeps for a
randomized period of time. The wakeups of nodes are spread
over time (shown in Fig. 3). This is different from some
related schemes [4] that take the deterministic approach of

Time

wakeups
1 2 3 4 5 6

sleeping node A

sleeping node B

Fig. 3 In PEAS, sleeping nodes A and B have randomized sleeping
times

synchronized sleeping and waking-up: All sleeping nodes
(in a local neighborhood) doze for the same predicted period
of time, which is normally their working neighbors’ active
time. Then they all wake up almost simultaneously to re-elect
new working nodes (shown in Fig. 4).

Such a deterministic approach is feasible only if its in-
tended environment is predictable (i.e., the lifespan for a
working node can be reliably estimated beforehand), which
again depends on the assumption of reliable nodes. In a harsh
environment with unreliable sensors, the predictability of a
node’s lifespan no longer holds. When a working node fails
unexpectedly before its anticipated lifespan, there come large
“gaps’ during which no working node is available (illustrated
in Fig. 5).

Therefore, PEAS chooses to distribute node wakeups over
time by randomization, rather than to cluster them at synchro-
nized time points. Shown in Fig. 6, node wakeups come at
much shorter time intervals. Thus the average gap between
two successive working nodes in any local neighborhood can
be greatly shortened. The frequency at which the sleeping
neighbors wake up and probe decides how quick a dead work-
ing node is replaced. This frequency is adjusted by Adaptive
Sleeping to make the “gaps” tolerable by applications.

A remaining question about Probing Environment is why
it uses exponential distribution for the random sleeping time.
We will show in Section 2.3 that exponential distribution
leads to a Poisson process of probing events; this exhibits nice
properties that the Adaptive Sleeping exploits. An analysis
of the gap length will be given in Section 3.3.

wakeups

node B working

Time

node A working

wakeups wakeups

t1 t2t0

Fig. 4 Deterministically synchronized wakeups

wakeups

Time

node A working

wakeups wakeups

node B working

t0 t’ t1 t2

gap

Fig. 5 Synchronized operation has big gaps when nodes fail

Time

node A working

t0

node B working node C working

t1 t2 t3 t4 t5

wakeup 4 wakeup 7

Fig. 6 Distributing wakeups over time shortens gaps
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2.3. Adaptive sleeping

Adaptive Sleeping adjusts the probing rate λ of each sleeping
node so as to keep the aggregate probing rate λ̄ of all the
sleeping neighbors of each working node at about a desired
rate λd , which is specified by the application. This way, the
transient interruptions in sensing and communication caused
by node deaths are acceptable to the application, while the
probing overhead is minimized.

The design issue is that, the number of sleeping neigh-
bors of a working node changes over time and varies in
different locations. Thus a fixed per node λ cannot ensure
a desired aggregate probing rate. Each node has to adjust
its λ dynamically to adapt to such varying conditions. The
basic idea is to let each working node measure the aggre-
gate probing rate λ̄ it perceives from all its sleeping neigh-
bors. The working node then includes the measured rate λ̄

when sending a REPLY message to a probing neighbor. Each
probing node then adjusts its probing rate λ accordingly
to generate a new sleeping time period. The details are as
follows.
Measuring aggregate λ̄ at a working node. Each working
node maintains two pieces of state:

� N: a counter that records how many PROBEs have been
received.

� t0: the most recent time when N is set to 0.

When the working node hears the first PROBE message,
it sets the counter to 0, and t0 to the current time t. After that,
each time a new PROBE is received, the counter increases by
one. Eventually when the counter reaches a threshold value
k, a measurement λ̂ of the actual probing rate λ̄ is calculated
as follows: 3

λ̂ = k

t − t0
, (1)

where t is the current time. The node then sets t0 to t, resets the
counter to 0, and repeats the above process (see Figure 7 for
an illustration). Whenever a working node receives a PROBE
message, it includes its current probing rate measurement λ̂

and the desired probing rate λd in its REPLY message.
Adjusting per-node probing rate λ at each probing node.
Upon receiving a REPLY message from the working node,
the probing node updates its current probing rate λ based on
the received λ̂:

λnew = λ
λd

λ̂
. (2)

3 We also tried a moving average measurement, but the choice we
present here turned out to work better.

Time

node A working

t0

1 k

Ts

20

t

Fig. 7 Measure λ̄

Then the probing node will use λnew to generate a new
sleeping period ts according to the probability density func-
tion f (ts) = λnewe−λnew ts .

2.3.1. Explanation

We now explain why the above algorithm keeps the aggre-
gate λ̄ around the desired λd . From the probability theory
[9], the exponentially distributed intervals between succes-
sive wakeups observe a Poisson process of wakeup events.
Probings from different sleeping neighbors still construct
a Poisson process, but with a parameter λ̄, the sum of all
sleeping nodes’ rates λi :

λ̄ =
n∑

i=1

λi , (3)

where n is the number of sleeping neighbors and λi is the
probing rate of the ith neighbor.

We utilize the property of Poisson processes to measure
λ̄. It is known that the average interval T̄s of the aggregate
Poisson process is given as T̄s = 1

λ̄
. By measuring the aver-

age interval T̄s , we can derive the aggregate rate λ̄. This is
exactly what (1) does.

To obtain an accurate estimation λ̂ that is close to the
actual λ̄, the constant k in (1) has to be large enough. Because
the intervals are i.i.d. random variables, we apply the central
limit theorem [9] to estimate how large k should be for a
reasonably good measurement. It turns out that when k >

16, with over 99% confidence the measured average has
only 1% error compared with the real value.

Assume that the measured rate λ̂ is accurate, i.e.,
λ̂ ≈ λ̄. After each sleeping neighbor adjusts its probing
rate according to (2), the new aggregate probing rate
becomes

λ̄new =
n∑

i=1

λnew
i =

n∑

i=1

λi
λd

λ̂
≈ λd

λ̄
λ̄ = λd .

Thus the aggregate probing rate reaches the desired rate λd .
The above derivation is idealistic since it assumes that all

sleeping nodes hear the measurement and adjust their rates on
time. In practice, if some nodes sleep for longer periods and
miss the current measurement, they may receive a different
measurement. Thus λ̄ may not be the same as λd . But as long
as the working node keeps measuring and feeding-back this
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information, λ̄ should be fluctuating around λd . We further
evaluate the effectiveness of Adaptive Sleeping in Section 5.

It is possible to calculate λ̄ directly by using (3) (a working
node sums up all λi directly). However, this poses the dif-
ficulty of keeping per-neighbor state λi . Due to unexpected
failures and potentially dense deployment, a working node
may not know precisely how many sleeping neighbors it has.
Thus it does not know when it has collected all λi s for its
sleeping neighbors. In addition, if some neighbor fails dur-
ing sleeping, the working one does not know whether it is
because the node has failed, or because it has a very long
sleeping period. Hence, it cannot decide whether the corre-
sponding λi should be kept or removed. Based on the same
principle of trading optimality for simplicity and better ro-
bustness, we opt for the simplest possible design to make
PEAS resilient in a dynamic environment.

A final comment is that the desired probing rate λd should
be given by the application and depends on the application’s
tolerance of interruptions in sensing and/or communication.
For example, if an animal-tracking sensor network allows
for monitoring interruptions up to 5 minutes, λd can be set
at 1 per 300 seconds to ensure that the lengths of “gaps’ in
sensing are acceptable to the application.

3. Performance analysis of PEAS

The performance analysis includes several parts. The
connectivity analysis derives conditions under which the
working nodes are a.a.s. (asymptotically almost surely) con-
nected. This is important to ensure that the probing rule does
not cause disconnected networks. Next we give the density
bounds of working nodes, and the average time needed to re-
place nodes that fail unexpectedly. The complexity analysis
characterizes the state, energy and computing overheads of
PEAS.

3.1. Asymptotic connectivity of PEAS

We first present the following PEAS model to aid the analy-
sis. Consider a two-dimensional network field.4 We imagine
each working node as a round pea that occupies a circular
area of radius Rp/2. Sleeping or probing nodes do not oc-
cupy any area. The distance between the centers of any two
peas5 is at least Rp/2 + Rp/2 = Rp, which is when two
peas are tangent to each other. This is exactly what the prob-
ing rule produces. On the other hand, any two working nodes
are separated by a distance of at least Rp. Thus two peas can
replace these two working nodes without overlapping. So

4 The model applies to three-dimensional as well.
5 We use “PEAS’ for the protocol and “peas’ for the seeds of the plant.

any possible positions of working nodes is equivalent to a
placement of peas on the plane.

To find out under what conditions PEAS ensures a.a.s.
connectivity, let us consider a sufficiently large network R =
[0, l]2 that is divided into square cells, each of which is of
size c × c and c = Rp. We first give the conditions under
which each cell has at least one node a.a.s. based on Blough’s
Theorem 2 in [10], then we prove that given each cell has at
least one node, PEAS ensures connectivity a.a.s. when the
transmitting range Rt ≥ (1 + √

5)Rp.
The following Lemma 3.1. tells us under what conditions

each cell has at least one node a.a.s. The proof is given in the
Appendix.

Lemma 3.1. When n nodes are uniformly randomly dis-
tributed in R = [0, l]d , for d = 2, and assume that cdn =
kld ln l for some constant k > 0. Let µ0(n)) be the random
variable denoting the number of empty cells. If k > d, then
liml→∞ E[µ0(n)] = 0, where E[µ0(n)] is the expected num-
ber of empty cells.

Given the above condition, we have

Lemma 3.2. When conditions in Lemma 3.1 are sat-
isfied, i.e., each cell has at least one node a.a.s.,
for any working node A and its working neighbor
B, liml→∞ P(min(Dist(A, B)) < (1 + √

5)c) = 1, where
Dist(A,B) denotes the distance between A and B, and
min(Dist(A,B)) is the distance between A and the closest
working neighbor.

Proof: Because Lemma 3.1 holds a.a.s. no matter how
the grid is oriented or where the grid is positioned, with-
out loss of generality, we let node A center at the middle
of cells 1, 2, 3 and 4 (Fig. 8). According to the PEAS
model, each working node is a round pea of radius c/2
and peas do not overlap with each other. To avoid ob-
scuring the main idea, we will consider boundary cases
later.

Consider the worst case in which all other working nodes
are as far away from node A as possible. In such cases other
nodes in cells 2, 3 and 4 are all within the probing range of A,
thus are all sleeping. Consider node C in cell 5, which is to
the right of cell 1. Given that node C is randomly distributed
and can be anywhere in cell 5, the farthest it can be from A
is at the upper right corner b of cell 5.

In order to put node C (centered at corner b) into sleep,
another node B must be working within the probing range of
C. Based on geometry calculations, the farthest B can be from
node A, is in cell 6 and with a distance of (1 + √

5)c. This is
the minimum distance within which there must exist at least
another working node. Otherwise, if all working neighbors
are farther than this minimum distance away, node C will
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A

b
4 1

23

5

B6

C

Fig. 8 The minimum distance between two adjacent working nodes

always be working, no matter where it is located within
cell 5.

Now consider the boundary case. The number of nodes
in boundary cells is O(l), which is an order of magnitude
lower than the total number O(l2), P(min(Dist(A, B)) <

(1 + √
5)c) still approaches 1 as l → ∞.

The following theorem stipulates the condition for asymp-
totic connectivity in PEAS. It shows that the probing
range has to be set properly to ensure asymptotic network
connectivity.

Theorem 3.1. If the transmitting range Rt ≥ (1 + √
5)Rp,

and the conditions in Lemma 3.1 are satisfied, then
liml→∞Pconn(PEAS) = 1, where Pconn(PEAS)) denotes the
probability that working nodes in PEAS are connected.

Proof: We prove it by contradiction. Suppose the working
nodes are not connected. Let us consider a connected compo-
nent S1 formed by a subset of working nodes. Any working
node in S1 has working neighbors only in S1. Without any
loss of generality, we consider the “rightmost’ node A in S1,
and draw a grid that is centered with A at a crossing point.
A vertical line L is tangent to A (Fig. 9). Any pea (working
node) in S1 is to the left of L. Following similar reasonings
in Lemma 3.1, there must be a working node B which is
to the right of L and has at most a distance of (1 + √

5)c
to A. Since the transmitting range Rt ≥ (1 + √

5)Rp and
Rp = c, nodes A and B are connected. This is contradic-
tory to the assumption that any working node in S1 is con-
nected to only others in S1. Thus there is no such discon-
nected component. Note that based on similar reasoning, the
boundary cases does not affect the asymptotic connectivity
as l → ∞ .

3.2. Densities of working nodes

Here we derive the maximum and minimum densities of
working nodes under the assumption that the deployment
density is very high. The upper bound is due to the probing
rule that any two working nodes keep a distance of at least Rp.
With the PEAS model, the maximum density corresponds to

A

b
4 1

23

5

B6

S1

L

Fig. 9 A “disconnected’ component always has another working node
connected

the most compact case of peas placement in a two dimen-
sional plane. It happens when each pea is tangent with six
neighboring peas (as shown in Fig. 10). Using geometry cal-
culations, we derive the maximum working node density as

ρmax = 2√
3R2

p

. (4)

On the other hand, given enough deployed nodes,
the minimum node density is also lower bounded (see
Fig. 11). This is because when the centers of two peas
are far away, there is enough space to insert another
pea in between. In the minimum density case (shown in
Fig. 11), each pea still has 6 neighboring peas, but the space
among any three adjacent nodes is slightly smaller than a
pea—thus another pea cannot be inserted in between. The
minimum working node density can be calculated as

ρmin = 2

3
√

3R2
p

. (5)

These two theoretical bounds, however, have little chance
to appear in reality because they require precise hexagonal

Rp/2

Fig. 10 7 tangent peas in the center is the most compact case
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Rp/2

Fig. 11 Lower bounding the density given enough deployed nodes

placements of nodes. The randomized probings in PEAS
make such accurate placement almost impossible. Experi-
ments of uniformly randomly deployed nodes show that the
actual density distribution falls into a narrower range, with
the ratio of the minimum density to the maximum density
being 1:1.14. This indicates that, given a dense deployment,
the density of working nodes can be kept roughly constant
at different places (The probability density distribution of
actual density is shown in Figure 12).

3.3. Average gap ḡ between successive working nodes

A gap is the period from the death of a working node (due
to failures or energy depletion) to the time when a probing
node replaces it. Its length decides how long local sensing
and communications are interrupted or degraded due to lack
of a working node. It should be within what is tolerated by the
application. Due to the memoryless property of exponentially
distributed sleeping times, the average gap length, which is
from the death of a working node to next wakeup, should be
the same as the average interval between wakeups. That is,

ḡ = 1

λ̄
. (6)
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Fig. 12 Probability density function of actual working node density

Experiments also confirmed the above equation. The ap-
plication may use the above to decide λd on how frequent
sleeping nodes should wake up, based on its tolerable ḡ
value.

3.4. State, computing and energy complexities

The state overhead at any node is O(1). Each working node
maintains a constant amount of state, including counter N,
last counter reset time t0, the measured probing rate λ̂ and
the desired probing rate λd . Each sleeping node maintains
state of its probing rate λ and probing range Rp. There is
no per-neighbor state maintained at each node. The state at
any node is independent of deployment density and network
size.

The computing and energy overheads are in proportional
to the number of wakeups. Each wakeup consumes en-
ergy for transmitting PROBEs and REPLYs, and waiting for
REPLYs. Computation is incurred when working node up-
dates its measurement or a probing node adjusts its probing
rate.

Because of Adaptive Sleeping, the number of wakeups
in a local neighborhood per unit time is adjusted to be ap-
proximately constant, independent of the deployment den-
sity. Therefore, the computing and energy overheads in each
local neighborhood per unit time are both O(1).

4. Discussions

Probing nodes with more than one working neighbors. When
a probing node has more than one working neighbors within
its probing range, it may hear several REPLY messages, each
of which contains a different λ̄. Such a node cannot replace
any of the working neighbors alone because it can work only
when all such working neighbors die. The probing from
this node is not critical to the replacement of its working
neighbors. We simply let such a probing node adjust its λ

according to the largest measurement value, resulting in the
lowest probing rate to minimize overhead.
Nodes with fixed transmission power. In Section 2 we

assume that each node can choose a transmitting power to
reach a desired probing range Rp. For sensors with fixed
transmission power, they can use a threshold filtering rule re-
garding the received signal strength. A working node reacts
only to PROBE messages with signal strengths greater than
a threshold Sth. Similarly, a probing node goes to sleep again
only if the REPLY has a signal strength greater than Sth.
In a harsh environment, irregularities in signal attenuation
may generate different signal strengths in different areas,
thus working nodes in areas with poorer signal reception
can be denser than those in other areas. We believe that
this is desirable because it is only with more working
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Fig. 13 Black and gray dots are working and sleeping nodes, respec-
tively. The right half has twice as many deployed nodes as the left half,
but they both have about 18 working nodes

nodes in such areas that the same level of robustness is
maintained.
Distribution of deployed nodes. As long as the deployed
nodes are dense enough everywhere, PEAS can keep enough
working nodes in each region, independent of the particular
distribution of deployed nodes (See Fig. 13 for an example).
But the deployment distribution of sensor nodes does affect
the performance of the network. An uneven distribution may
cause the system to function for less time because regions
with fewer nodes will die out much earlier. This argues for
evenly distributed sensor deployment. Although a complete
study of this issue is out of the scope of this paper, we
conjecture that evenly deployed nodes will work longer than
those deployed irregularly.

5. Performance evaluation

5.1. Methodology and metrics

We implement PEAS in PARSEC [11] and select sensor
hardware parameters similar to Berkeley Motes [1]. The
node power consumptions in transmission, reception, idle
and sleep modes are 60 mW, 12 mW, 12 mW and 0.03
mW, respectively. The initial energy of a node is randomly
chosen from the range of 54–60 Jules to simulate the vari-
ance of battery lifetime, allowing the node to operate about
4500 – 5000 seconds in reception/idle modes.6The sensing
and maximum transmitting ranges are both 10 m. Each node
has a raw wireless communication capacity of 20 Kbps.

6 This is much lower than the Motes hardware can provide (about 200
hours in idle) so simulations do not take weeks to finish. It does not
change the conclusions from the results.

The packet size of PROBE and REPLY messages is 25
bytes, which is enough to hold the information they need to
carry.

We use a 50 × 50 m2 network field, and nodes are uni-
formly distributed in the field initially and remain stationary
once deployed. A source and a sink sit in opposite corners
of the field. The source generates a data report every 10 sec-
onds and the data report is delivered to the sink using the
GRAB forwarding protocol [12]. The initial per-node prob-
ing rate λ is chosen as 0.1 wakeup/sec so that the number of
working nodes quickly stabilizes. The probing range is set
to 3 m. The desired aggregate probing rate λd is chosen as
0.02 wakeup/sec, which is equivalent to a wakeup every 50
seconds perceived by a working node.

To evaluate the robustness of PEAS protocol, we arti-
ficially inject node failures which are uniformly randomly
distributed over time in the simulation. The failure rate de-
notes the average number of failures per unit time. The failure
percentage is the percentage of failed nodes. Note that fail-
ures are sensor deaths incurred by factors other than energy
exhaustion.

The main metrics used are sensing coverage lifetime and
data delivery lifetime. The sensing coverage is defined as
the percentage of of the field size monitored by working
nodes. An application may require that each point in the
field be monitored by at least K working nodes for robust-
ness. We define K-coverage (or coverage K) as the per-
centage of the field size monitored by at least K working
nodes. K-coverage’s lifetime is the time duration from the
beginning until K-coverage drops below a threshold value.
It depicts how long the system can ensure that the occur-
rence of any interested events can be monitored and reported
properly.

The data success ratio at any time is the ratio of the num-
ber of reports successfully received at the sink to the total
number of reports generated by the source up to that time.
Data delivery lifetime is defined as the time when the data
success ratio drops below a threshold. It describes for how
long the network can deliver reports to users. Both threshold
values are chosen as 90%. In addition, we measure the over-
head of PEAS by the number of wakeups and calculate the
energy consumed by its operations.

To understand how PEAS performs compared to related
work, we also measure the sensing coverage and data deliv-
ery lifetimes of a revised version of GAF [3]. We choose GAF
because it can easily be adapted to maintain sensing cover-
age: given the sensing range, GAF can ensure each point be
monitored by at least K nodes by letting each grid have K
working nodes. We do not select SPAN [4] because it was
designed for mobile wireless networks only; it maintains
connectivity but not sensing coverage. We find that PEAS
outperforms the revised GAF in extending system lifetime.
More details will be presented in Section 5.4.
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5.2. Prolong system functioning time

To see how PEAS adapts to varying node population, we set
the node number as 160, 320, 480, 640 and 800 and simulate
for long enough time until all nodes die. We assume the
application requires that each point be monitored by at least
4 working nodes. Given a probing range of 3 m, 160 nodes
result in a close to 100% 4-coverage ratio but less than 95%
5-coverage, so we choose 160 as the “base’ number. For each
node population, we simulate 5 different runs and average
the results. All runs in this section use a failure rate of 10.66
failures/5000 seconds.

We now present how PEAS extends the coverage and
data delivery lifetimes with more deployed nodes. Figure 14
shows the lifetimes of 3, 4 and 5-coverage. As the deploy-
ment population increases, each lifetime increases almost
linearly. This is because PEAS keeps only a necessary num-
ber of nodes in working, while turning off others to sleep. The
more deployed nodes, the more in sleeping, and the longer
they can keep the sensing coverage. We also see that the
lifetimes of 3-coverage are longer than corresponding ones
of 4-coverage, because fewer working nodes are required to
ensure each area being covered by at least 3 nodes. This is
also the case for 4- and 5-coverage.

The data delivery lifetime is shown in Fig. 15. Given
160 nodes, the data delivery lifetime is about 6600 seconds,
longer than the maximum idling lifetime of a node. This
is because the working nodes that replace the initial set of
working ones still deliver some reports. So it takes some time
after 5000 seconds for the total success ratio to decrease to
the 90% threshold.

As the deployment number increases, the average data de-
livery lifetime increases linearly. Each additional increase in
node number prolongs the delivery lifetime for about another
6000 seconds. The above results demonstrate that PEAS is
able to increase the network functioning lifetime (sensing
and communicating) in proportional to node population.
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Fig. 14 Extension of coverage lifetime

0 160 320 480 640 800
0  

5000

10000

15000

20000

25000

30000

35000

data delivery lifetime vs. deployment number

deployment number

da
ta

 d
el

iv
er

y 
lif

et
im

e 
(s

ec
on

d)

Fig. 15 Extension of data deliveryl lifetime

We then look at the overhead incurred for PEAS’ op-
erations. Figure 16 shows the average number of wakeups
for each deployment number. This number also increases
linearly as the node population increases. This is because
Adaptive Sleeping adjusts the wakeup frequency to the de-
sired level. When the network functions longer, proportion-
ally more wakeups happen.

To measure the energy overhead, we first calculate the en-
ergy consumed in each wakeup. The energy used in a wakeup
consists of that in transmitting and receiving PROBE and RE-
PLY messages, and in the time a probing node waits in idling
to receive REPLYs. Based on the current implementation in
which a probing node transmits three PROBEs and wait for
100ms during which working nodes randomly back off to
send REPLYs, the amount is 0.00316 Joule per wakeup. Us-
ing this estimation, we plot the amount of energy overhead
and its ratio compared to the total energy consumption in
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Fig. 16 Average total wakeup count for deployment numbers
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Table 1 Energy overhead for deployment numbers

Node number 160 320 480 640 800
Energy overhead (J) 11.58 34.18 58.68 83.53 111.11
Total energy (J) 8082.15 16498.07 24872.13 33382.86 41680.49
Overhead ratio (%) 0.143 0.207 0.236 0.25 0.267

Table 2 Failure percentage

Failure rate 5.33 10.66 16 21.33 26.66 32 37.33 42.66 48
Failure percentage (%) 7.083 12.92 17.46 21.42 25.83 28.62 31.75 34.96 38.54

Table 1. The table shows that the energy overhead is less
than 0.3% of the total energy consumption. This small en-
ergy overhead demonstrates the efficiency achieved by the
simplicity and adaptivity of PEAS.

5.3. Robustness against node failures

We now evaluate the robustness of PEAS against node fail-
ures. The initial node population is set to 480 and we increase
the failure rate from 5.33 to 48 failures per 5000 seconds,
at 8 increments of 5.33 each. For each failure rate, we show
the average failure percentage—the ratio of failed nodes to
the total number deployed in Table 2. There are about 38%
nodes that fail in the maximum failure rate case.

Similarly, we use the coverage and data delivery lifetimes
to evaluate the robustness of PEAS. If PEAS is not robust
enough to maintain sufficient working nodes in the presence
of severe node failures, the system would work for dispro-
portionately less time or might not function normally at all.

Figure 17 plots the coverage lifetimes under the failure
rates from 5.33 to 48. As the failure rate increases, system
lifetime tends to decrease. However, as long as there are
enough nodes in the sleeping mode to combat against fail-
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Fig. 17 Coverage lifetime with failures
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Fig. 18 Data delivery life time with failures

ures, PEAS maintains a high coverage above the threshold.
Even with the most severe failures (with 38% node failure),
the coverage lifetime drops only between 12% to 20%. This
shows that not only failed nodes are replaced, but also the
replacements happen quickly enough to minimize interrup-
tions (the few abnormal points were caused by some random
factors).

The average data delivery lifetime for each failure rate is
shown in Fig. 18. The drop is about 20%, similar to that of
coverage lifetime. This shows that PEAS maintains enough
working nodes to provide high quality communication con-
nectivity in the presence of severe node failures.

Finally we present the wakeup and energy overhead. The
robustness of a protocol should not come at the cost of exces-
sive overhead to combat failures. For PEAS, the number of
wakeups decreases as the failure rate increases (Fig. 19).
This is because there are less sleeping nodes for higher
failure rates. We also measure the energy overhead for all
failure rates, and it is constantly less than 0.25% of the to-
tal energy consumption. The same level of small overhead
for varying failure rates demonstrates that rather than con-
suming more energy to fight against failures, PEAS achieves
robustness at roughly constant overhead.
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Fig. 19 Average total wakeup count for failure rates

5.4. Comparison with GAF

To see how well PEAS performs compared to existing work,
we compare the sensing coverage and data delivery lifetimes
of PEAS to those of a revised GAF [3]. We modify GAF as
follows to maintain sensing coverage. First, using hexagon
cells are more efficient in reducing the coverage overlap, thus
maintaining the same coverage with less working nodes. So
we divide the whole area into hexagon cells rather than square
grids in [3]. Second, we let the side length of each hexagon
cell be half of the sensing range, so any node in a hexagon
cell can completely cover the cell. Third, in order that each
point is covered by at least K working nodes, the revised GAF
tries to maintain K working nodes in each cell. We choose
AODV, the same routing protocol used in [3], to measure the
data delivery lifetime of GAF. We choose the same system
parameters (such as the node power consumptions, initial
energy, etc) as in Section 5.1 in order that both protocols
are subject to the same scenarios. Similar to Section 5.2, we
assume the application requires that each point be covered
by at least 4 working nodes, i.e, the revised GAF tries to
maintain 4 working nodes in each cell. We choose the same
definitions of the coverage lifetime and data delivery lifetime
as those in Section 5.1 and 5.2.

First we compare how they perform when the number
of deployed nodes increases. Figure 20 shows the 3, 4 and
5-coverage lifetimes of the revised GAF. We find that sim-
ilar to PEAS, GAF extends coverage lifetime linearly as
more nodes are deployed. However, the lifetimes are 10% to
20% lower than corresponding ones of PEAS (Fig. 14). The
data delivery lifetime of GAF is shown in Fig. 21. Although
GAF increases the lifetime as more nodes are deployed, data
delivery stops earlier than that of PEAS (Fig. 15). On av-
erage, GAF achieves 70–80% of the data delivery lifetime
of PEAS. For example, with 480 nodes PEAS has a data
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Fig. 20 Extension of coverage lifetime using GAF
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Fig. 21 Extension of data delivery lifetime using GAF

delivery lifetime about 20000 seconds, whereas GAF about
13500 seconds.

To understand why PEAS outperforms GAF, we investi-
gate how the number of working nodes changes over time for
both protocols. We find that to maintain the same degree of
sensing coverage, GAF tends to keep more nodes working
than PEAS. For example, with 640 deployed nodes, GAF
has about 156 working nodes, but PEAS has only about 140.

There are two reasons why PEAS can use less nodes to
maintain the same coverage. First, in GAF, working nodes
in adjacent cells can be very close to each other, thus their
sensing areas have much overlapping. Such topologies are
allowed as long as neighboring nodes belong to different
cells. However, in PEAS, two working nodes have to be Rp

apart from each other, which effectively prevents excessive
overlapping of the sensing areas. Second, the fixed and prede-
fined regular cell structure of GAF can not adapt to the actual
node deployment topology in every location. Given the cell
size, the cell boundary division (where the cell boundaries
are drawn) decides which nodes belong to different cells,
thus can work simultaneously. However, the cell boundary
division that minimizes the working node number at one
location may not coincide with the division at another lo-
cation. Thus it is impossible to minimize the working node
number everywhere at the same time. In PEAS, due to the

Springer



Wireless Netw

Table 3 Total data packets delivered

Failure percentage (%) 0 13 27 40 53
PEAS 276 233 202 162 158
GAF 122 121 111 107 98
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Fig. 22 Coverage lifetime with failures using GAF

lack of such constraints imposed by a predefined structure,
the topology of working nodes at different locations can be
optimized simultaneously.

Because less working nodes are needed, PEAS keeps more
nodes in sleeping and conserves more energy. Eventually,
when GAF exhausts working nodes, PEAS still have enough
for sensing and delivery. This is why PEAS can achieve
longer coverage and data delivery lifetimes. This is also con-
firmed by the total number of packets successfully delivered
by both protocols. Table 3 shows the comparison for 150
deployed nodes with different node failure percentages. We
can see that PEAS supports the delivery of at least 50% more
packets than GAF does.

Now we compare the robustness of PEAS with
GAF. We choose the same scenario as in Section 5.3.
Figures 22 and 23 show how the coverage and data delivery
lifetimes of GAF change as more nodes fail. We make sim-
ilar observations: (1) the lifetimes decreases as more nodes
fail; (2) the lifetimes are 10–30% lower than those of PEAS
(as in Figs. 17 and 18). The result is consistent with the
previous comparison and confirms that PEAS possess better
robustness under significant node failures.

6. Related work

To preserve the limited battery power, various approaches
have been explored to place unnecessary nodes into the sleep-
ing mode for both wireless ad hoc networks (e.g. GAF [3],
SPAN [4], AFECA[6]) and sensor networks (e.g. [5, 13–16]).

In previous work, SPAN maintains a list of working neigh-
bors at each node and exchanges the lists among neighbors.
All nodes utilize this 2-hop neighborhood topology to turn
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Fig. 23 Data delivery lifetime with failures using GAF

on nodes that connect more neighbors or have more en-
ergy. All sleeping nodes wake up periodically to re-elect
working ones. GAF assumes that each node knows its loca-
tion through GPS or other location services. It divides the
network into geographical square grids (called cells). Within
each cell, a node is active while the rest go to sleep, with the
sleep time being set based on the remaining energy of the
working one. In AFECA, each node keeps a list of neighbors
to track the number of neighbors. A sleeping node dozes for
a random period of time in proportional to the number of
neighbors. ASCENT [5] proactively measures the number
of active neighbors and per-link data loss rates. Each node
decides whether it should work or sleep based on a number
of rules regarding the above measurement.

A number of proposals have emerged following the
sensing coverage study in our earlier work [12], where PEAS
is one component of an integrated system. In [13], each node
calculates the “sponsored area’ (defined as maximum sector
covered by a neighbor) provided by each of its neighbor. A
node goes to sleep if the union of all its neighbors’ sponsored
area completely covers its coverage disk. Gupta et al. [14]
devise both a centralized and a distributed algorithm to find
a subset of nodes that ensure both coverage and connectivity.
The centralized algorithm guarantees that the size of the
formed subset is within O(log n) factor of the optimal size,
where n is the network size. Both [15] and [16] notice that
if transmission range is at least twice of sensing range,
coverage implies connectivity, and if every crossing point
(intersection point of coverage disks or that of coverage
disks and monitored region) in a region is covered, the
whole region is completely covered. In [15] each node uses
this as a rule to determine if its coverage disk is completely
covered and if it should go to sleep. Zhang et al. [16] further
investigate what is the optimal location of a node to cover
a crossing point and then choose a node that is closest
to the optimal location to cover an uncovered crossing
point.
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To prolong the system lifetime, PEAS uses the same ba-
sic principle of turning off unused nodes to preserve energy.
However, in order to be both resilient against unpredictable
node failures in a harsh or even hostile environment, and
versatile under various degrees of deployment density, nodes
in PEAS do not keep any per-neighbor information. PEAS
utilizes a randomized wakeup algorithm that adapts to ob-
served node failure rate. Instead of counting the number of
neighbor nodes, a wakeup node in PEAS probes the space
surrounding itself to decide whether to go back to sleep or
not. This probing also controls the degree of overlapping
of the sensing areas of neighboring working nodes. It pre-
vents excessively dense working nodes and adapts to local
deployment topologies, as demonstrated in the quantitative
comparison in Section 5.4. Instead of relying on predefined
virtual grid (GAF), or information difficult to predict in a
harsh environment (such as the lifespan of a working node in
SPAN), PEAS design exploits randomization and adaptivity
to achieve simplicity and resiliency.

STEM [17] and S-MAC [18] exploit a different dimen-
sion to conserve energy. They control the duty cycles of
nodes to reduce the energy consumed in idle listening.
They are suitable for sensor networks where data traf-
fic happen infrequently, thus most of the time the radios
of nodes can be turned off. These energy saving tech-
niques in temporal dimension are orthogonal to the ones
in spatial dimension of PEAS. They can be combined
to achieve further energy efficiency, as demonstrated in
[17].

Energy can also be conserved through the MAC layer.
PAMAS [19] turns off the radio of a node when the traffic
is not addressed to it. TDMA is proposed to reduce the duty
cycle of nodes to save energy [20]. They do not address the
robustness and scalability issues PEAS considers.

There are different types of sensor hardware. WINS [21]
are powerful ones similar to mobile computers in wire-
less ad hoc networks. Medium-size ones include Rockwell
nodes [22]. Other nodes have very low cost and severely
constrained resources, including Berkeley Motes [1], smart
dust [23], piconet nodes [24]. PEAS has overhead and com-
plexities within the capabilities of all these hardware. It is
designed to run on even the low-end ones with very limited
resources.

7. Conclusion

It is becoming economically feasible to build large-scale
sensor networks with large quantities of inexpensive and
simple sensor nodes. In principle, the sheer scale of such
sensor networks may overcome the limitations of individ-
ual nodes by exploiting the collective behavior of sensors.
However, how to build a resilient, long-lived network with

unreliable, short-lived sensors remains a challenge. The real
operating environment can be harsh or even hostile; node
failures can become norms rather than exceptions. Existing
energy-saving protocols have not paid adequate attention to
address unexpected node failures in a sensor network built
on a large number of simple and fallible sensors.

This paper presents PEAS, a distributed and randomized
energy-saving protocol for sensor networks. The fully ran-
domized and asynchronous operations of PEAS ensure ro-
bustness in the presence of unexpected failures. The sim-
plified protocol operations and minimized maintained state
enhance robustness and make PEAS implementable on low-
end nodes. PEAS can keep the working node density approx-
imately constant independent of the total number of deployed
nodes, thus prolonging system lifetime proportionally. Our
simulations and analysis have confirmed the effectiveness of
the design.

8. Appendix

The proof is similar to that of Theorem 2 in [10]. The number
of cells N = ld/cd . Since each node is independently, ran-
domly placed into one of the cells, which has been studied in
occupancy theory [25]. The expected number of empty cells
[25]

E[µ0(n)] = N

(
1 − 1

N

)n

If each cell has at least one node, the number of empty
cells is 0. To make the above goes to 0 as l → ∞, we have

ln E[µ0(n)] = ln N + n ln

(
1 − 1

N

)

= d ln
l

c
+ n ln

(
1 − cd

ld

)

Since c/ l → 0 as l → ∞, the last term can be approxi-
mated by its Taylor expansion,

ln E[µ0(n)] ≈ d ln
l

c
− n

cd

ld

Given ncd = kld ln l, ln the above becomes

d ln
l

c
− k ln l = ln

1

cdlk−d

If k > d, then liml→∞ ln E[µ0(n)] → −∞, then
liml→∞ E[µ0(n)] = 0. This implies that each cell has at least
one node a.a.s., otherwise the expected number of empty cells
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would not approach 0. Note that in the above proof d can take
values of 1, 2 and 3, and Lemma 3.1 holds for one and three
dimension cases also.
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