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Abstract. Although data forwarding algorithms and protocols have been among the first set of issues explored in sensor networking, how to
reliably deliver sensing data through a vast field of small, vulnerable sensors remains a research challenge. In this paper we present GRAdient
Broadcast (GRAB), a new set of mechanisms and protocols which is designed specifically for robust data delivery in face of unreliable nodes
and fallible wireless links. Similar to previous work [12,13], GRAB builds and maintains a cost field, providing each sensor the direction
to forward sensing data. Different from all the previous approaches, however, GRAB forwards data along a band of interleaved mesh from
each source to the receiver. GRAB controls the width of the band by the amount of credit carried in each data message, allowing the sender
to adjust the robustness of data delivery. GRAB design harnesses the advantage of large scale and relies on the collective efforts of multiple
nodes to deliver data, without dependency on any individual ones. We have evaluated the GRAB performance through both analysis and
extensive simulation. Our analysis shows quantitatively the advantage of interleaved mesh over multiple parallel paths. Our simulation further
confirms the analysis results and shows that GRAB can successfully deliver over 90% of packets with relatively low energy cost, even under
the adverse conditions of 30% node failures compounded with 15% link message losses.
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1. Introduction

Recent technology advances in low-cost, low-power chip de-
signs have made the deployment of large-scale sensor net-
works economically feasible. Thousands or even millions of
small, inexpensive and low-power sensors, such as Berkeley-
Motes [6], can be quickly deployed to monitor a vast field. The-
sensors collectively sense the environment and deliver sens-
ing data via a wireless channel. In the near future such sensor
networks may play an important role in various applications
ranging from precision agriculture to disaster recovery and
military surveillance. On the other hand, the above-mentioned
potential applications also present great challenges to reliable
sensing data delivery. Severe operational conditions (e.g. rain,
fire, strong wind,or high temperature) may easily damage in-
dividual sensors, resulting in a constantly changing topology.
Wireless communications among these small, power-limited
sensor nodes are also prone to errors. Furthermore, the short
transmission range of small sensors means that sensing data
may travel a large number of hops to reach intended destina-
tions, with potential transmission errors and unexpected node
failures at each hop.

In this paper we propose GRAdient Broadcast (GRAB) to
address the problem of robust data forwarding to a data col-
lecting unit (called the sink) using unreliable sensor nodes
with error-prone wireless channels. The objects or events to
be monitored are called stimuli. All the sensor nodes that de-
tect the same stimulus collectively elect one that generates a
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sensing report on behalf of the group. We call such a node a
data source. The sink builds and maintains a cost field. Each
node keeps the cost for forwarding a packet from itself to the
sink. Nodes “closer” to the sink have smaller costs. Instead of
a sender appointing specific receivers to continue forwarding,
in GRAB each receiver decides whether it should forward a
packet by comparing its own cost to that of the sender. As a
result, sensing data follow the direction of descending cost to
reach the sink. Since multiple paths exist between a source and
the sink, a source assigns a credit to each report it sends out
to control the degree of path redundancy. The credit is some
extra budget that enables a packet to be forwarded over a mesh
of interleaved paths, each of which has a cost not greater than
the total budget of the credit plus the cost of the source.The
amount of credit determines the “width” of the mesh, thus the
degree of robustness and overhead.

GRAB design harnesses the advantage of large scale. It
achieves system robustness by relying on collective efforts
from multiple sensors without dependency on any individ-
ual one. A packet is forwarded over multiple paths, which
improves reliability. The interleaving of such paths provides
tolerance of node failures or link errors along any individ-
ual path, thus significantly increasing data delivery robustness
as shown by our analysis (Section 3.2). Since each receiver
decides whether it should forward a packet, the sender does
not need to keep state information about to which neighbor to
forward data. The elimination of such explicit path state also
removes the overhead and complexity in repairing paths for
failed nodes or broken links; a packet simply travels through
whichever working nodes to reach the sink.The credit provides
a control knob to tune the robustness degree and total cost.
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The rest of the paper is organized as follows: We present
the design of GRAB in Section 2 and analyze its robustness
and complexity in Section 3. In Section 4 we evaluate its per-
formance and compare it with an existing protocol [7]. Section
5 discusses the differences between GRAB and related efforts
in sensor networking. Section 6 summarizes the work and
sketches out our future plan.

2. GRAB data forwarding protocol

2.1. Design overview

In this paper we assume the following sensor network model
(as shown in figure 2): Large numbers of small, stationary
sensor nodes are deployed over a field. The user collects sens-
ing data via a stationary sink (at the bottom of the figure)
that communicates with the network. Each stimulus is de-
tected by multiple nearby sensor nodes and one of them gen-
erates reports as a source (at the upper left corner). Due to
the limited radio range, reports are forwarded over many hops
before reaching the sink. Nodes can tune their transmitting
powers to control how far the transmission may reach. Such
power adjustments save energy and reduce collisions when-
ever possible.1 The nodes use CSMA MAC to communicate,
which is less reliable than 802.11 DCF that has RTS/CTS/ACK
exchange. External noises and disturbances may further ex-
acerbate the channel quality. Due to the harsh environment,
sensor nodes suffer unpredictable, and possibly frequent
failures.

We use an example of one sink and one stimulus to illus-
trate how GRAB works. To collect data reports, the sink first
builds a cost field by propagating advertisement (ADV) pack-
ets in the network. The cost at a node is the minimum energy
overhead to forward a packet from this node to the sink along
a path. We assume each node can estimate the cost of sending
data to nearby neighbors (e.g., based on the signal-to-noise
ratio of neighbors’ transmissions). The costs of all nodes in
the network form the cost field.2 If we imagine each node be
elevated to a height proportional to its cost, the whole cost field
would look like a funnel (see figure 1):nodes “closer” to the
sink have smaller costs and are “lower”, while those “farther”
away have greater costs and are “higher”.

The cost field gives the global direction towards the sink
implicitly. When a node forwards a packet, it does not desig-
nate which nodes are the next hop. It simply includes its own
cost in the packet. Only neighbors with smaller costs may con-
tinue forwarding the packet. Neighbors with higher or equal
costs silently drop the packet because they are at the “wrong”
direction. Thus packets travel in a cost field like water flows
down to the bottom of a funnel: they follow the direction of de-

1 Some existing hardware [6] already have different levels of transmitting
power.

2 The cost may take different forms such as hop number, energy overhead or
even physical distance. The current energy form is meant to save the scarce
energy resources of nodes. The ADV packet may also carry user interests to
task sensor nodes.

Figure 1. The “shape” of the cost field is like a funnel, with the sink sitting at
the bottom. Packets follow the decreasing cost direction to reach the bottom
of the cost field, which is the sink.

Figure 2. The forwarding mesh starts from a source and ends at the sink.
The black nodes forward the packet to the sink collectively. Notice that some
nodes outside of the mesh also receive the packet but do not forward it.

creasing cost to reach the bottom of the cost field, which is the
sink. Multiple paths of decreasing cost exist; they interleave
and form a forwarding mesh.

The election of a source follows the same mechanism. We
want only one node to generate the report since it would be a
waste of resources if every node detecting the stimulus sends a
report. The stimulus creates a field of sensing signal strength,
the “shape” of which is similar to that of the cost field. Each
node broadcasts a message indicating its signal strength (with
some random delay to avoid collision). A node rebroadcasts
its signal strength whenever it hears a neighbor’s message
with a weaker signal, but stops broadcasting when it hears a
stronger one. This way, messages roll towards the center of the
signal strength field. Finally the node with the strongest signal
generates a report. We call this node the Center of Stimulus
(CoS).
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CoS election and data forwarding utilize the same concept
of gradient field where the intensity of a property varies over
distance. The differences are: The signal strength field already
exists in the physical world, whereas the cost field is an artifact
created by the sink; nodes farther to the stimulus have weaker
signals, but nodes farther to the sink have greater costs; when
a stimulus is detected, data come from all directions to the
center, but for forwarding, they come only from the direction
of the source.

Since usually more than enough paths of decreasing cost
exist, we want to limit the “width” of the forwarding mesh.
Otherwise the packet would follow every possible path of de-
creasing cost, creating excessive redundancy and wasting re-
sources. To control the “width”, a source assigns a credit α to
the packets it sends out. The credit is some extra budget that
can be consumed to forward the packet. The sum of the credit
and the source’ cost (i.e., α + Csource) is the total budget that
can be used to send a packet to the sink along a path. A packet
can take any path that requires a cost less than or equal to, but
not beyond the total budget.

The amount of credit controls the redundancy of the mesh
flexibly. If there is no credit, the packet can only be forwarded
along the single minimum cost path of the source; when more
credit is added to increase the budget, more paths are available
to deliver the packet. Such paths intertwine with the minimum
cost path and form the forwarding mesh dynamically through
the combined effect of the cost field and the credit value carried
in each packet (see figure 2 for an example).

A final point we would like to make before presenting the
design is the number of sources and sinks the GRAB design can
support. To simplify the presentation we use an example of one
stationary source (CoS) and one stationary sink. However we
point out that GRAB supports data forwarding from multiple,
mobile stimuli as well. When a stimulus, such as a tank, moves
to another location, a different CoS sensor is elected to generate
the report; the old CoS node stops reporting automatically
because it finds itself no longer at the center of the stimulus.
The case of multiple stimuli works in a similar way. The exact
details are not presented in this paper, which focuses on robust
data forwarding.

In the rest of this section, we give a brief summary in
Section 2.2 about an algorithm proposed in our previous work
[15] to build the cost field efficiently. Then we present the
GRAB forwarding algorithm in Section 2.3.

2.2. Building and maintaining the cost field

The cost field can be built in the following straightforward way.
A sink broadcasts an advertisement packet (ADV) announc-
ing a cost of 0. Each node initially has a cost of ∞. When
hearing an ADV packet containing the cost of the sender, a
node calculates its cost by adding the link cost between itself
and the sender to the sender’s advertised cost. It compares this
cost to the previously recorded one and sets the new cost as
the smaller of the two. Whenever it obtains a cost smaller than
the old one, it broadcasts an ADV packet containing the new

cost. The “rippling” of ADV packets from the sink outwards
builds the cost field for the sink.3

The problem with the above method is excessive ADV mes-
sages, which prevent it from scaling to large numbers of nodes.
Before a node settles with the minimum cost, it may hear many
ADV packets, each of which results in a smaller cost than the
previous one. Thus the node broadcasts many ADV packets.
To build the cost field in a scalable manner, we proposed a
waiting algorithm in [15] and proved that it ensures each node
broadcasts only once, and with its minimum cost.

A node’s cost depends on the topology. The topology
changes as nodes fail, exhaust energy, or new nodes are de-
ployed. The initially built cost field thus becomes inaccu-
rate. Although the GRAB forwarding protocol is highly ro-
bust against inaccuracies in cost field (we will see that in
Section 4), the cost field should be refreshed on time to keep
the forwarding efficient.

To avoid the overhead of periodic refreshing, we choose
an event-driven design. The sink keeps a profile about the
recent history of data reports from the source. It includes the
success ratio (packets are sequentially numbered so a sink
can calculate success ratio), the average consumed budget,
the average number of copies received per packet for recent
reports. Once a new packet is received, the sink compares the
parameters of the packet to those in the past. If a parameter
differs from its past by a certain threshold, the sink broadcasts
a new ADV packet to rebuild the cost field. Due to space limit,
more details are in a technical report [16].

The rationale behind the event-driven refreshing is that
topology changes bring variations in data delivery. By mon-
itoring certain parameters which reflect the quality of data
delivery, we can tell the amount of change that has happened.
Only major changes that make the data delivery deteriorate be-
yond acceptable levels trigger refreshings. The forwarding al-
gorithm itself is robust enough to withstand significant amount
of changes, which will be shown in Section 4.

Before we proceed to the forwarding algorithm, we want to
point out that [15] solves only the problem of building the cost
field. It does not address robust data delivery with unreliable
sensor nodes, which is the centerpiece of this paper.

2.3. Credit-based robust forwarding mesh

After the cost field is built, a source sends a report that carries
a “credit.” At each hop only nodes that have costs smaller
than the sender can forward the packet. To ensure a robust
forwarding mesh, we need to address three issues.

First, how to expand the mesh to a sufficient width quickly
starting from the source. To be robust, the mesh should be wide
enough to contain sufficient parallel nodes (paths). When there
are node failures or packet losses, a sufficient width ensures
some nodes can still deliver packets successfully to the next

3 This is originally how GRAB gets its name. “Gradient” stands for the cost,
the broadcast of gradients builds the cost field. Notice that although the same
word is used, the “gradient” here is completely different from that in [7],
where it stands for a vector pointing to a next hop neighbor.
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hop. Since there is only one node (the source) at the first hop,
we need to expand the mesh to a sufficient width quickly.
Otherwise, the delivery may fail before the mesh grows wide
enough.

Second, after establishing a sufficient width of the mesh,
how to maintain it. Since a node may fail unexpectedly or
may not receive the packet, the number of parallel nodes that
forward a packet tend to decrease from one hop to the next. If
no measure is taken to counteract this tendency, the mesh can
narrow down later.

Finally, how to prevent packets from traveling along some
devious paths or diverting too much from the direction of
the sink. For any sender, roughly half of its neighbors have
smaller costs. If all such directions of decreasing costs were
followed, the forwarding could diffuse into a sector-shape, in
which many packets divert significantly from the direction of
the sink. We want to stop packets from following such divert-
ing paths.

2.3.1. Solutions to the issues
To address the first two issues, we divide the total amount of
credit among different hops in a way where beginning hops can
consume larger shares of the credit, while later hops consume
some, but smaller shares. This is because the share of credit
a node receives decides whether it can expand the mesh. If a
node does not have any “bonus” to use but has only a budget
equal to its cost, it can reach only its next hop neighbor on the
minimum cost path, without expanding the mesh. When a node
has some “bonus” (credit) to use, it can consume more budget,
reaching more receivers, thus expanding the mesh. Beginning
hops use more credit to expand the mesh quickly while later
hops do not need as much credit because they do not need to
expand the mesh. However, they should also receive certain
credit to prevent the mesh “narrows down” due to node failures
and packet losses.

Now, how to solve the last issue? If a packet has been
following a quite devious path, or divert from the direction
of the sink too much, it will consume much credit, without
traveling proportionately close towards the sink. An anal-
ogy to this is spending most of a month’s budget in a few
days. Thus by comparing the remaining credit to the remain-
ing “distance” ahead, nodes can discover and terminate such
packets.

We achieve the desired division of credit among different
hops and detect diverting packets through one mechanism: a
threshold function indicating the relative “position” of a node
between the source and the sink. Each packet carries certain
dynamic state so that a node can calculate how much credit
remains unconsumed. The node then compares the remaining
credit to the threshold, thus discovering if the packet has al-
ready consumed too much credit, or there is still enough to
use. The format of the threshold function is chosen carefully
so that it divides the credit as required. We first describe what
are carried in a packet, then present the detailed forwarding
algorithm.

2.3.2. GRAB forwarding algorithm
A packet carries the following fields:

� α: the amount of credit assigned to the packet at the source.
It determines the “width” of the forwarding mesh. This field
does not change as the packet travels towards the sink.

� Csource: the cost of the source to send a packet to the sink. It
is used to calculate the threshold. This field does not change
at different hops, either.

� Pconsumed: the amount of budget that has been consumed
from the source to the current hop. It is the accumulative
sum of the initial cost used by the source to broadcast the
packet and the cost used to forward the packet at each hop.

� Csender: the cost of the current sender that broadcasts the
packet.

After a CoS assigns an α to a data report, it fills the above
three fields and broadcasts the packet. Since only receivers
with smaller costs may forward the packet at each hop, the
packet is forwarded by successive nodes of decreasing costs.
It cannot traverse back to the same node, thus loops will not
occur.

If a receiver finds its cost Creceiver less than Csender in a
report, it calculates and compares two values Rα and Rthresh as
follows.

Rα = α − αused

α
(1)

Rthresh =
(

Creceiver

Csource

)2

(2)

where

αused = Pconsumed + Creceiver − Csource (3)

In the above equations, αused stands for the amount of credit
that has been consumed, Pconsumed+Creceiver is the least amount
of total budget required should this node forward the packet via
any path to the sink successfully (See figure 3). This minimum
amount is achieved when the packet takes the minimum cost
path from this node to the sink. The “extra” amount of this to
Csource, is the credit consumed. So Rα represents the fraction

Figure 3. Calculating used credit: if a packet were to reach the sink through
the receiver, at least it needs a total budget of Pconsumed+Creceiver. This amount
less Csource is the amount of credit that has been used.



GRADIENT BROADCAST 289

of credit still available for this node and later hops. Rthresh

indicates the normalized “distance” from this node to the sink.
Both numbers range between 0 and 1.

The node then compares Rα to Rthresh. If Rα is greater than
Rthresh, we consider the node has sufficient credit to use. It
broadcasts at a power to reach multiple neighbors towards the
sink (we define neighbors with smaller costs as this node’s
nearer neighbors). The amount of the power depends on the
degree of robustness desired. A higher robustness requires
more nearer neighbors. In current design, we let the node
broadcast the packet at a power to reach three closest nearer
neighbors4. The node knows this power from the ADV mes-
sages it received during cost field building [15]. It increases
Pconsumed by the amount of budget that it is going to consume
in broadcasting and sets Csender to its cost. Then it broadcasts
the packet to reach those three nearer neighbors.

If Rα is smaller, however, the node does not have suffi-
cient credit and should forward the packet along its minimum
cost path to minimize the total cost. Thus the node sends the
packet to the next hop neighbor on its minimum cost path. It
sets Pconsumed and Csender in the packet accordingly. For com-
pleteness, the pseudo code is shown in the Appendix.

To reduce collisions, a forwarding node always waits for
some random time before sending the packet, so that neigh-
boring senders do not broadcast simultaneously and result in
collisions.

It is possible that a node receives multiple copies of the
same packet from different upstream nodes, and each copy
has enough credit to use. To suppress such duplicates, each
node maintains a cache which stores the signatures of recently
forwarded packets. The signature of a packet can be the header
of the packet, or a hash of the packet calculated on demand. It
serves as an identifier to distinguish packets. If the signature of
a received packet is found in the cache, the packet is dropped.
Notice that this is an optimization technique, not a fundamental
requirement of the design.

Although a number of parameters are needed in forward-
ing a packet, only α has impact on the delivery robustness and
needs to be set appropriately. Other parameters depend solely
on the topology and cannot be set arbitrarily. Generally speak-
ing, α should be large enough to ensure robustness but not too
big to cause excessive energy consumption. We will further
evaluation its impact in Section 4.1.1.

3. Theoretical analysis

In this section, we analyze how the chosen threshold function
favors beginning hops and gives them more shares of the credit
to allow quick expansion of the mesh. Then we compare the ro-
bustness of interleaved forwarding mesh and multiple disjoint
paths. Finally we give the complexities of the algorithm.

4 We call the number of nearer neighbors to reach the branching factor .
It represents a tradeoff between robustness and energy. Experiments and
analysis in Section 3.2 show that three is an appropriate number.

3.1. Credit division among different hops

We derive the maximum share of credit a hop can consume
under the requirement that sufficient credit remain at each hop.
This is achieved when the remaining credit ratio Rα is equal to
threshold Rthresh. To simplify the analysis, we use the following
simple model: There is a chain of nodes from a CoS to the sink;
the cost of each node is proportional to the number of hops to
the sink. Denote node A’s cost as CA. We have

α − (Pconsumed + CA − Csource)

α
=

(
CA

Csource

)2

(4)

Pconsumed = −CA − α ·
(

CA

Csource

)2

+ α + Csource (5)

Taking derivatives for Pconsumed, we have

∂ Pconsumed

∂CA
= −

(
1 + 2α

CA

C2
source

)
.

Then, the allowed energy consumption at a hop is:

�Pconsumed = −�CA − 2α
�CA

C2
source

CA (6)

In equation (6), �Pconsumed is the amount of budget that
can be consumed at A. It consists of two parts: �CA denotes
the minimum required budget to go to the next hop, which is
the link cost to the next hop. 2α �CA

C2
source

CA is the share of credit
that can be used at this hop. Because �CA, α and Csource are
constant, the share of credit is proportional to CA. Thus the
higher a node’s cost, the more credit it can use.

Although the above analysis is based on a simplified model,
it shows quantitatively that nodes closer to the source generally
can use more credit than those farther away. Therefore, the
forwarding mesh can expand aggressively initially, while still
having some credit later to maintain the width. We will explore
other forms of threshold function in Section 4.

3.2. Interleaving paths add to robustness

GRAB achieves robustness through the redundancy in the
mesh. We carefully make the design choices so that the paths in
the mesh are implicit and interleaving. By implicit we mean a
sender does not appoint which neighbors should continue for-
warding the packet. It is up to each receiver to decide whether
or not it should forward. When some neighbors fail or there are
packet losses, the sender still performs the same operations.
As long as some surviving neighbors receive the packet, they
can continue forwarding to the next hop. The lack of explicit
path state eliminates the need to repair broken paths.

By interleaving we mean these paths are not disjoint, but
intersect with each other. This is more robust than multiple dis-
joint paths, where a single node failure or packet loss destroys
the forwarding on a path and each path still has a high proba-
bility to fail when there are many hops between the source and
the sink. In contrast, interleaving paths recover the node fail-
ures and packet losses of each other. For example (figure 4(A)),
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Figure 4. A: any single node failure or packet loss ruins a single path; B:
interleaving paths can recover each other from failures or packet losses.

there exist three disjoint paths A1-A2-A3, B1-B2-B3 and C1-
C2-C3. If A2 fails and both B3 and C2 do not receive the
packet, all three paths fail to deliver the packet. In contrast
(figure 4(B)), given the same failure of A2 and packet losses
at B3 and C2, A3 and C3 can still receive from the broadcast
of B2. Thus path A and C can be recovered by B2. Similarly,
path B can be recovered by broadcasts from A3 or C3 later.

We quantify the robustness against packet losses and node
failures using the following model: There are m nodes at each
hop; all the m nodes at hop 0 send the packet. In GRAB, each
node sends to all the m nodes at the next hop; in multiple
disjoint paths, each node sends to only one node at the next
hop (illustrated in figure 5). The probabilities of node failure
and packet loss on a link are f , e. We want to derive Pd

fail(N ),
Pg

fail(N ) the probabilities that the packet fail to reach any node
at hop N for disjoint paths and GRAB. Denote the probability
that the packet reaches at least one node at hop N as Psucc(N ).
It is obvious that 1 − Pfail(N ) = Psucc(N ).

First we consider packet losses, assuming f = 0. We have

Pd
fail(N ) = (1 − (1 − e)N )m (7)

For an interleaved forwarding mesh, we further define p(i, j)
as the probability that i nodes at a hop send the packet and j
nodes on the next hop receive it; F(i, j) as the probability that
at hop 0 i nodes send the packet, at hop j no node receive the
packet and at hop j − 1 at least one node receives the packet,

Figure 5. A: forwarding model for disjoint multiple paths B: forwarding
model for interleaving paths of GRAB.

Figure 6. The probability that the packet fails to reach hop N as a function
of hop number N , for different packet loss rate e. m is fixed at 3.

i.e., the forwarding fails at “exactly” hop j . Thus

Pg
fail(N ) =

N∑
i=1

F(m, i) (8)

We have the following recursive equations


F(i, 1) = p(i, 0) i = 0, 1, 2, . . . , m

F(i, N ) =
m∑

j=1

p(i, j)F( j, N − 1)

where 


p(0, 0) = 1
p(0, j) = 0 j �= 0

p(i, j) =
(

j
m

)
(1 − ei ) j (ei )m− j i �= 0

Given the values of the parameters, we can solve the recursive
equations numerically and compare the robustness of GRAB
and disjoint paths. Figure 6 plots the Pfail(N ) for both GRAB
and disjoint paths, given that each hop has 3 nodes. For disjoint
paths, after 25 hops, more than 90% of the packets are lost.
Even a small e of 0.1 does not help much: After 40 hops, more
than 95% packets are lost. In contrast, for the interleaved mesh
in GRAB, even with e = 0.4, only 13% packets are lost after
40 hops. For smaller e’s, more than 95% packets can travel as
far as 200 hops. The above shows that an interleaved mesh is
significantly more robust than disjoint paths.

Increasing m, the number of nodes in a row, can help disjoint
paths, but only to quite limited extend. Figure 7 gives the
Pfail(N ) of GRAB and disjoint paths with different m’s, given
a fixed e of 0.3. When the number of paths increases from
2 to 4, packets do not travel much farther in disjoint paths.
After 12 hops, more than 90% of the packets are lost even
with 4 disjoint paths. For GRAB, even there are only 2 nodes
in a row, it is after 80 hops that the same amount of packets
are lost. When one more node is added to each row, the results
improve more than a magnitude: 95% of the packets can travel
more than 200 hops.5 When m increases to 4, Pg

fail is almost

5 This result, together with experiments, is the reason why we choose three
as the branching factor.
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Figure 7. The probability that the packet fails to reach hop N as a function
of hop number N , for different number of nodes in a row m. e is fixed at 0.3.

Figure 8. The probability that the packet fails to reach hop N as a function
of hop number N , for different node failure rates f , and m is fixed at 3.

negligible. The above shows that increasing parallelism does
not help disjoint paths much, but improves the robustness of
an interleaved mesh drastically.

Next we consider node failures without packet loss. We
have

Pd
fail(N ) = (1 − (1 − f )N )m (9)

Pg
fail(N ) = 1 − (1 − f m)N (10)

Figure 8 plots the Pfail(N ) for both schemes under node failure
rates ( f ) of 0.1, 0.2 and 0.3, with the number of nodes in a
row (m) fixed at 3. When f = 0.3, for disjoint paths, after 9
hops more than 90% packets are lost; for GRAB it is after
85 hops. Comparisons under other node failure rates reveal
the same observation: GRAB is magnitudes more robust than
disjoint paths under node failures. Similarly, in figure 9, we
fix f = 0.2 and vary m from 2 to 4, see how the increased
parallelism improves robustness for GRAB and disjoint paths.
We have the same observation that increasing m improves the
robustness of GRAB drastically but only slightly for disjoint
paths.

The robustness of GRAB, as shown in evaluation (Sec-
tion 4), is less than the above simple analysis due to a number

Figure 9. The probability that the packet fails to reach hop N as a function
of hop number N , for different numbers of nodes in a row m, and f is fixed
at 0.2.

of factors: Not each node can send to multiple neighbors; pack-
ets may collide with each other; the combined effect of node
failure and packet loss, etc. Nevertheless, it still demonstrates
the advantage of implicit and interleaving paths over disjoint
ones.

3.3. Complexities of the forwarding algorithm

For each sink, a node A has O(1) state, including its cost CA

to reach the sink, the cost to reach the closest three nearer
neighbors. Other states such as Csource and the credit α are
carried in the packet, not kept by any node. Thus the state
complexity is independent of the number of sources. The state
complexity is proportional to the number of sinks. When there
are n sinks, the state is O(n). Note that the cache is of constant
size and independent of the number of sources or sinks.

The computing overhead for each data report is constant.
For each report, a node needs to compute both the remaining
credit ratio Rα and the threshold Rthresh, each of which re-
quires a constant amount of calculation. When there are node
failures or packet losses, each node still performs the same op-
erations as before. There is no computation to find new paths
to replace broken ones. Thus the total computing overhead is
proportional to the number of packets a node has to forward.

The energy overhead consists of two parts, forwarding and
cost field building. For each data report, a node sends it only
once due to the duplicate suppression. Thus the energy used
in forwarding is proportional to the number of data reports.
For cost field building, we prove in [15] that a node broadcasts
only once for each refreshing of the cost field. Thus this part
of energy is proportional to the number of times that the cost
field is refreshed and the number of sinks.

4. Performance evaluation

In this section we evaluate the performance of GRAB through
simulations. We implemented GRAB forwarding protocol in
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Parsec [10] due to its ability to scale to large numbers of
nodes. We select sensor hardware parameters similar to Berke-
ley motes [6]. The maximum transmission range of a node is
10 meters, each node can adjusts its transmitting power to
reach a given range. We simulated our test scenarios under
both the two ray ground and the free space signal propagation
models. Due to space limitation we present the results from
the former only.6 The power consumptions of full power trans-
mitting, receiving and idling are 60 mW, 12 mW and 12 mW.
The transmission (receiving) time for a packet is 10 ms.

In most scenarios, we use a field size of 150 × 150 m2 where
1200 nodes are uniformly distributed. One sink and one source
sit in opposite corners of the field. The source generates a report
packet every 10 seconds. In each run 100 reports are generated.
The average number of hops of the source’ minimum hop path
and minimum cost path are about 30, 70, respectively. Packet
losses are simulated by a probability of dropping the packet
at the receiver. Packet loss rate is defined as the probability.
Node failures are uniformly distributed over time. The fraction
of failed nodes is defined as the node failure rate.

To test if GRAB achieves its goal in robust data delivery,
we measure the success ratio, which is the ratio of the num-
ber of report packets successfully received at the sink to the
total number generated at the source. It indicates the degree of
robustness of GRAB to forward data in the presence of node
failures and packet losses. To see if GRAB satisfies robust-
ness at the cost of excessive overhead, we also measure total
energy consumption and control packet overhead. Total en-
ergy consumption is the total amount of energy consumed in
the simulation. It shows how much energy GRAB incurs for
robust data delivery. Control packet overhead is the number
of control packets in the simulation. The results are averaged
over 10 different runs.

We first evaluate the impact of control parameters, includ-
ing the amount of credit and the threshold function; then the
impact of various environmental settings, including node fail-
ure rate, packet loss rate, node density and the size of the field.
Finally we compare GRAB with Directed Diffusion [7].

4.1. Impact of control parameters

4.1.1. Different amounts of credit α

The amount of credit directly affects the degree of robustness.
To find how much credit α is enough for robust delivery, we
vary the amount of credit from 1 to 10 times that of the source’
cost to reach the sink. A fixed 15% node failure and a fixed
15% packet loss rate are present in all runs.

Figure 10 shows the success ratio as a function of α, which
is normalized to the source’ cost. When the credit is small, the
chance of successful delivery is also very small. When α ≤ 2,
almost all reports are lost. This is because there are many
hops (around 70) from the source to the sink, along which
node failures and packet losses happen frequently. When α

increases, the success ratio improves steadily. α = 5 gives an
80% success ratio. When the amount of credit is sufficient, the

6 Results from the free space model are similar.

Figure 10. Success ratio for different α.

Figure 11. Energy consumption for different α.

forwarding is very robust. For α ≥ 6, over 95% report packets
are successfully delivered to the sink7. This shows that credit
decides the degree of robustness. A sufficient credit ensure
good robustness.

To find whether GRAB consumes excessive energy to en-
sure robustness, figure 11 gives the total energy consumption
as a function ofα. Whenα is small (α = 1), about 16050 Joules
are consumed. As α increases, the total energy also increases.
At α = 4, total energy reaches 16058 Joules, which is 8 Joules
more. This is because more energy is used in data delivery and
building the cost field. When α ≥ 6, the total energy decreases
to 16054 Joules. The fluctuation is very small compared to the
total amount. Thus GRAB is efficient and does not achieve
robustness at the cost of excessive energy consumption.

7 A sufficient α ≥ 6 because we use transmitting energy as the cost. It does
not mean 6 times more total energy is consumed. In two-ray ground model,
the transmitting power increases linearly to the 4th power of distance. Six
times in power means 1.56 times in distance on average. In free space model,
α ≥ 1.2 is sufficient under the same topologies.
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Figure 12. Control packet number for different α.

The decrease of total energy when α is high is a little
counter-intuitive because more data packets are successfully
delivered and more energy should be used. Actually the de-
crease comes from the reduced control packets. Figure 12
shows the control packet overhead. When α is small (≤ 2)
or big (≥6), the delivery quality is constantly low or high.
The measured parameters about delivery quality at the sink
seldom differ from their recent history beyond the thresholds.
Thus less refreshings happen, and less total energy consump-
tion. The number of control packet is below 3100, and on
average less than 3 cost field (re)buildings happen. When α is
medium (from 3 to 5), the delivery quality is not stable, and
the measured parameters differ from their recent averages be-
yond the thresholds more often, triggering more refreshings
and thus more energy consumption. The number of control
packets reaches 11500, and about 10 cost field (re)buildings
happen.

The different control packet overhead also shows that the
event-driven cost field refreshing can adapt to the delivery
quality. When the delivery quality is stable(either constantly
low or constantly high), more refreshings cannot improve
the success ratio much(the improvement is less than 1%). So
GRAB has less refreshings. When the delivery quality is not
stable, the sink refreshes the cost field more often, thus more
packets which otherwise could not reach the sink are success-
fully delivered(the improvement is about 10%).

4.1.2. Different threshold functions
The form of the threshold function decides how credit is al-
loted among different hops. We evaluate four different thresh-
old functions: (CA/Csource), (CA/Csource)2, (CA/Csource)3 and
(CA/Csource)4, where CA is the cost of the receiving node
A and Csource is the cost of the source to reach the sink.
We repeat the same simulations in Section 4.1.1. The suc-
cess ratio, energy consumption and control packet overhead
are shown in figures 13, 14 and 15, respectively. The suc-
cess ratios for the threshold (CA/Csource) is smaller than the
those of the other three. Its energy consumption and control

Figure 13. Success ratio for different threshold functions.

Figure 14. Energy consumption for different threshold functions.

Figure 15. Control packet number for different threshold functions.
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Figure 16. Success ratio for node failures and success ratio for packet losses.

packet overhead are obviously higher, while the other three
have similar energy consumption and control packet overhead.
The metrics do not change much for the latter three thresh-
old functions((CA/Csource)2, (CA/Csource)3 and (CA/Csource)4).
This is because they all give more credit to beginning hops and
still allot some amount to later hops8. Thus the forwarding
mesh can expand quickly and maintain a certain width later.

4.2. Impact of environmental settings

4.2.1. Node failures and packet losses
We evaluate the robustness of GRAB by studying how node
failures and packet losses affect the success ratio in this section.
We first vary the node failure rate from 5% to 50%, while using
a fixed 15% packet loss rate. Then we vary the packet loss rate
from 5% to 50%, while using a fixed 15% node failure rate.
The amount of credit α is set to 6. This is the value that achieves
higher than 95% success ratio in the previous section.

Figure 16 shows the success ratio as functions of node fail-
ure rate and packet loss rate. We first look at the impact of
node failures. The success ratio is above 95% for node fail-
ure rates of up to 20%. As the node failure rate continues to
increase, although the success ratio tends to decrease, GRAB
still maintains very high degrees of robustness. The success
ratio remains above 85% when 35% nodes fail, and is around
70% in the extreme case when half of the nodes fail. This shows
that GRAB is robust even with severe node failures. For packet
loss rates of up to 25%, the success ratio is above 90%. After
25%, the success ratio drops quickly. With a packet loss rate of
65%, the success ratio is about 67%. Compared to node failure
cases, GRAB is less robust when the packet loss rate is high.
This is because no acknowledgment or retransmission is used
to recover a lost packet in CSMA MAC. For node failures,
however, as long as there are still enough surviving nodes, a
cost field refreshing can resume data delivery. Nevertheless,

8 Similar analysis on credit allotment can be made by following the analysis
in Section 2.3.2.

Figure 17. Energy consumption for node failures and energy consumption
for packet losses.

GRAB delivers over 80% reports successfully for node failure
rates or packet loss rates of up to 30%. The high success ratio
also demonstrates that GRAB is highly tolerate to inaccurate
cost fields because node failures and packet losses both cause
inaccuracies during cost field building.

The energy consumptions are shown in figure 17. When
node failure increases, the energy decreases linearly. This is
because the idle energy dominates the total energy consump-
tion. A higher node failure rates means more node failures, thus
proportionally less energy consumption. For different packet
loss rates, the energy remains almost constant around 16054,
increasing less than 6 Joules as the packet loss rate grows from
5 to 50%. Again, although less energy is consumed for data
delivery, more is spent in rebuilding the cost field. Thus the
total energy increases a little.

4.2.2. Impact of node density
To find how the density of nodes can affect the robustness
of GRAB, we keep the field size 150 × 150 m2, while vary-
ing the number of nodes from 600 to 1800. The node fail-
ure rate and the packet loss rate are both 15%. Figure 18
shows how the success ratio changes over different node num-
bers. The success ratio is low for node numbers of 600 and
750. The reason for the initial low success ratios is that there
are not enough nearer neighbors when node density is low.
The variations in topology further exacerbates the situation.
Thus the forwarding stops where there are not enough nearer
neighbors to combat node failures and packet losses. How-
ever, starting from 900 nodes, the success ratio remains high
above 90% for all the remaining densities. Since the total en-
ergy depends on the number of nodes, we normalize it to the
energy consumption per node. It remains constant at around
13.4 Joules.

4.2.3. Impact of field size: Scalability
We study how well GRAB scales to large numbers of hops
for data delivery. We keep the average node density the same
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Figure 18. Success ratio for different node densities.

while varying the field from 50 × 50 m2 to 250 × 250 m2. The
number of hops between the source and the sink changes in
proportion, from about 25 hops to about 135 hops. Both the
node failure rate and the packet loss rate are fixed at 15%.

We find that regardless of the field size, the success ratio is
always around 90%9. This demonstrates that GRAB ensures
robustness of data delivery over large number of hops.

4.3. Comparison with diffusion

We also implemented GRAB in ns210 and compared its per-
formance with Directed diffusion. There are 256 nodes in
a 1600 × 1600 m2 field. A source and a sink sit in op-
posite corners of the field. Whenever possible, GRAB uses
the same parameters as used in ns2 diffusion code. The
transmitting, receiving and idling power consumptions are
0.66 W, 0.395W, 0.035W, respectively. The source gen-
erates a report every half second. One difference is that
GRAB uses CSMA for communication11. It is less reliable
than the 802.11 DCF MAC used by diffusion, which has
RTS/CTS/ACK.

We evaluated their performance under three kinds of node
failure models: uniform node failure, in which node failures
are uniformly distributed over time. Sudden node failure, in
which a randomly chosen set of nodes all fail at the same
time. This is to simulate some abrupt massive failure. Transient
node failure is similar to that in [7]. A randomly chosen set of
nodes are turned off for 7 seconds, then another set is chosen
and turned off, and so on. This creates lots of dynamics in
the network and tests how well the protocols can handle such
dynamics.

9 The only exception is for 50 × 50 m2 field, where the variation in topology
caused a disconnected source in one run. The average success ratio would
be 96% excluding the exception.

10 Ns2 network simulator. http://www.isi.edu/nsnam/ns/.
11 As mentioned in Section 2.3.2, a sender randomly waits for some time

before passing a packet to MAC to reduce collisions

Due to the space limitation, we only present the success ra-
tio and energy consumption per successful report.12 GRAB
maintains robust data delivery under all three node failure
models. Its success ratio is always above or around 90%. Dif-
fusion has high success ratio for uniform node failures. The
success ratio decreases when the node failures are sudden. It
drops significantly to about 50% when there are transient node
failures. This is because diffusion relies on reinforcements to
repair broken paths. When there are high dynamics, the paths
break more frequently and thus more data are lost. Overall
GRAB’s robustness is not affected much by different types
of node failures, and this robustness is achieved with a less
reliable CSMA MAC.

For GRAB, the energy per successful report tends to de-
crease as more nodes fail. This is because less nodes are alive
to forward, thus less energy is consumed. The energy does not
change much for all three failure models. Diffusion has almost
the same energy consumption as GRAB for the sudden fail-
ure model. It consumes slightly more energy for uniform node
failures, and significantly more for transient failures. This is
because fewer reports are successfully delivered to the sink
in the latter two failure models, thus energy consumption per
successful report increases. The abnormal energy drop for dif-
fusion with 20% transient nodes failures is because much less
reports are delivered and less energy is consumed compared
to 16% failure case.

5. Related work

There have been a plethora of research efforts in sensor net-
working area in the last few years. In this section we describe
the basic differences between the existing work and GRAB
design.

Directed diffusion [7] is a data forwarding protocol de-
signed for sensor networks where a sink floods its interests
to build reverse paths from all potential sources to the sink.
GRAB also builds a field, but it is a scalar field of cost values,
not one of reverse path vectors. Diffusion uses reinforcement
and negative reinforcement mechanisms to select a high qual-
ity path for the data flow from each source and deactivate low
quality ones. Braided diffusion [4] is a variant of directed dif-
fusion. It maintains multiple “braided” paths as backup. When
a node on the primary path fails, data can go on an alternate
path. Both Directed diffusion and Braided diffusion establish
explicit paths to forward data; each node forwards data to a
specific next hop neighbor. In contract, a sender in GRAB sim-
ply transmits data to the radio channel without appointing any
neighbor as the next hop; each receiving node independently
decides whether it should further forward the data. There is
no explicit path in GRAB; data simply follows whichever sur-
viving nodes to reach the destination.

12 We do not use the total energy consumption here because the two protocols
delivers different numbers of successful reports, thus total energy does not
reflect the efficiency of them. The per report energy is more meaningful. It
tells to successfully deliver a packet, how much energy a protocol needs to
consume
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Figure 19. The success ratio of GRAB and diffusion under different node
failure models.

Figure 20. The energy consumption per successful report of GRAB and dif-
fusion under different node failure models.

Diffusion combats against errors and failures by periodi-
cally flooding data to repair the paths. GRAB achieves robust-
ness by exploiting the redundancy from interleaving paths in
the forwarding mesh. Diffusion detects forwarding loops by
caching previous packets. In GRAB, because packets can only
go along the decreasing cost direction (toward the sink), no
loop can form.

TTDD [17] solves the problem to delivering data to mobile
sinks that are in constant motion. It builds a grid structure for
each source. The impact of a mobile sink is confined within
a local cell. Data delivery and query forwarding traverse the
grid tier and the local cell tier in reverse order. TTDD does
not address the robustness issue. Only a single path is used to
forward data.

Both Diffusion and TTDD work with 802.11 DCF MAC
which has RTS/CTS/ACK. They have yet to demonstrate their
robustness using nodes with less reliable CSMA MACs.

Cost has been used in other related work. Compared to
them, GRAB has the waiting algorithm [15] that builds the
cost field in a scalable fashion. Gradient Routing [12] also
builds and uses a cost field. But it does not control the degree
of redundancy in data forwarding. When a sender broadcasts

a packet, all neighboring nodes with lower costs forward the
packet. In GRAB, the credit carried in each packet effectively
controls the width of the forwarding mesh, thus the degree of
redundancy and energy consumption. In Energy Aware Rout-
ing [13], the sender picks a neighbor to forward the packet with
a probability inverse proportional to its cost. Each packet trav-
els on a different single path, thus the load is balanced among
multiple paths. GRAB uses multiple interleaving paths simul-
taneously, and the sender does not decide which neighbor to
continue forwarding. ReInForm [3] uses the cost in another
way: Each sender calculates and includes the probabilities for
its neighbors to forward the packet when broadcasting. Each
neighbor forwards with the corresponding probability. The
probabilities control the degree of redundancy to achieve a
desired end-to-end success ratio. GRAB uses credit to con-
trol redundancy, and without an explicit specification of the
end-to-end reliability.

Chen et al. [1] used “ticket”, an idea similar to credit, in QoS
routing for ad hoc networks to search paths that satisfy delay
or bandwidth requirements. The number of tickets carried in a
packet decides the number of copies that can be spawn and each
copy discover at most one path. Since all paths satisfy the QoS
requirement, only one of them is needed for data delivery. The
credit of GRAB does not specify the number of paths directly;
it translates into the degree of redundancy under the interaction
with the cost field. For robustness, multiple interleaving paths
are used to forward data in parallel. There is no path state kept
in each node about which is the next hop.

The cost field enables greedy forwarding in which the next
hop is the neighbor “closest” to the destination. GPSR [9] is
a geographical greedy routing protocol that can route packets
around “holes” using a planar graph. Compared to that, the
cost field in GRAB does not have “holes”. As long as a path
exist, there is always a neighbor with a smaller cost than the
sender at each hop. Also, GRAB uses multiple interleaving
paths simultaneously to forward packets.

Redundant mesh forwarding is also proposed in [2,5] for ro-
bust multicast delivery in wireless ad hoc networks. However
these designs exchange control messages to establish explicit
path state at each node; each node has to maintain the state to
identify whether it is within the mesh. In contrast, the forward-
ing mesh in GRAB is dynamically formed by the combined
effect of the cost field and the credit value carried in each
packet, without keeping any explicit state at each node about
whether it is within the mesh.

Routing has been a very active research area in the con-
text of ad hoc networks, many proposals have appeared in
the literature [8,11]. However, they are not designed for sen-
sor networks and do not address the unique issues in sensor
networks.

6. Conclusions and future work

As the deployment of large scale sensor networks emerges
on the horizon today, we are facing new research challenges
of providing reliable sensing and robust data delivery via
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vast numbers of potentially unreliable sensors. Compared to
data networks in general, individual sensors have much lower
utilization but potentially much higher failure rate. These
special requirements demand new solutions to reliable data
delivery.

In this paper, we presented the GRAB design which en-
sures robust data delivery over large numbers of hops of small,
unreliable sensor nodes and error-prone wireless channels.
GRAB exploits the large scale property of sensor networks
and achieves robust data delivery through controlled mesh
forwarding. GRAB builds and maintains a cost field for each
destination. It controls the “width” of the forwarding mesh,
thus the degree of redundancy, by the amount of credit carried
in each data packet. Analysis and extensive simulations con-
firmed GRAB’s effectiveness in providing reliable delivery
under severe operational conditions, demonstrating the prin-
ciple that a reliable system can be built out of unreliable com-
ponents.

We plan to further improve GRAB to make the credit
assignment adaptive. The sink may include some informa-
tion that reflects recent data delivery quality when sending
ADV packets. A source can use this feedback to choose an
appropriate credit to adapt to network conditions. In addi-
tion, the allotment of credit among different hops can also
adapt to local failure and noise characteristics. Nodes in a
neighborhood with more severe conditions can use greater
shares of the credit if they can measure local failures or packet
losses.

So far we have been focusing on one stationary sink. When
there are multiple sinks, each needs to build its own cost field.
Every node keeps one cost per sink. This per-sink state may not
allow GRAB to scale to large numbers of sinks directly. Sink
mobility is not well addressed in the current design, either. The
straightforward solution of re-building the cost field whenever
the sink moves may consume excessive energy and bandwidth.
Actually, only when the sink moves far away from its location
is a totally new cost field needed. If the mobility is low, the
sink may leave a “trace” as it moves, by installing state in
intermediate nodes. Data reaching its old location follow the
trace to reach the mobile sink. Another possibility is to set up
relatively stable landmarks [14] and each mobile sink maintain
data forwarding paths from the nearest landmark. Data are
attracted to landmarks first, then distributed toward mobile
sinks. We plan to further investigate multiple, mobile sinks in
the future.
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Appendix

Pseudo code for GRAB forwarding algorithm.

Table 1
Pseudo code for forwarding.

Forward a received packet REP
/∗ comparing its own cost to that of the sender ∗/
if(Creceiver ≥ REP.Csender)

/∗ drop the packet if its cost is higher or equal ∗/
drop the packet;

else {
/∗ calculate how much credit has been used ∗/
αused = REP.Pconsumed + Creceiver − REP.Csource

/∗ calculate remaining credit ratio ∗/
Rα = REP.α−αused

REP.α

/∗ calculate the threshold ∗/
Rthresh = ( Creceiver

REP.Csource
)2

/∗ forward the packet if remaining is greater ∗/
if(Rα ≥ Rthresh) {

/∗ increase the total consumed cost by how ∗/
/∗ much this node uses to broadcast REP ∗/
REP.Pconsumed = REP.Pconsumed + Pthishop

include its own cost in REP;
broadcast REP to reach three nearer neighbors;

}
else {

update REP.Pconsumed similarly;
include its own cost in REP;
broadcast REP to reach only next hop neighbor

}
}
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