
An Empirical Study of High Availability in Stream
Processing Systems

Yu Gu∗

Department of Computer
Science and Engineering
University of Minnesota
yugu@cs.umn.edu

Zhe Zhang∗

Department of Computer
Science

North Carolina State
University

zzhang3@ncsu.edu

Fan Ye
IBM T.J. Watson Research

Center
Hawthorne, NY USA

fanye@us.ibm.com

Hao Yang
IBM T.J. Watson Research

Center
Hawthorne, NY USA

haoyang@us.ibm.com

Minkyong Kim
IBM T.J. Watson Research

Center
Hawthorne, NY USA

minkyong@us.ibm.com

Hui Lei
IBM T.J. Watson Research

Center
Hawthorne, NY USA
hlei@us.ibm.com

Zhen Liu
Nokia Research China Lab

Beijing, China

zhnliu@yahoo.com

ABSTRACT
High availability (HA) is critical for many stream process-
ing applications such as financial data analysis and disaster
response. Existing HA schemes use either active standby
or passive standby to guard the system against unexpected
failures such as machine crash. Despite previous efforts of
simulation-based studies that report active standby is supe-
rior, there is a lack of in-depth understanding of the tradeoff
between different HA approaches under practical settings.
In this paper, we propose a novel sweeping checkpointing
method that can reduce the overhead by one order of magni-
tude. Whereas most previous work addresses single failures,
we prove that the sweeping checkpointing method ensures no
loss of data even against multiple concurrent failures. We
then implement and compare the resulting passive standby
variant against active standby using a real stream process-
ing system. We find that passive standby presents a different
tradeoff from active standby: longer recovery time, but 90%
less overhead. Thus each approach has its suitable scenar-
ios.
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1. INTRODUCTION
Stream processing systems have become increasingly pop-
ular for real-time analysis of massive and continuous data
streams in a wide range of application scenarios, such as
financial analysis, disaster response and network intrusion
detection. In these systems, multiple stream processing jobs
run on a cluster of machines interconnected with high speed
networks. One job may contain many processing elements
and run on multiple machines.

High availability (HA) is a critical issue for stream process-
ing systems to provide continuous and uninterrupted oper-
ation for mission-critical applications against failures such
as machine crash. There are two general HA approaches,
namely active standby and passive standby. In active standby,
two or more copies of the same job run independently on dif-
ferent machines, and the failure of one copy does not affect
the other. In passive standby, a primary copy periodically
checkpoints its state to another machine, and recovers from
that machine once failures happen. Most stream processing
systems adopt one of the approaches and apply it in their
specific context [3, 6, 13, 16].

Despite the fact that AS and PS are two basic approaches,
the design and performance tradeoffs between them are not
fully understood. One notable exception is the work of
Hwang et al [10, 11], which reported that active standby is
superior to passive standby as it can achieve much shorter
recovery time with a similar amount of overhead. However,
that work is based on analysis and simulation, therefore it



could not take into account all the delicacies of a real sys-
tem. Further, it is not clear whether AS/PS variants other
than the ones chosen in [10, 11] would lead to the same con-
clusion. These cast doubts on the generality of the findings.

In this paper, we examine the variants evaluated before and
propose a novel sweeping checkpointing method that can re-
duce the checkpointing overhead by one order of magnitude.
As a result, passive standby may present a different perfor-
mance tradeoff compared to active standby: longer recovery
delay, but less overhead. This is preferable for applications
that are less sensitive to delays but demand efficiency. We
then conduct an experimental study of active and passive
standby using a real stream processing system. We find that
while active standby provides fast recovery, it can incur sig-
nificantly more processing and message overhead. This is
in contrast to the findings in [10, 11] that PS incurs similar
message overhead as AS and being slower in failure recovery.

We have made three contributions in this work. First, to
the best of our knowledge, we are the first to propose the
sweeping checkpoint method, which can reduce the check-
point overhead by one order of magnitude. Second, we also
prove that it can ensure no loss of data against multiple con-
current failures, whereas previous studies in [10, 11] focus on
single failures only. Third, we have implemented and eval-
uated the sweeping checkpoint method and compared the
performance of the resulting PS and AS. The discoveries
make it clear that PS and AS present different performance
tradeoffs and each has its suitable scenarios.

The rest of the paper is organized as follows: Section 2
presents the stream processing model and the assumptions
we make for the investigation. In Section 3, we briefly re-
view active and passive standby, then describe our sweeping
checkpointing, and prove its ability to ensure no loss of data
against multiple concurrent failures. We describe the system
implementation in Section 4, then we provide a comprehen-
sive evaluation of AS and PS (with different checkpointing
methods) in Section 5. We summarize related work in Sec-
tion 6 and conclude the paper in Section 7.

2. STREAM PROCESSING MODEL
A stream processing system contains many machines con-
nected through a high speed network. This infrastructure
can be shared by many users, each of which can submit
jobs. One job contains multiple processing elements (PEs,
or operators) connected in a directed graph. A PE is a
software module that has possibly multiple input queues,
each of which receives one input data stream, performs cer-
tain processing and produces possibly multiple output data
streams, stored in multiple output queues and then sent to
input queues of other PEs, and further processed by other
PEs.

A PE can be classified in different ways. They can be stateful
or stateless. A stateful PE has internal state that depends
on previous state and input data streams; its output streams
depend on the state and input. When such a PE recovers,
it is critical to restore the internal state. A PE can be de-
terministic or non-deterministic. Given the same sequence
of input data, a deterministic PE always produces the same
sequence of output data. The inter-arrival times of input

data do not affect the output. For a non-deterministic PE,
such inter-arrival times affect the output; it may even pro-
duce different output given the same sequence of input data
with the same arrival timing.

We assume that the system has a scheduling component
[17] that decides how to divide a job into multiple non-
overlapping subjobs, and decides on which machine to run
each subjob, based on resource (CPU, memory, bandwidth)
availability on machines and requirements from PEs. A sub-
job contains a subset of PEs and are deployed to a machine
together, and managed as a unit.

3. A SWEEPING CHECKPOINTING

METHOD
An earlier study [10] shows that AS is always superior to
PS: PS has almost the same overhead as AS, while taking
at least 50% more time in recovery. A careful examination
shows that the study uses a specific method of checkpointing
in PS, where the input and output queues, the internal state
are all checkpointed, and all PEs in one machine are check-
pointed together periodically. We propose a new sweeping
checkpointing method, which outperforms this method in
speed and overhead; it gives PS a magnitude lower overhead
than AS.

Active Standby In active standby, both the primary and
secondary machines are running the same subjobs that re-
ceive the same input, process them and send output data to
downstream machines. Downstream subjobs need to elimi-
nate duplicates, using mechanisms such as sequence number.
When one of the machines fails, the other is not affected. Ac-
tive standby has almost no recovery delay; the cost is the
duplicate messages and processing.

Passive Standby In passive standby, the primary machine
periodically checkpoints job states (such as input / output
queue data and internal states) and sends the checkpoint
message to the secondary machine. The checkpoint message
includes the internal states of the PEs and also the data in
the input and/or output queues. When the primary machine
fails, the secondary copy is restarted using the stored states.
It will reconnect the upstream and downstream subjobs, and
resumes the processing.

3.1 Sweeping Checkpointing
The performance of passive standby depends heavily on the
checkpointing method. There are three issues in checkpoint-
ing: 1) when to trim (i.e., remove) data from output queues,
2) which data to include in checkpoint messages, and 3)
when to checkpoint each PE in multi-PE jobs.

When to trim A PE produces data in output queues and
sends them to the input queues of downstream PEs. Differ-
ent from reliable transport such as TCP, we do not remove
data that are received at downstream input queues immedi-
ately. This is because the downstream PEs may crash with
data unprocessed in their input queues. Such data must be
preserved and reprocessed after the downstream recovers.

We use accumulative acknowledgment (like that of TCP)
from each input queue. An output queue assigns an incre-



mental sequence number to each newly produced data ele-
ment. When a downstream PE finishes receipt, processing of
some data and the checkpointing of resulting states, it sends
an acknowledgment to each of the upstream output queues.
If an output queue sends data to multiple downstream input
queues, it removes the data element only when it receives the
acknowledgments from all downstream input queues for that
data element.

What to include A PE has data in input/output queues,
and internal states. Note that the internal states are not the
PE’s memory image, which can be huge, but variables that
are updated as the PE processes data. These variables affect
the output and are much smaller than the complete mem-
ory image. In [10] all the three are checkpointed. we decide
to include the internal state and output queues, but not in-
put queues. Because in our case, data in the input queues
are still available in the output queue of upstream PEs be-
fore they are processed and resulting states checkpointed.
Should a PE crash before finishing processing some data or
checkpointing resulting state, it can recover them from the
output queues of upstream PEs.

Excluding input queues significantly reduces the size of check-
point messages. Because these messages are periodic, it re-
duces a recurring overhead. The alternative, also check-
pointing input queues, increases the message size. It does
not allow output queues to remove data upon their receipt at
downstream input queues either. Because the downstream
PE may crash before finish processing those data, output
queues have to preserve the data until the data are acknowl-
edged by downstream input queues.

When to checkpoint Given multiple PEs in the same sub-
job, when to checkpoint each of them significantly affect
the message size and overhead. The simplest option is syn-
chronous checkpointing, which uses a timer for each subjob
to periodically suspend all its PEs, checkpoints their states
and then resumes all of them. This option is adopted by
the PS variant in [10]. Because checkpointing happens after
all PEs are suspended, this method is usually slower. An-
other option is individual checkpointing, where each PE has
its own timer to drive its own checkpointing.

We propose a sweeping checkpointing technique that takes
only half or a third of the time to do a checkpoint, and one
magnitude less message overhead than the previous two op-
tions. In this method, the checkpointing is not driven by a
timer, but by the acknowledgment from downstream PEs.
As described earlier, whenever an output queue receives an
acknowledgment that all its downstream PEs have success-
fully processed and checkpointed the states of some data,
such data can be removed. Since the output queue size be-
comes much smaller after the queue trimming, we immedi-
ately checkpoint the state of this PE after queue trimming.

Given a chain of PEs that all require checkpointing, the
checkpoint of the last PE can be driven by a timer since it
does not have PEs further downstream. Its checkpointing
will incur periodic acknowledgments upstream and trigger
checkpointing. The checkpointing events “sweep” in the re-
verse direction of the data flow, from the last PE toward
the data source. If the last PE does not require HA pro-

tection, it may send acknowledgment upon receipt of new
data. Such acknowledgments can still trigger checkpointing
in upstream PEs.

3.2 Proof of Consistency
A sound checkpointing design must ensure the correctness
of the processing results after a job recovers from the failure
of one or multiple PEs. If the checkpointing of different PEs
are not properly coordinated, a recovered PE may re-process
old data that has already been processed, or miss some data
that it should process. In either case, incorrect results will
be produced.

In what follows, we first define the consistency property of a
checkpointing method, and then formally prove our sweep-
ing checkpointing method is consistent even with multiple
concurrent PE failures.

Definition 3.1. A checkpointing method is consistent if
and only if a job after recovery always produces processing
results as if no failure had happened when the same sequence
of input data was fed into the job.

Several remarks are in order. First, when a deterministic
PE is recovered, it should produce exactly the same output
as in the case where no failure has occurred. However, for
a non-deterministic PE, there is no unique output even for
the same input, thus we can only ensure the output of a
recovered PE is one of the possible results with the original
input. Secondly, we do not consider the failure of the first PE
(i.e., source PE) in a job, because the data source is typically
external to the streaming processing system and there is no
guarantee it can preserve data lost during failures. Thus
data losses may happen when the source PE fails. Lastly,
there may be duplicated, delayed and out-of-order delivery
of data elements during the recovery phase. However, these
issues can be easily dealt with, e.g., by using application
level sequence numbers. Thus, the checkpointing method
only needs to ensure all the intermediate processing results
can be recovered and re-delivered to the downstream PEs.

Theorem 3.1. Sweeping checkpointing is consistent when
a PE fails but all its immediate upstream PEs are still avail-
able.

Proof: Suppose PEi fails and it has a set of upstream PEs,
denoted by PEU

i , and a set of downstream PEs, denoted
by PED

i . In the last checkpoint before the failure, PEi has
processed up to data element mc

i and its internal state is
sc

i . Clearly, the upstream PEs in PEU

i are not affected by
the failure of PEi. Thus, it is sufficient to prove that PEi

and all its downstream PEs correctly resume the processing
after the recovery.

After PEi is recovered, it is loaded with its last checkpointed
state sc

i . Then it starts to pull the data elements after mc

i

from the upstream PEs in PEU

i . Note that all these data el-
ements are still in the output queues of these upstream PEs,
because they have not been checkpointed by PEi, thus there



were no corresponding acknowledgments triggering their re-
moval. As these old data elements are re-sent to PEi, its
processing resumes with the results flowing into the down-
stream PEs in PEU

i . These downstream PEs will drop any
data elements they have previously received and processed,
and eventually start to process new data elements produced
by PEi. 2

Next we prove the consistency of sweeping checkpointing in
a more general setting.

Theorem 3.2. Sweeping checkpointing is consistent with
multiple concurrent PE failures.

Proof: When failures of multiple PEs overlap, these PEs
can be either consecutive (i.e., directly connected) or non-
consecutive in the flow. When the failed PEs are nonconsec-
utive, the consistency of sweeping checkpointing can be de-
rived directly from Theorem 3.1. On the other hand, when
consecutive PEs fail, they will start the recovery process
individually. However, the recovery of a downstream PE
cannot complete until all its upstream PE are available. As
such, these failed PEs naturally recover in an order from
upstream to downstream.

Consider the most upstream one among the failed PEs, say
PEi. Based on Theorem 3.1, it can correctly recover and
re-process those data elements since its last checkpoint. As
a result, its output queue will be populated again. Now con-
sider the downstream PE, say PEi+1, that has also failed.
PEi+1 can start its recovery process once the new PEi

has caught up with data elements in the last checkpoint of
PEi+1. By applying Theorem 3.1 recursively, we can show
that PEi+1, and similarly all failed downstream PEs, can
correctly recover in a sequential manner. 2

3.3 Discussions
The sweeping checkpointing reduces overhead mainly be-
cause it excludes input queue data and reduces the amount
of output queue data to checkpoint. It improves the speed
of checkpointing because there is no need to wait all PEs to
suspend before checkpointing. It does not reduce the inter-
nal state of PEs. Although the internal states are variables
that affect output data and is not the complete PE memory
image, they can be significant depending on the applica-
tion. In such scenarios the performance improvement of the
sweeping method compared with other checkpointing meth-
ods may be reduced (compared with the results that we will
show in Section 5.2). However, given the increasingly higher
data rates in today’s stream processing applications, we ex-
pect the efficiency and speed of sweeping checkpointing to
offer significant benefits.

4. SYSTEM IMPLEMENTATION
We have implemented a fully functional stream processing
system consisting of over 25K lines of code in Java. It reuses
some of the components in our previous CLASP [4] work.
For the sake of self-containment, we will briefly introduce
some components but will focus on new components related
to high availability.

Figure 1: System architecture. A job consisting of 3 subjobs,

running on 4 machines. The 2nd subjob has passive standby

protection, with a primary copy running on machine B and a

secondary copy deployed on demand on machine C.

Figure 1 shows the architecture of our system. Each machine
will run an instance of our system, including Remote Execu-
tion Coordinator (REC), Job Management (JMN), Check-
point Manager (CM) and Failover Manager (FM). Each in-
stance will register itself as a distinct RMI object and they
will use the RMI name to contact each other.

A job is submitted to the REC of a machine as a text file.
Each line contains the file name of the Job Description Lan-
guage (JDL) of a subjob. We use an XML-based language
to describe which PEs are contained in a subjob, and how
their queues are connected, possibly with PE queues in other
subjobs. Each line also contains the high availability type,
which machines are involved and their roles.

/home/joe/jdls/sisubjob1.jdl \

HA_TYPE_NONE host1

/home/joe/jdls/sisubjob2.jdl \

HA_TYPE_PASSIVE host2 host3 host3 host3

This example shows a job with 2 subjobs. The first one
has no HA protection and runs on host1. The second one
is configured with passive standby and involves 3 machines,
host1 for running, host3 for storing checkpoint data, mon-
itoring the aliveness of the primary (host1) and recovering
the subjob upon failures. These functions can be carried by
separate machines if needed. Similarly, a subjob configured
with active standby would have two hosts as the primary
and the secondary respectively, both to be actively running,
and another host responsible for monitoring and recovery.

The REC is in charge of the execution, failure recovery and
life cycle management of jobs. When a job is submitted
to the REC of a machine (called the owner machine), the
REC will render the JDL (adding machine-specific config-
urations), create additional JDLs needed for secondary or
state machines if needed, and submit these JDLs to the REC
of their respective machines. It also notifies the local FM to
start a monitoring task at the monitoring machine.



The local FM notifies remote FM, which sends periodic
heartbeat messages to monitor the aliveness of remote ma-
chines. There is a deadline for receiving a response for each
heartbeat message. Upon misses of heartbeat responses, it
notifies the owning machine’s FM how many misses have
occurred; when a machine comes back, it also notifies how
many heartbeat responses have re-emerged. We use the con-
ventional wisdom that 3 heartbeat misses indicate the fail-
ure of a machine. This is a simple and effective method to
monitoring.

The JMN manages subjobs deployed on a machine. It re-
ceives JDLs from the local REC, parses the JDL, invokes an
instance of each PE according to its parameters in the JDL.
For PASSIVE type, it also starts a checkpoint task and sub-
mits it to the CM of the local machine. We will describe in
detail how the CM manages the checkpoint of PEs.

4.1 PE Checkpoint
In our implementation, each PE has multiple input and out-
put queues, each receiving and sending data to possible mul-
tiple output or input queues. Each PE has two threads, one
of which is a processing thread that takes data from input
queues, processes the data and puts results to output queues.
When receiving a new data element, an output queue gives
a unique sequence number to that element. The other is a
sending thread goes through all output queues, sends data
to each of the input queues connected to an output queue.

For PEs to contact each other, they register themselves as
RMI objects. Sending data across PEs is implemented as
an RMI call to the input queue of remote PEs. We use
two threads because they can improve the throughput from
about 700 data elements per second to over 25K, suitable
for evaluation under high data rates.

A PEController controls the checkpointing of a PE. It can
be a subjob, or the CM. It calls a PE’s pause(PEControllerIfc
pec) method to suspend it, giving its own interface as the
parameter for the PE to call back. When the PE has sus-
pended, it calls the ackPePause(PEIfc pe) method of the
PE controller, also giving its own interface pe for the con-
troller to perform further operation. The controller will call
the checkpoint() method to obtain the state of the PE. After
storing the state on the secondary machine, the controller
calls the resume() method to resume the PE.

To allow PEs to accurately determine which data should be
sent during recovery, each output queue maintains a sent se-
quence number and an acknowledged sequence number for
each of the downstream input queues. Only data acknowl-
edged by all downstream input queues can be removed.

To measure the performance under high data rates, we also
make one important decision not to limit the size of queues.
Such limits will back pressure and cause the upstream pro-
cessing to stop when an input queue is full. Such slowdown
is not caused by the overhead of high availability mecha-
nisms, but the mismatch between processing speed and data
rates. Not limiting the size not only allows us to measure
the true overhead by high availability mechanisms, but also
the queue size needs of them.

4.2 Checkpoint Manager (CM)
The CM is responsible for managing the checkpoint of sub-
jobs and PEs. When the JMN deploys a subjob whose
JDL has PASSIVE type configuration, the JMN will use
submitCheckpointJMNJobTask() to submit a checkpoint
task to the local CM, including parameters for the ID and
interface for that subjob, and the checkpoint requirements
such as state machine, frequency.

For synchronous checkpointing, the CM will periodically
suspend the subjob through a pause(JMNJobControllerIfc
jc) method, using itself as the parameter for callback. After
the job’s callback, it obtains the job state by a checkpoint()
call on the job (basically the internal state and output queues
of all PEs), then calls the storeJobState(js) of the CM of the
state machine to store the state js. Finally the CM resumes
the subjob by the resume() on the subjob. For individual or
sweeping checkpointing, the CM will control individual PEs
directly. The only difference is that for sweeping checkpoint-
ing, the call to trim() that removes data in output queue
will trigger a one-time checkpoint task for that PE only.

During recovery, the owner machine’s REC will sends a JDL
to the recovery machine’s REC, which forwards it to the
local JMN. The JMN parses the JDL and obtains the state
by recoverJobState(jobId) of the local CM, which in turn
calls the retrieveJobState(jobId) of the CM on the state
machine to retrieve the state.

5. EVALUATION
5.1 Experimental Environment and

Methodology
The experiments are performed on a cluster of RHEL 4.4
Linux workstations connected with 1 Gbps LAN. Each work-
station has a 3.07 GHz 4-core Xeon processor, 4.2 GB mem-
ory and 80 GB hard drive. The stream processing job used
in our experiments consists of 8 PEs connected in a chain
topology. The entire job is then further divided into 4 sub-
jobs, each consisting of 2 PEs. Each subjob is assigned to
a separate primary machine. Inside the processing loop of
each PE, there is code that performs some synthesized com-
putation. The PE selectivity is 1, meaning that it produces
exactly one data element for each input data element. Such
a simple job topology and computation avoid the impact of
job division/scheduling and application logic, so the differ-
ence in results can be exclusively attributed to different HA
approaches.

5.2 Comparison of Different Checkpointing

Methods
We first compare the message overhead and the time it takes
to do one checkpointing for the three different checkpoint-
ing methods: synchronous, individual and sweeping. We
found that sweeping checkpointing has less than 10% the
total message overhead, and takes 1/4 time, compared to
those of the other two methods.

Message Overhead

Figure 2 and 3 show the impact of checkpoint interval on
average and total checkpoint message size, respectively. We
fix the data rate to 3000 elements/s, the PE state size is
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that of 20 data elements. Figure 2 shows that the average
checkpoint message size of sweeping is roughly 1/30 of that
of synchronous and individual checkpointing. We also ob-
serve that the size for sweeping grows more slowly than the
other two when checkpoint interval increases.

Figure 3 shows that the total amount of checkpointed mes-
sages at various checkpoint intervals during 100 seconds of
run. Sweeping still has the smallest total overhead, about
1/13 to 1/30 of those of the other two. For both syn-
chronous and individual checkpointing methods, their total
checkpoint message size stays relatively constant. This is be-
cause the number of checkpoint messages decreases inverse
proportionally, while the average checkpoint message size in-
creases proportionally, to the checkpoint interval. Thus the
total overhead remains about the same. Interestingly, for
sweeping checkpointing, the total overhead drops as check-
point interval increases. This is because the average check-
point size for sweeping grows sub-linearly to the checkpoint
interval. As the number of checkpoint messages decreases
linearly, the total overhead decreases.

Checkpoint Time We vary the input date rate from 1000
to 7000 elements/s and keep checkpoint interval at 500 ms.
Figure 4 shows the amount of time needed to finish one
checkpointing. Sweeping clearly outperforms the other two:
It takes about 1/4 of the time of those of the other two.
Synchronous has the longest time because it needs to sus-
pend and then resume all PEs for a subjob. The difference
between individual and sweeping checkpointing is caused by
checkpoint message sizes. As shown in Figure 3, individual
has about 30 times the data to transmit and store on the
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state machine. Based on the above comparison, we can see
that sweeping is clearly faster and more efficient.

5.3 Comparison of AS and PS
Message Overhead We compare the message overhead in-
curred for one subjob under four different configurations:
NONE, where the subjob has only one copy; AS-AS, where
both this subjob and its downstream subjob each has two
copies, and both copies send to the two downstream copies;
None-AS, where a subjob has two copies but its upstream
and downstream subjobs have only one copy; and sweeping
based PS, where the subjob has one copy and a recovery
machine for deploying the secondary copy on demand. We
measure both AS-AS and None-AS because they are both
feasible configurations, with AS-AS protecting each, while
None-AS one of the subjobs. We increase the input data
rate from 1000 elements/s to 25000 elements/s. The PS has
500 ms checkpoint interval.
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Figure 5 shows that the message overhead of None-AS is
around twice of that of NONE. That is consistent with the
intuition since both copies received and send data. AS-AS is
about four times because each copy send to two downstream
copies. In PS, the message overhead increases merely about
10% to None, which is a magnitude lower than that of AS.
This clearly shows that with sweeping checkpointing, PS can
have much lower message overhead than AS.

Recovery Delay To demonstrate the behavior of different
HA policies upon failures, we kill one of the subjobs while the
system is running. Then by plotting the sequence number
vs. receipt time of received data elements on downstream
subjob of that killed subjob, we can see how much recovery
delay an HA policy incurs. In this set of experiments, the



PS policy uses a checkpoint interval of 500 ms and heartbeat
interval of 100 ms. As illustrated in Figure 6, with the AS
policy, the failure is almost transparent to the downstream
subjob. With the PS policy, a “silent” period is observed,
during which the system does not produce any new data
element and the sequence number curve is flat.
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We then show a decomposition of PS method’s failure recov-
ery time, defined as the time from a failure happens to the
producing of the first new output data element. The recov-
ery delay for PS consists of three parts: failure detection, job
redeployment, and data retransmission/reprocessing, which
reprocess data sent to the primary subjob but whose results
were not produced due to failures.

Figure 7 shows the impact of heartbeat interval on recovery
time. We fix the checkpoint interval to 500 ms, and change
the heartbeat interval from 100 ms to 500 ms. We can see
that with larger heartbeat intervals, the failure detection
time increases about linearly, and becomes dominant in the
failure recovery time.

Figure 8 shows the impact of the checkpoint interval with a
fixed heartbeat interval of 100 ms. With larger checkpoint
intervals there is more data to retransmit and reprocess. We
observe that the retransmission / reprocessing time tends to
increase when the checkpoint interval grows from 100 ms to
900 ms. However, the other two parts are greater or remain
about the same. Thus the total recovery delay does not
change much. The fluctuation of recovery delay is caused
by the randomness in the timing of the failure, which deter-
mines the amount of retransmission data.
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The above two figures shed some light on improving the re-
covery delay for PS. First is to improve the detection, which
is the largest component in the overall recovery delay. Next
is to speed up redeployment, which is also a significant part
(about 500 ms) in the total delay. Overall, the experiment
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Figure 8: Recovery time decomposition vs. Checkpoint interval

results show that although AS has almost negligible recov-
ery delay, PS only needs 10% of the overhead. Thus each
approach has its suitable scenarios.

6. RELATED WORK
High availability for stream processing systems has become
an active research topic in recent years. Representative work
includes those [3, 9, 12, 13] proposed in the context of Bo-
realis [1], one of the first stream processing systems. Ex-
cept [13], the other three are all based on active standby.
[3] achieves flexible trade-off between availability and con-
sistency by introducing tentative data concept; [9] has the
highest availability by paying the cost of having multiple up-
stream copies sending data to multiple downstream copies;
[12] allows replicas to execute without coordination but still
produce consistent results; [13] studies the optimal check-
point scheduling and backup machine assignment when mul-
tiple subjobs need checkpointing and many state storage ma-
chines are available. They choose one of the two basic ap-
proaches as basis and do not study the performance tradeoff
between the two,.

High availability has been studied in other stream process-
ing and data flow systems. [14, 15] are in the context of
System S [2], a stream processing system being developed at
IBM Research. [14] studies how to provide high availability
for the system component of JMN by checkpointing related
job state information. It does not study high availability
for jobs, which is the focus on this paper. [15] studies how
to pick the most suitable recovery machine when many are
available to recover failed jobs, a related but different prob-
lem compared to ours. Shah et al. [16] is one early work that
adopts active standby approach for parallel data flows. It
coordinates multiple replicas and focuses on ensuring con-
sistency and preventing deadlocks, important but different
issues compared to us.

High availability in virtual machines has also been studied.
Hypervisors [5] run a pair of virtual machines in a synchro-
nized manner. Two virtual machines have identical system
states at any point of time. Remus [7] reduces the overhead
by relaxing the synchronization requirement; the states of
two machines are synchronized only when the output of the
primary is externally visible. They still adopt the basic ac-
tive or passive standby approach. However, because of the
significant differences in assumptions, design goals, and eval-
uation environments in VM, the detailed techniques may not
be applied directly.



Despite the prevalence of active and passive standby ap-
proaches in stream processing systems, there is not much
work to systematically compare their tradeoff, especially dif-
ferent variants. As far as we are aware, Hwang et al.’s work
[10, 11] is the only exception where the results show that ac-
tive standby is always superior. Although they classify ba-
sic high availability algorithms, their comparison is mostly
analytical and simulation-based, thus cannot fully capture
the complexities and delicacies in a real testbed. More im-
portantly, the results were based on a specific variants of
passive standby, thus the generality of the conclusion is lim-
ited. We propose a sweeping checkpoint method, use it to
implement a new PS variant, and perform comprehensive
empirical evaluations in a real prototype. We reach a very
different conclusion that both active and passive standby
have their suitable conditions and neither is always better
than the other. This insight has inspired and motivated an-
other piece of our work for designing a hybrid approach that
combines the advantages of both approaches to provide fast
recovery at affordable overhead. The details are beyond the
scope of this work and we will publish in a separate paper.

Checkpointing is a widely used technique for preserving crit-
ical state information. [8] provides a comprehensive sum-
mary and comparison of different checkpointing techniques.
Among existing checkpointing mechanisms for stream pro-
cessing systems, the Efficient Coordinated Operator Check-
pointing (ECOC) proposed in [6] is the closest to the sweep-
ing checkpoint method used in our system. ECOC uses a
two-phase protocol, where locally scheduled checkpoints are
first stored in a “pending checkpoint list”, and then exe-
cuted after confirmations from all subsequent operators are
received (indicating that the output queue can be trimmed).
Compared with ECOC, our scheme does not require two
phases and is much simpler and efficient, leading to the
magnitude reduction in overhead compared to conventional
checkpointing methods. Moreover, in ECOC it is assumed
that output queues can be trimmed to empty, whereas under
high data rates we find this is not the case. Some output
elements are still produced between the trim and the check-
pointing.

The upstream backup method proposed in [10] also keeps
data elements in the output queue until confirmations from
downstream machines are received, indicating that the data
have been processed and resulting data received at further
downstream machines. Because this method does not check-
point PE’s internal states, any data that affect a PE’s in-
ternal states must be stored in the upstream PE’s output
queues almost infinitely; otherwise the correct internal state
cannot be reproduced. This severely limits its applicability
to stateful PEs where most data do affect internal states:
the recovery delay under high data rates can be extremely
long. Also, it cannot handle multiple concurrent failures,
because data are preserved long enough only for the imme-
diate downstream machine crash. Any downstream failure
beyond that incurs inrecoverable data loss.

7. CONCLUSION
High availability is essential for many stream processing ap-
plications. Despite the popularity of AS and PS as the basis
for many high availability solutions, their design and per-
formance tradeoffs have received limited attention. We pro-

pose a novel sweeping checkpointing method that not only
reduces the overhead by one order of magnitude compared to
conventional checkpointing methods used in previous stud-
ies [10, 11], but also ensures no loss of data against multiple
concurrent failures. Using the sweeping checkpointing, we
also implement a new PS variant in a real prototype stream
processing system. Our experimental evaluation shows that
AS and PS each has its respective advantages and disad-
vantages. While AS provides fast recovery, PS needs much
smaller overhead. There is no clear winner and each of them
should be adopted under their most suitable scenarios.

The insights we gain from this study have motivated us to
design a hybrid HA approach that combines the advantages
of AS and PS, providing fast recovery and affordable over-
head at once. The main idea is to allow individual PEs to
switch between AS and PS modes dynamically depending on
the occurrence of failure events. We will describe the design
details and performance results in a separate paper.
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