
CLASP: Col laborating, Autonomous Stream
Processing Systems

Michael Branson1, Fred Douglis2, Brad Fawcett1, Zhen Liu2, Anton Riabov2,
and Fan Ye2

1 IBM Systems and Technology Group, Rochester, MN USA
2 IBM T.J. Watson Research Center, Hawthorne, NY USA

Abstract. There are currently a number of streaming data analysis sys-
tems in research or commercial operation. These systems are generally
large-scale distributed systems, but each system operates in isolation,
under the control of one administrative authority. We are developing mid-
dleware that permits autonomous or semi-autonomous streaming analy-
sis systems (called “sites”) to interoperate, providing them opportunities
for data access, performance improvements, and reliability far exceed-
ing that available in a single system. Unique characteristics of our sys-
tem include an architecture for the management of multiple cooperation
paradigms depending on the degree of trust and dependencies among
the participating sites; a multisite planner that converts user-specified
declarative queries into specifications of distributed jobs; and a mecha-
nism for automatic recovery of site failures by redispatching failed pieces
of a distributed job. We evaluate our architecture via experiments on a
running prototype, and the results demonstrate the advantages of multi-
site cooperation: collaborative jobs that share resources, even across only
a few sites, can produce results 50% faster than independent execution,
and jobs on failed sites can be recovered within a few seconds.

Keywords: System S, streaming data analysis, Grid computing, Virtual
Organizations, planning.

1 Introduction

Data stream processing systems take continuous streams of input data, process
that data in certain ways, and produce ongoing results. There are currently a
number of data stream processing systems in research [1,2,3,4] or commercial [5]
operation. These systems are generally large-scale distributed systems, but each
system operates in isolation, under the control of one administrative authority.
Generally speaking, data that are brought into one such system are available
to any application running on the system, and similarly any data created by
one application are immediately available to other applications. This sharing
is conducive to improving performance and scalability through the synergy of
overlapping queries within one system [4,6]. However, the scale and functionality
of an individual system can still be limited when facing extreme data rates (e.g.,

R. Cerqueira and R.H. Campbell (Eds.): Middleware 2007, LNCS 4834, pp. 348–367, 2007.
c© IFIP International Federation for Information Processing 2007

CLASP: Col laborating, Autonomous Stream Processing Systems 349

telemetry from radio telescopes [7]) or complex environments (e.g., supporting
real-time disaster response). Additionally, resources (such as input data streams)
that are available to one system are inaccessible to other systems.

In this paper we describe a middleware for Collaborating, Autonomous
Stream Processing systems (CLASP). It sits above separate data stream pro-
cessing systems and enables these systems to cooperate. We assume that each
system, which we call a site in the larger cooperative environment, is at least
partly autonomous. Thus the extent to which different sites cooperate is a matter
of policy, determined by the administrators of each of the sites involved.

CLASP allows sites to benefit in several respects. They can share data sources
that were owned and available individually. Thus a site can access a much wider
spectrum of data input, greatly increasing the breadth of its analysis. They can
share derived streams, which are processed results of existing applications, thus
avoiding duplicating processing done by other sites and improving efficiency.
They can help each other absorb any sudden increase in workload or decrease
in resources by rebalancing processing across sites. They can also improve the
reliability of job execution by recovering jobs from failed sites.

The middleware has been designed and prototyped in the context of Sys-
tem S [8], a project within IBM Research to enable sophisticated stream process-
ing using arbitrary application logic (rather than relational algebra operations
such as used in several other streaming analysis systems [1,2,3]). Although some
details like application interfaces are specific to System S, the architecture itself
is generic enough for the interoperation of streaming systems of other kinds.

We make several contributions in this paper. We analyze what functions are
needed for stream processing sites to collaborate and propose an architecture
that provides them. We extend the traditional Virtual Organization [9] (VO)
concept to allow sites to form different VO structures based on the degree of
mutual trust and coordination. We implement the architecture on a representa-
tive streaming system (System S) to demonstrate its feasibility and evaluate the
benefits sites can gain through real testbeds and applications.

The rest of the paper is organized as follows. The next section describes Sys-
tem S in greater detail. Policies governing site interaction follow in Section 3.
The architecture of CLASP is described in Section 4. Section 5 reports exper-
imental results using a real testbed and application. The paper finishes with
related work and conclusions.

2 System S

The goal of System S is to extract important information from voluminous
amounts of unstructured and mostly irrelevant data. Example applications of
such a system include analyzing financial markets (predicting stock value by pro-
cessing streams of real-world events) [5], detecting patterns of fraudulent insur-
ance claims, supporting responses to disasters such as Hurricane Katrina (based
on vehicle movement, available supplies and recovery operations), or processing
sensor data such as telemetry from radio telescopes [7] or volcanic activity [10].

350 M. Branson et al.

We summarize the architecture of System S as a representative of streaming
systems and describe some of its key components:

User Interface (UI) Users pose inquiries to the system through a front end to
answer certain high-level queries. For example, “Show me where all bottled
water is in the hurricane area.” After the raw data have been processed
by application logic (e.g., filtered, joined, and analyzed), results are passed
back to the UI via data streams, where they can be presented to the user
for further exploitation.

Inquiry Service (INQ) accepts specifications of the desired final results in a
format called Inquiry Specification Language (ISL), which depicts the se-
mantic meaning of the final results and specifies user preferences such as
which data sources to include or exclude [11]. Given an inquiry, a Planner
subcomponent [12] automatically composes data sources and processing in
the form of jobs to produce desired results. It then submits such jobs to the
Job Management component for execution.

Job Management (JMN) A job in System S is a set of interconnected Pro-
cessing Elements (PEs), which process incoming stream objects to produce
outgoing stream objects that are routed to the appropriate PE or storage.
The PEs can perform stateless transformation or much more complicated
stateful processing. System S reuses PEs among different applications when
possible to avoid redundant processing.

Stream Processing Core (SPC) manages the execution of PEs [13,8]. It
supports the transport of streams consisting of Stream Data Objects be-
tween PEs and into persistent storage. It also provides adaptive connectivity
and fine-grained scheduling of communicating applications.

With the exception of INQ, these components map reasonably closely to other
data stream analysis systems and are used here as a representative example. INQ
is, by comparison, unique to System S: other systems do not have such automatic
application composition capability and jobs are usually hand-crafted.

Each System S site runs an instance of each of these system components,
possibly as a distributed and fault-tolerant service [14]. Each site may belong to
and be managed by a distinct organization; administrators who manage one site
generally have no control over another site. Collaboration among multiple sites
is thus similar to Grid Computing [9]: sites share resources but retain substantial
local autonomy.

As with the Grid, sites that want to collaborate for common goals and benefits
can negotiate and form Virtual Organizations (VOs) [9]. However, there exist
unique requirements in the streaming context, including the need for higher
degrees of scalability and various administrative relationships among sites. Sec-
tion 3 describes how we address these issues.

3 Virtual Organizations and Common Interest Policies

Sites that want to collaborate can form VOs. The members of a VO formalize
their permissible interoperations as a Common Interest Policy (CIP), which

CLASP: Col laborating, Autonomous Stream Processing Systems 351

specifies how they may share various types of resources and processing. VOs can
be either Federated or Cooperative.

A Federated VO has an appointed leader site that assumes a coordination role
and is able to exert a level of control over the other sites. This VO is appropriate
when the sites share a common set of goal(s) that they want to achieve, or are
all subject to a common authority. It allows the VO Lead to optimize resource
and processing usage for the common good of the VO.

In a Cooperative VO, there is no central point of authority. VO members
interact as peers of each other; they are independent and may have separate
agendas. They may interoperate out of altruism, giving access to some resources
freely, or they may charge a cost for access (cost could be monetary or credits
in some sort of virtual economy).

VOs may have different relationships with each other. A whole VO can be in-
cluded hierarchically as a member of another larger VO [15,16]. This allows sites
to scale up for wide scope of collaboration. Two or more VOs may have common
members which belong to these VOs simultaneously. The kinds of resources the
common members share within each of these overlapping VOs, however, can be
completely different. The exact resource sharing within the VO is specified by
its CIP terms.

3.1 CIP Terms and Agreements

A CIP contains terms that dictate resource sharing, such as:

– Which set of data streams and locally stored data can be shared by which
other remote sites. The set can be defined based on attributes such as the
data type or data rate.

– Which set of processing resources can be used to run jobs from which other
sites; which kinds of PEs coming from which other sites will the local site
execute.

– In times of failure, which sites will perform what function (e.g., monitor,
backup data, recover jobs) of the failure recovery process.

The CIP is known by all the members in a VO. By specifying these terms,
VO members advertise resources that others may request to use. However, it
does not guarantee access, since multiple members may request a resource that
can only be used exclusively. Therefore, a VO member must reserve a resource
in advance by establishing an agreement with the providing member to secure
access to the resource for some duration.

Besides defining the kinds of resource sharing that are possible in a VO, the
CIP also specifies what parameters are associated with an agreement (such as
quality of service levels, costs, and limitations on the resource usage). Once es-
tablished, this agreement must then be referenced when accessing this resource.
The agreement’s terms and conditions, along with costs and penalties, will be
continuously monitored by some auditing functions at both System S sites pro-
viding and consuming the resource.

352 M. Branson et al.

(a) CLASP architecture (b) Multiple collaborating sites

Fig. 1. CLASP architecture includes several components. They provide the functions
needed for sites to collaborate.

This notion of agreement shares similarities with the WS-Agreement specifi-
cation from the Grid community [17]. For System S, a portion of a CIP term
serves as the analogy to the WS-Agreement Agreement Factory and provides the
creation template that is needed for creating an agreement between the provider
and consumer of the resource. More details are presented in Section 4.2.

4 Architecture

4.1 Overview

Figure 1(a) shows the detailed CLASP architecture on one site. UI, JMN and
SPC are single-site components and CLASP is between the UI and JMN. Multi-
ple sites can work together through the interaction of their CLASP middleware
(illustrated in Figure 1(b)). CLASP has a number of components providing var-
ious functions to support collaboration.

VO Manager deals with the construction of VOs and decisions on permissible
cross-site resource usage; Section 4.2 provides details.

VO Planner produces plans utilizing resources from within the VO and parti-
tions a global plan into a distributed job containing multiple subjobs. It is
described further in Section 4.3.

Resource Awareness Engine (RAE) provides information about available
resources to the VO Planner; see Section 4.4.

Remote Execution Coordinator (REC) extends JMN to the multi-site case
by deploying distributed jobs submitted by the VO Planner. Each subjob in
a distributed job may run on a different site (elaborated upon in Section 4.5).

Tunneling Manager (TM) manages tunnels that transmit streams from PEs
on one site to PEs on another site (details in Section 4.5).

CLASP: Col laborating, Autonomous Stream Processing Systems 353

VO Failover Management (FM) handles site monitoring, arrangement of
backup sites, and recovery of jobs after site failures. Failover is discussed
elsewhere [18] and summarized in Section 4.6.

VO Heterogeneity Management (HM) is intended to manage the mapping
or translation of data types, database schemas, security and privacy labels,
and similar features between sites; see Section 4.7 for a brief discussion.

4.2 VO Management

The CLASP prototype supports the formation and management of VOs by using
text-based CIP definition files. Each VO has a corresponding CIP file, containing
three types of terms: VO type, membership, and sharing. Every CIP file must
indicate whether the VO is federated or cooperative. For every member of the
VO, there must be a membership term, specifying either a site member or a VO
member. The CIP file may contain numerous sharing terms. Each sharing term
defines what resources can be shared between which two sites, with attributes
and their values, agreement creation parameters (separated by semicolons). Be-
low is an example sharing term:

This term has a type (2, resource sharing), an index (2) of this term among those
of the same type, identifiers of the sites involved (provider is siteA and consumer
is siteB), what resource is being shared (site monitoring capability), access advice
(SHOULD), attributes such as cost and initiation cost (10, 100), and what
parameters are available when the term is used as an template to create an
agreement, including which parameters are mandatory (e.g. action upon failure)
or optional (e.g minimum monitoring frequency). We are currently moving to
XML, which will provide a more structured framework for this specification.

We expect human administrators to negotiate and install CIP terms on their
sites. To create a VO, one site’s VO management component parses the CIP
file and contacts other sites’ VO management components about the creation
of the new VO. When there are hierarchical VO members, all descendants of
VO members are notified recursively about the new VO. Once a VO is in place,
components can establish agreements according to the CIP terms. A component
(such as the Failover Manager) does this by first querying its local VO Manage-
ment for the set of candidate CIP terms that are applicable to its requirements.

For example, if it needs to find possible providers in a VO to monitor a partic-
ular site, it submits a query specifying this capability. VO Management will then
search and return the matching CIP terms within the specified VO. The FM com-
ponent will then analyze the terms and conditions of the returned candidate CIP
terms and select the “best” one, e.g. a site that can monitor at a small cost. After
filling in the creation parameters such as monitoring frequency, it calls local VO
Management, which will in turn contact the VO Management on the provider site

354 M. Branson et al.

to establish the agreement. That VO Management component must contact the
providing component and gain its commitment to support the agreement. Once
established, the agreement will be referenced when making the inter-site request.
The agreement is terminated after its lifetime, or explicitly by the requester.

4.3 VO Planner

The VO Planner is unique to System S. It automatically produces plans that
utilize data sources and PEs from all sites in the VO. It accepts inquiries that
describe the semantics of desired final results in Inquiry Specification Language
(ISL) [11]. The Planner reads in the semantic description of data sources and
the required input and output streams of PEs, and uses a branch and bound
search algorithm [12] to find plans that can produce the final results.

Given one inquiry, the Planner produces multiple distributed plans in the form
of flow graphs, consisting of interconnected PEs and data sources. These plans
have different performance/cost tradeoffs and can be presented to the user, who
can decide which one to deploy. The planner then partitions the selected plan
into multiple sub-plans, each of which is a subjob assigned to one member site for
execution. The planner also inserts tunneling PEs into subjobs; each pair of sink
and source tunneling PEs transport one stream across sites. Finally, a distributed
job that contains multiple subjobs, each of which contains a normal job (for
data processing) and multiple tunneling PE jobs (for data transportation), is
produced and submitted for execution.

Plan composition within the VO Planner is implemented using a plan solver
module that operates on an abstract formulation expressed in Stream Processing
Planning Language (SPPL) [12]. SPPL is designed to enable efficient planning
in stream processing by introducing language primitives that natively model
streams. The semantics of data sources and PEs are represented using OWL
ontology [19] files. Since the semantic descriptions are relatively static, these
files do not change frequently. When a site joins a VO, it can copy these files
over to the VO Planner’s site.

4.4 Resource Awareness Engine

Resource awareness refers to the propagation of information about data sources,
PEs, and other kinds of resources among multiple collaborating sites. Sites need
such remote resource information for operations such as planning, failure recov-
ery. Such information may be stored in relational or semantic data stores, shared
memory, or text files. The component that facilitates information propagation
among sites is the Resource Awareness Engine (RAE).

We intend to use ROADS [20], a resource discovery service, as the basis for
this component. ROADS allows multiple sites to query and search for resource
information from others. The RAE components on these sites will form a tree
hierarchy, whose exact topology depends on the trust and administrative re-
lationships among sites. Each site’s RAE will publish its resource information
in a highly condensed summary format. The summaries from child sites will

CLASP: Col laborating, Autonomous Stream Processing Systems 355

be aggregated by a site’s RAE and propagated further up the tree. Thus each
RAE will have the aggregated summary about the resource information of all its
descendants, and the root RAE obtains the summary of all resource information.

When a site needs to query resource information, it sends a query to the
root RAE. The root will evaluate the query against the summaries of its child
branches, and find out which branches have the required resource information.
It will forward the query down these branches. Each RAE in the hierarchy will
follow the same process. Finally the RAEs possessing matching resource infor-
mation will return it to the requesting site. The details about how summaries
are produced and queries are evaluated against them can be found in [20].

For the prototype described in this paper, the RAE is integrated directly
with the VO Planner. That is, the Planner is given a configuration file with
the description of data sources in each site in its VO. Then as it generates new
distributed jobs, the Planner augments its view of available derived streams to
include the newly created streams on each site, which it can reuse when needed.

4.5 Distributed Execution

The Remote Execution Coordinator (REC) is responsible for the execution of
distributed jobs. The VO planner submits a distributed job to the REC of the
owner site, which is the one from which the inquiry was received. This REC will
coordinate the execution of the subjobs, including their recovery upon failures.
The REC dispatches the subjobs to the RECs on the corresponding execution
sites, as specified by the planner. An example is illustrated in Figure 2. Site 3 is
the owner site and its REC executes the third subjob and dispatches two other
subjobs to Sites 1 and 2 for execution. The REC at the owner site maintains a
subjob table about which subjobs are running at which other site. The table is
used for recovery of subjobs on failed sites.

The REC executing a subjob first parses its Job Description Language (JDL)
to identify one normal job, and multiple tunneling PE jobs. One thread is
launched to handle each of them. The thread customizes the JDL, such as as-
signing a host for each PE. Then it deploys the job through its local Job Man-
agement. For a source PE job, the REC needs to contact the local Tunneling
Manager responsible for assigning the network address and port on which the
source PE will be listening for incoming connections. It deploys the source PE
job and reports the assigned network location to the REC at the owner site.
For a sink PE job, the REC needs to query the REC of the owner site for the
network location of the corresponding source PE. Then it configures and deploys
the sink PE job.

4.6 Failure Recovery

Failover in CLASP has been described elsewhere [18], with emphasis on the
problem of identifying which sites are most appropriate for failure recovery in
a large-scale VO with many available alternatives. Here we describe the imple-
mentation for detecting and handling failures.

356 M. Branson et al.

Fig. 2. Execution of a distributed job consisting 3 subjobs. Owner Site 3 executes one
subjob, and dispatches two subjobs to Site 1 and 2 for execution. Site 4 monitors Sites
1 and 2.

The FM at the owner site arranges the failover monitoring for sites executing
subjobs. By querying CIP terms, it finds which sites can monitor the liveness
of execution sites, using periodic heartbeat messages. When an execution site
fails, the FM at a monitoring site detects the failure and notifies the owner
site. The REC at the owner site examines the subjob table and finds out which
subjobs were running on the failed site. It then dispatches these subjobs to a
new execution site, selected from candidate sites returned from VO Management.
Algorithms by Rong, et al. [18] can be used for the selection. The new execution
site will deploy the subjob.

Although executing normal jobs is straightforward, re-establishing broken tun-
nels needs special attention. To recover tunnel sink jobs, the REC at the new
execution site queries the network location for corresponding tunnel source jobs,
then configures and executes the tunnel sink job. The recovery of tunnel source
jobs is a bit complex, as the old tunnel sink job might still be sending data to
the failed site. The REC deploys such jobs and notifies the owner site about
the new network location. The FM at the owner site will inform other execution
sites to terminate tunnel sink jobs that send streams to the failed site. These
tunnel sink jobs will be restarted using the new network locations of recovered
tunnel source jobs. During the above process, new agreements might be created
for additional monitoring and execution.

We also envision recovering critical applications from failed sites, even when
they run entirely within the site that fails. This will require advance registration
of the jobs to resubmit, with an agreement with another site to monitor the site
making the request and to restart the critical applications if needed.

4.7 Heterogeneity

Our current prototype assumes a homogeneous environment. In the more gen-
eral case, each site may have differences in its operating environment. This

CLASP: Col laborating, Autonomous Stream Processing Systems 357

heterogeneity can arise in the runtime environment, type system, security and
privacy policies, user namespace, and other aspects.

The general approach to heterogeneity is through mapping functions and com-
mon base agreements. The CIPs that govern how sites interoperate must specify
operations to perform to ensure consistency. Differences in data types will be
handled through explicit conversion functions: for example, converting a nine-
digit US ZIP code into a five-digit one would involve truncating the additional
level of detail. For security, System S assumes lattice-based [21] secrecy and
integrity policy models [22]. Each site will understand the format and implied
relationships of security labels used by all sites; the access rights and restrictions
encoded within a security label are uniformly applicable throughout all the sites.
We will address operation in heterogeneous environments in the future.

5 Experimentation

5.1 Test Environment

We have implemented the CLASP architecture in Java (with the exception of
the tunneling PEs, written in C++). The prototype currently has about 40,000
lines of code. We use a testbed that consists of Linux SUSE 9 machines. Each
machine has 2 Xeon 3.06 GHz CPUs, 800MHz, 512KB L2 cache, 4G memory and
80G Hard drive. They are connected through a 1Gbps LAN. Multiple machines
can be grouped together as a System S site, which CLASP runs above. For
most experiments, we use a Federated VO that contains four sites, one of which
is a backup site, while the others are execution sites.

The goal of experiments is two-fold. 1) Quantify the benefits collaborating
sites can gain compared to operating individually. We use the total number of
produced results as the main metric. 2) Benchmark the time overhead of basic
operations of CLASP, such as planning, job submission, and failure recovery.
This gives us a basic understanding of the efficiency of the system.

To evaluate our system, we use an application we entitle “Enterprise Global
Service” (EGS). EGS is intended for enterprises to monitor the quality of service
of their customer service personnel. Customers talk with service representatives
through a corporate VoIP network. A business analyst can issue various inquiries
to examine the status of employee services. These inquiries include: find the
location and “courtesy level” of a particular employee, find the satisfaction level
of a particular customer, etc. We use a VoIP traffic generator [23] to produce
the VoIP streams between employees and customers. Each inquiry’s job contains
about 15 PEs and a job produces results continuously during its lifetime.

Figure 3 shows an example of two distributed jobs deployed in the VO. Each
of the two jobs (location of SHIMEI, location of EMILY) has three subjobs,
running on Sites 1, 2 and 3. Roughly speaking, these jobs work as follows: A
source PE pulls in all streams from the traffic generator. An annotator PE
extracts Real Time Protocol fields and turns them into SDO attributes, then a
value-based filter PE removes background noise. A speaker detection PE detects
the identities of persons; location/courtesy/satisfaction analyzing PEs produce

358 M. Branson et al.

Fig. 3. Two distributed jobs are de-
ployed within a VO of 4 sites. Each job
has 3 subjobs that run on Sites 1, 2 and
3. Tunnel PEs connect subjobs across
sites.

Fig. 4. After Site 2 fails, the two sub-
jobs running on Site 2 are recovered on
Site 4. Tunnel PEs are reconnected so
that the two distributed jobs continue
producing results.

the location, courtesy or satisfaction of persons. Their results are joined and
then filtered based on which person the inquiry is looking for. The final results
are reported and shown in a GUI.

Among all the PEs, location/courtesy/satisfaction analyzing PEs are the most
computing-intensive. Beyond the mimimum processing required to perform the
required tasks, the amount of extra processing they perform on each incoming
SDO, defined as the load level, can be tuned. In the experiments we vary the
load level for them to evaluate the system behavior under different computation
intensities; zero load level corresponds to normal processing.

Figure 4 shows what happens after Site 2 fails. Site 4 detects the failure and
notifies the owning site, Site 3, which recovers the failed subjobs on Site 4. The
tunnel PEs are reconfigured such that cross-site data streams reconnect to the
same subjobs recovered at the new site.

5.2 Result Production

We measure the performance of our prototype in several respects. We first com-
pare the number of results obtained by collaborating sites in a VO, or using sites
individually, under the same inquiry load. We produce three sets of inquiry load.
Within each set, there are 6 inquiries submitted to each of the three execution
sites in a VO. An individual site uses its own data sources and resources to pro-
duce plans and run the jobs. The sharing of streams is confined within each site.
When the same 18 inquiries are submitted to the VO, the VO planner produces
jobs that can reuse remote derived streams across sites.

Due to the sharing of more common processing, jobs running in a VO will
generally produce results more efficiently. The more common processing across
sites, the higher the savings by sharing existing processing. The three sets of
inquiries correspond to different degrees of sharing (shown in Table 1). In the
first set, the 6 inquiries (2 location, 2 courtesy, 2 satisfaction) submitted to each
site are the same. When a new instance of the same inquiry is submitted, only
additional tunneling and result reporting PEs are needed. They correspond to
the maximum degree of cross-site sharing.

CLASP: Col laborating, Autonomous Stream Processing Systems 359

Table 1. The 3 sets of inquiries used in the experiments loc refers to getting the
location of an employee; cor obtains their courtesy; and sat computes customer satis-
faction

Set Site 1 Site 2 Site 3
Set 1 loc SHIMEI loc SHIMEI loc SHIMEI
maximum loc FAYE loc FAYE loc FAYE
reuse cor SHIMEI cor SHIMEI cor SHIMEI

cor FAYE cor FAYE cor FAYE
sat SHIMEI sat SHIMEI sat SHIMEI
sat FAYE sat FAYE sat FAYE

Set 2 loc SHIMEI cor LEONARD sat SHIMEI
minimum loc FAYE cor NORMAN sat LEONARD
reuse loc ENRIQUE cor MARK sat MARK

loc NAOMI cor FAYE sat EMILY
loc LEONARD cor ENRIQUE sat NAOMI
loc EMILY cor SHIMEI sat FAYE

Set 3 loc ENRIQUE cor FAYE sat FAYE
average sat EMILY sat NORMAN cor MARK
reuse cor NAOMI sat FAYE sat LEONARD

sat NORMAN cor EMILY sat NORMAN
loc MARCIA cor NORMAN loc SHIMEI
sat SHIMEI loc MARCIA cor LEONARD

In the second case, each site has a distinct set: Site 1 has only location in-
quiries, Site 2 only courtesy inquiries, and Site 3 only satisfaction inquiries.
This corresponds the minimum degree of sharing. Inquiries of different sites can
share only a few PEs such as the source PE and background noise reduction
PE. They have to do the most computing-intensive processing (finding loca-
tion/courtesy/satisfaction) by themselves. The third set is a middle ground be-
tween the two. Each site has a random mixture of inquiries, including different
types and person names. The degree of sharing is less than the first but greater
than the second set. This is likely what would happen in reality. For each set, we
vary the computation intensity of jobs by changing the load level. We let jobs
run for 2 minutes, and average the results over five runs.

Figure 5 compares the total number of results of all the 18 jobs in set 1 when
running in the VO or individually. They produce about the same amount when
the load level is zero. As the load level increases, running in the VO can produce
as much as 50% more results, because jobs can tap into the processed results
across sites and avoid duplicating common processing. For those running at an
individual site, however, they can only tap into processing within the same site.
We also examined the number of results produced by each individual job, when
running in a VO or one site. The phenomena is similar and we do not elaborate
due to space limitations.

Figure 6 compares the number of results for set 2. Jobs running in a VO produce
slightly fewer results than in set 1. The reason is that the cost paid for sharing

360 M. Branson et al.

Fig. 5. The total number of results pro-
duced by the 18 jobs in set 1, running
at individual sites or within the VO

Fig. 6. The total number of results of
all the 18 jobs for Set 2, running at in-
dividual sites or within the VO

Fig. 7. The total number of results for
all the 18 jobs for Set 3, running in VO
or individual sites

Fig. 8. The job sequence number as a
function of time. Once detected, failed
jobs are recovered in about 3.5s.

offsets the benefits. In set 2, each site has only one type of job (location, courtesy
or satisfaction). Jobs at different sites do not share computation-intensive pro-
cessing. Thus running in a VO does not reduce the amount of processing much.

On the other hand, there is a cost to pay for a VO. Extra tunneling PEs are
one factor. Another is a synchronization effect. A PE consuming SDOs slowly
may cause its producing PE to wait since reliable transport is used to send SDOs
between PEs. Other consuming PEs receiving SDOs from the same producing
PE will have to wait as well. Thus one job that runs more slowly affects other
jobs when they share input streams. Set 2 is the worst case where little pro-
cessing can be shared across sites, thus the savings are not enough to cover the
cost.

Figure 7 shows the comparison for set 3. The result is quite similar to that of
set 1: running in a VO produces more results. This similarity is because each site
has a random sequence of jobs that contains all different types and person names.
The common processing across different sites is significant. The VO allows jobs
to reuse the processing across site, thus producing results more efficiently.

CLASP: Col laborating, Autonomous Stream Processing Systems 361

 0

 200

 400

 600

 800

 1000

 1200

 1400

 7200 7250 7300 7350 7400 7450 7500

S
eq

ue
nc

e
N

um
be

r

Time (Second)

Aggregate Job Sequence Number vs. Time

Site 4 Jobs
VO Jobs

(a) Load level 0.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 7700 7750 7800 7850 7900 7950 8000

S
eq

ue
nc

e
N

um
be

r

Time (Second)

Aggregate Job Sequence Number vs. Time

Site 4 Jobs
VO Jobs

(b) Load level 80000.

Fig. 9. The aggregate result sequence number for jobs running in a VO and on Site 4
with varying load levels

5.3 Failover

Sites in a VO can backup and recover jobs for each other when some of them fail.
Figure 8 shows the details about one VO job’s result sequence number change
for failover. Around time 402.5s a site fails, then after another 13s the failure
is detected. (The detection time depends on the heartbeat interval, which can
be set to achieve the desired detection speed.) In about 3.5s the failed jobs are
recovered. Since the job needs some time to rebuild the lost state, it resumes
producing results 10s later.

We use the number of results produced to demonstrate the advantage of
failover. We run three types of jobs on Sites 1-3 in a VO. Site 4 is monitoring
Sites 1-3. Upon the failure of any of them, Site 4 will recover subjobs running
on the failed site. Site 4 also runs three types of jobs on itself. We let all jobs
run for one minute, then we kill Site 1. After jobs are recovered on Site 4, we let
them run for another two minutes.

Figure 9(a) shows the aggregate sequence number as a function of time, for
all VO jobs and all Site 4 jobs, when the load level is zero. At any time, the
aggregate sequence number for a collection of jobs is defined as the total number
of results produced by these jobs up to that time. Starting around time 7240s, all
jobs are producing results. At around 7300s, Site 1 fails. The aggregate sequence
number for VO jobs stays flat, while for Site 4 jobs it is still increasing. After Site
4 detects Site 1’s failure and recovers its subjobs (around 7350s), the VO jobs
start to produce results. Since the load level is low, there is sufficient processing
capacity on Site 4 to accommodate the failed subjobs without affecting those of
its own. The speed of sequence number increase for Site 4 after failover remains
about the same as before.

Figure 9(b) shows the same comparison under load level 80000. The sequence
numbers increase more slowly. Eventually Site 4’s and VO jobs produce about
1100/450 results, less than the 1400/650 results when the load level is 0. Al-
though jobs for both Site 4 and VO produce less results, it is still much better
than without failover (the VO jobs would not produce any more results).

362 M. Branson et al.

Another interesting observation is that Site 4’s jobs produce results more
quickly between 7800-7850s. This is due to the lack of any synchronization effect
during recovery. Since all jobs receive input streams from the same data source,
more jobs will slow down the producing rate of the data source. When VO jobs
have failed but not recovered, only Site 4’s jobs are consuming data.

5.4 Planner

Plan Solver Performance. We measure the time it takes the VO planner to
find plans that produce the desired final results. The Stream Processing Planning
Language (SPPL) solver we use to implement the VO planner has been evaluated
within one single site. It is scalable with large numbers of PEs, source and plan
sizes [12]. The VO planner adds tunneling PEs to plans and optimizes plans
for distributed metrics such as minimizing cross-site bandwidth consumption,
calculated using bandwidth consumption for PEs and sources that produce cross-
site streams.

We run the VO planner on a 3GHz Intel Pentium 4 PC with 4 GB memory. We
use a setting that includes 5 sites. Data sources are uniformly randomly assigned
to a site and each data source is available at that site only. PEs are available
on all sites. This is reasonable because PE code can be easily transfered and
installed at other sites (assuming they are secure and trusted). PEs and sources
are given randomly constructed descriptions of their inputs and outputs, and
random output bandwidth.

Since there could be many PEs that are not relevant to an inquiry, the pro-
cessing graphs are likely to be of relatively small sizes. However, the planner
still takes time to search through plans including irrelevant PEs. To model this
scenario, we vary the number of PEs per site from about 72 to 1500, most of
which are not relevant to the specified goal. To ensure plans that produce a given
final result do exist, we generate random global processing graphs first and use
their final results as input to the planner. There exist only 2 candidate plans of
6 nodes each (excluding tunneling PEs) for the goal. We average the results over
10 runs.

The planning time as a function of the number of PEs per site is presented
in Table 2. We can see that it takes the planner less than one second to find the
optimal plan for sites having up to about 160 PEs. Even in the case of 1500 PEs,
it is only a little bit over 8s. Since many streaming jobs are expected to run for
a long time, spending a few seconds to find an optimized one is reasonable.

We further evaluate the time to the first plan as a function of the plan size,
i.e., the number of PEs in the plan (see Table 3). In all cases the planner can
find a reasonably good plan within about a second. In general, the larger the
plan size, the greater the time it takes. However, this time is not completely
monotonic with the size of the plan, because the search time depends on the
structure of individual plans as well.

Since proving optimality is a more difficult problem, it takes long time to
decide whether a discovered plan is optimal. However, empirical results show that
plans found initially are close to optimal ones. In 10 randomly generated planning

CLASP: Col laborating, Autonomous Stream Processing Systems 363

Table 2. Planning times for optimal 6-
PE plans, as a function of the number
of PEs per site

Number of Time to Optimal
PEs per site Plan (s)

72 0.37
102 0.36
162 0.51
312 1.46
612 2.20

1512 8.39

Table 3. Planning times for the first
plan, as a function of the total number
of PEs in the plan

Number of PEs Time to first plan (s)
5 0.17

10 0.592034
20 0.753005
40 0.680179
50 1.01968

100 0.966948

problems that require 6 PEs and sources in the plan, the solver considered on
average 104 candidate plans. The first plan is found between the first 7.3% and
25% of the plan search time. This plan is within 1.2% of the optimal one, using
a quality measure that combines an additive PE and source quality metric and
inter-site bandwidth consumption.

Hence, when the search takes longer than several seconds, we terminate the
search early and present the current plan for deployment assuming that it is
close to the optimal. We leave further improvement on the scalability of the
SPPL solver to future work.

Agreements-Driven Replanning. A prerequisite to successfully deploy a dis-
tributed job is that all agreements are established. To avoid incurring possible
costs before job deployment, the planner does not establish agreements at plan-
ning time. Instead, agreements are established when the job is being deployed.
If not all of the required agreements can be established, one must replan.

We have measured the time that replanning takes in the EGS application by
distributing the job to 3 sites and configuring the sites to reject initial agree-
ments. The planner then replans the jobs with higher priority (and possibly
higher site-dependent execution budget). Replanning was performed 3 times be-
fore deployment, resulting in higher job priorities and different plan partitioning.
The whole cycle requires less than 7s. Although in this case replanning happens
completely automatically, the VO planner provides APIs for developing more
sophisticated GUIs to allow human feedback when replanning is needed.

5.5 Job Deployment Time

To understand the responsiveness of the system, we also measure the time it
takes to deploy a distributed job. This is from the submission of the JDL of a
distributed job, to the dispatching of its subjobs to other sites, until finally all
subjobs are up and ready to process data. We use the same JDLs as before and
they each contain about 20 PEs (including tunneling PEs).

Figure 10 shows the detailed time breakdown for a distributed job, with three
subjobs, each of which has two tunnel jobs and one normal job. For each subjob,

364 M. Branson et al.

Fig. 10. The dispatching time details
of a distributed job, from submission
to finally it is deployed and ready to
run

Fig. 11. The detailed breakdown of
each subjob. Subjob 1 has two tunnel
sink jobs, subjob 2 has one sink and
one source, subjob 3 two sources.

a separate thread is launched to dispatch it to the corresponding site. Thus the
overall time is dominated by the longest subjob. After a site receives a subjob,
it processes the JDL first, then it launches one thread for each of the jobs: the
normal job and the two tunnel jobs. The time for a subjob is in turn dominated
by the job taking the longest time. From Figure 10, subjob 1 takes the most time,
about 600ms. The other two subjobs take about 500ms and 400ms, respectively.
Within each subjob, one tunnel job takes the longest time. The whole distributed
job takes about 700ms.

Figure 11 shows the finer breakdown for each normal job and tunnel job. We
find that the tunnel sink query takes the longest time. The reason is that, al-
though a tunnel sink job can be deployed almost simultaneously as its tunnel
source end, it has to query and wait for the tunnel source to register the listen-
ing IP address and port. Thus a tunnel sink is always deployed later than its
source end. We plan to explore a “gateway” approach where multiple cross site
streams can be multiplexed between a pair of gateway PEs to further improve
the performance.

6 Related Work

CLASP has a strong relationship, yet significant differences, with two general
areas of computing: Grid computing [9] and streaming data analysis [3,2,1]. With
respect to Grid computing, a recent article [24] highlights the similarities be-
tween cooperative stream processing and Grid computing. They describe similar
environments: “distributed, multidisciplinary, collaborative teams” that attack
problems in a distributed fashion due to the nature of their various “intellectual,
computational, data, and other resources.” Indeed, our system adopts some Grid
constructs, such as VOs. In addition, there has been substantial work in match-
making between different organizations based on required capabilities (e.g., Liu,
et al. [25] and the recent work on WS-Agreements [26,17]).

At the same time, there are a number of important differences. Our ar-
chitecture supports multiple cooperation paradigms, including Federated and

CLASP: Col laborating, Autonomous Stream Processing Systems 365

Cooperative (peer-to-peer) VOs. It allows sites to collaborate more closely, with
hierarchical layers of VOs to provide arbitrary scalability. This is suitable for
complex stream processing that cannot be easily broken into smaller and similar
pieces and requires complementary contributions from all sites. The distributed
planning component of System S is significantly more sophisticated and flexible
than the Grid models.

Borealis [3] is a distributed stream processing analysis system with a number
of similarities to System S. It has explicit support for fault tolerance [27] as well
as contracts to “sell” load between sites in a federated system [28]. CLASP,
using System S, differs fundamentally from Borealis and other stream processing
systems such as STREAM [1] and TelegraphCQ [2] in a number of aspects.
First, although each such system itself can be distributed, there is no support
for streaming systems belonging to different administrative authorities to work
together. They cannot benefit from the sharing of data streams and processing
to improve efficiency, reliability, or the breadth, depth and scale of analysis.

Second, System S supports generic application-specific processing rather than
database operations— a more difficult problem due to higher complexity, devel-
opment costs and times to completion [29]. System S has an Inquiry Specification
Language that allows users to specify application declaratively at semantic level.
This is very important to allow users focus on application level tasks, rather than
deal with the complexity of finding the optimum set and interconnection of data
sources and PEs.

7 Conclusions and Future Work

In this paper we have demonstrated that CLASP, our middleware for cooperat-
ing data stream processing sites, enables such sites to increase the scale, breadth,
depth, and reliability of analysis beyond that available within a single site. Ex-
periments with our prototype have demonstrated the performance benefits gained
from reusing processing from other sites, as well as quantifying some of the over-
head incurred in the system. There also exist other more qualitative benefits, such
as access to remote data sources to broaden the breadth of analysis.

One of the important aspects we will investigate in the future is what mech-
anisms are needed to support security and trust. The current system works in a
benign environment. When sites do not have full trust for each other, or some
of them are selfish or even malicious, security checks should be enforced. In ad-
dition, as the system evolves, we will incorporate features such as fully dynamic
resource awareness and support for heterogeneity.

We also plan to investigate the scalability of the system. Our testbed was a
small number of sites, which is probably consistent with typical interoperating
agreements one might expect from a system of this sort: in a real system, each
site would itself be a very large-scale distributed system. Beyond that, we are
currently experimenting with issues regarding large, multilateral agreements,
particularly in competitive economic environments in which sites do not provide
resources simply out of altruism.

366 M. Branson et al.

Acknowledgments

We thank the anonymous referees, Lisa Amini, Nagui Halim, Anand Ranganathan,
Bill Waller, and the rest of the System S team for helpful feedback on the design
of CLASP and/or earlier drafts of this paper.

References

1. The STREAM Group: STREAM: The Stanford stream data manager. IEEE Data
Engineering Bulletin 26(1) (2003)

2. Chandrasekaran, S., et al.: TelegraphCQ: Continuous dataflow processing for an
uncertain world. In: Conference on Innovative Data Systems Research (2003)

3. Abadi, D.J., et al.: The design of the Borealis stream processing engine. In: CIDR
2005 - Second Biennial Conference on Innovative Data Systems Research (2005)

4. Pietzuch, P., et al.: Network-aware operator placement for stream-processing sys-
tems. In: ICDE 2006. Proc. the 22nd International Conference on Data Engineering
(2006)

5. Streambase Systems, Inc.: Streambase (2007), http://www.streambase.com/
6. Repantis, T., Gu., X., Kalogeraki, V.: Synergy: Sharing-aware component com-

position for distributed stream processing systems. In: ACM/IFIP/USENIX 7th
International Middleware Conference, pp. 322–341 (2006)

7. Risch, T., Koparanova, M., Thide, B.: High-performance GRID Database Manager
for Scientific Data. In: WDAS-2002. Proceedings of 4th Workshop on Distributed
Data & Structures (2002)

8. Jain, N., et al.: Design, implementation, and evaluation of the linear road bench-
mark on the stream processing core. In: SIGMOD 2006. 25th ACM SIGMOD
International Conference on Management of Data, ACM Press, New York (2006)

9. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable
virtual organizations. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L.
(eds.) Euro-Par 2001. LNCS, vol. 2150, Springer, Heidelberg (2001)

10. Werner-Allen, G., et al.: Deploying a Wireless Sensor Network on an Active Vol-
cano. IEEE Internet Computing 10(2), 18–25 (2006)

11. Bouillet, E., et al.: A semantics-based middleware for utilizing heterogeneous sensor
networks. In: Proceedings of the 3rd IEEE International Conference on Distributed
Computing in Sensor Systems, pp. 174–188. IEEE Computer Society Press, Los
Alamitos (2007)

12. Riabov, A., Liu, Z.: Scalable planning for distributed stream processing systems.
In: Proceedings of ICAPS 2006 (2006)

13. Amini, L., et al.: Adaptive control of extreme-scale stream processing systems. In:
Proceedings of ICDCS 2006 (2006)

14. Jacques-Silva, G., et al.: Towards autonomic fault recovery in system-s. In: Proceed-
ings of the 4th IEEE International Conference on Autonomic Computing, IEEE
Computer Society Press, Los Alamitos (2007)

15. Kim, K.H., Buyya, R.: Policy-based Resource Allocation in Hierarchical Virtual
Organizations for Global Grids. In: SBAC-PAD 2006. Proceedings of the 18th
International Symposium on Computer Architecture and High Performance Com-
puting, pp. 36–46 (2006)

16. Branson, M., et al.: Autonomic operations in cooperative stream processing sys-
tems. In: Proceedings of the Second Workshop on Hot Topics in Autonomic Com-
puting (2007)

CLASP: Col laborating, Autonomous Stream Processing Systems 367

17. Andrieux, A., et al.: Web Services Agreement Specification (WS-Agreement), Ver-
sion 2006/07. GWD-R (Proposed Recommendation), Grid Resource Allocation
Agreement Protocol (GRAAP) WGGRAAP-WG (2006)

18. Rong, B., et al.: Failure recovery in cooperative data stream analysis. In: ARES
2007. Proceedings of the Second International Conference on Availability, Relia-
bility and Security, Vienna (2007)

19. W3C Recommendation: Web ontology language (OWL) (2004)
20. Yang, H., et al.: Resource discovery in federated systems with voluntary sharing

(2007) (in submission)
21. Sandhu, R.: Lattice-based access control models. IEEE Computer (1993)
22. IBM: Security in System S (2006), http://domino.research.ibm.com/comm

research pro-jects.nsf/pages/system s security.index.html
23. Anderson, K.S., et al.: SWORD: Scalable and flexible workload generator for dis-

tributed data processing systems. In: The 37th Winter Simulation Conference, pp.
2109–2116 (2006)

24. Foster, I.T., Kesselman, C.: Scaling system-level science: Scientific exploration and
IT implications. IEEE Computer 39(11), 31–39 (2006)

25. Liu, C., et al.: Design and evaluation of a resource selection framework for grid
applications. In: Proceedings of the 11th IEEE Symposium on High-Performance
Distributed Computing, IEEE Computer Society Press, Los Alamitos (2002)

26. Ludwig, H., Dan, A., Kearney, B.: Cremona: An Architecture and Library for
Creation and Monitoring of WS-Agreements. In: ICSOC 2004. ACM International
Conference on Service Oriented Computing, ACM Press, New York (2004)

27. Balazinska, M., Balakrishnan, H., Madden, S., Stonebraker, M.: Fault-Tolerance
in the Borealis Distributed Stream Processing System. In: ACM SIGMOD Conf.,
Baltimore, MD, ACM Press, New York (2005)

28. Balazinska, M., Balakrishnan, H., Stonebraker, M.: Contract-based load manage-
ment in federated distributed systems. In: Symposium on Network System Design
and Implementation (2004)

29. Stonebraker, M., Çetintemel, U., Zdonik, S.B.: The 8 requirements of real-time
stream processing. SIGMOD Record 34(4), 42–47 (2005)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

