
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 4, APRIL 2005 839

Statistical En-Route Filtering of Injected
False Data in Sensor Networks

Fan Ye, Haiyun Luo, Songwu Lu, Member, IEEE, and Lixia Zhang, Senior Member, IEEE

Abstract—In a large-scale sensor network individual sensors are
subject to security compromises. A compromised node can be used
to inject bogus sensing reports. If undetected, these bogus reports
would be forwarded to the data collection point (i.e., the sink). Such
attacks by compromised nodes can result in not only false alarms
but also the depletion of the finite amount of energy in a battery
powered network. In this paper, we present a statistical en-route fil-
tering (SEF) mechanism to detect and drop false reports during the
forwarding process. Assuming that the same event can be detected
by multiple sensors, in SEF each of the detecting sensors generates
a keyed message authentication code (MAC) and multiple MACs
are attached to the event report. As the report is forwarded, each
node along the way verifies the correctness of the MAC’s proba-
bilistically and drops those with invalid MACs. SEF exploits the
network scale to filter out false reports through collective deci-
sion-making by multiple detecting nodes and collective false de-
tection by multiple forwarding nodes. We have evaluated SEF’s
feasibility and performance through analysis, simulation, and im-
plementation. Our results show that SEF can be implemented ef-
ficiently in sensor nodes as small as Mica2. It can drop up to 70%
of bogus reports injected by a compromised node within five hops,
and reduce energy consumption by 65% or more in many cases.

Index Terms—Compromised nodes, en-route filtering, false data
injection.

I. INTRODUCTION

WIRELESS sensor networks are expected to interact with
the physical world at an unprecedented level to enable

various new applications. However, a large-scale sensor network
may be deployed in a potentially adverse or even hostile envi-
ronment and potential threats can range from accidental node
failures to intentional tampering. Due to their relatively small
sizes and unattended operations, sensor nodes have a high risk
of being captured and compromised. False sensing reports can
be injected through compromised nodes, which can lead to not
only false alarms but also the depletion of limited energy re-
source in a battery powered network. Although several recent
research efforts [1]–[3] have proposed mechanisms to enable
node and message authentication in sensor networks, those pro-
posed solutions can only prevent false reports injection by out-
side attackers. They are rendered ineffective when any single
node is compromised (Fig. 1).

Manuscript received December 15, 2003; revised July 30, 2004. This paper
was presented in part at INFOCOM’04, Hong Kong, China.

F. Ye is with the IBM T. J. Watson Research Center, Hawthorne, NY 10532
USA (e-mail: fanye@us.ibm.com).

H. Luo is with the Department of Computer Science, University of Illinois at
Urbana–Champaign, Urbana, IL 61801 USA (e-mail: haiyun@cs.uiuc.edu).

S. Lu and L. Zhang are with the Computer Science Department, University
of California, Los Angeles, CA 90095 USA (e-mail: slu@cs.ucla.edu;
lixia@cs.ucla.edu).

Digital Object Identifier 10.1109/JSAC.2005.843561

Fig. 1. Compromised node injects false reports of nonexistent “tanks” events.
Such bogus reports can mislead reactions, delay, or block legitimate reports by
occupying the communication channel, and drain out network energy.

To combat false reports injected by compromised nodes, one
must have means to detect such false reports. However, devel-
oping such a detection mechanism represents a great research
challenge. On the one hand, the computation and storage con-
straints of small sensor nodes make asymmetric cryptography
based mechanisms, such as the one described in [4], infeasible.
On the other hand, straightforward usage of symmetric keys is
infeasible because once a node is compromised, all the shared
security information stored in that node can be used by an at-
tacker. The compromised node can successfully authenticate
bogus reports to a neighbor, which has no way to differentiate
such false reports from legitimate ones. Moreover, the effective-
ness of detection schemes based on application semantics may
be limited when the attacker knows application semantics and
injects only bogus reports that do not violate the semantics, and
their potentials remain to be further explored and thoroughly
evaluated. Finally, effective DDoS packet filtering solutions de-
veloped for the Internet that utilize structural properties of the
infrastructure, such as the one proposed in [5], are not applicable
to ad hoc deployed, self-organized sensor networks with a flat
topology.

In this paper, we present a statistical en-route filtering (SEF)
mechanism. SEF exploits the sheer scale and dense deployment
of large sensor networks. To prevent any single compromised
node from breaking down the entire system, SEF carefully limits
the amount of security information assigned to each node, and
relies on the collective decisions of multiple sensors for false re-
port detection. When a sensing target (henceforth called either
“stimulus” or “event”) appears in the field, multiple surrounding
sensors collectively generate a legitimate report and endorse it
by attaching to it their message authentication codes (MACs);
a report with an inadequate number of MACs will be dropped.

0733-8716/$20.00 © 2005 IEEE

840 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 4, APRIL 2005

As a report is forwarded through multiple hops toward the sink,
each forwarding node verifies the correctness of the MACs car-
ried in the report with certain probability and drops the report
if an incorrect MAC is detected. The probability of detecting
incorrect MACs increases with the number of hops the report
travels. Due to the statistical nature of the detection mechanism,
a few bogus reports with incorrect MACs may escape en-route
filtering and reach the sink. However, the sink can further verify
the correctness of each MAC and reject false reports.

The contribution of this paper is twofold. First, we propose
a key assignment method designed for en-route detection of
false reports in the presence of compromised nodes. Second,
we develop mechanisms for collective data report endorsement,
en-route report filtering, and sink verification. To our best
knowledge this is the first effort that addresses false report
detection problems in the presence of compromised sensor
nodes. We have evaluated our design through analysis, imple-
mentation, and simulations. Our results show that SEF is able
to drop up to 70% of bogus reports injected by a compromised
node within five hops, and up to 90% within ten hops along
the forwarding paths. The en-route filtering adds computation
complexity of less than 1 ms time and about 75 energy on
each forwarding node, while reducing total energy consumption
by 65% or more in many scenarios.

The rest of the paper is organized as follows. Sections II
and III present the model and design of SEF. Section IV dis-
cusses the parameter setting and analyzes the effectiveness and
energy savings achieved by SEF through measurements from
implementation, and evaluates the design through simulations.
A number of practical issues and future work are discussed in
Section V. Section VI compares SEF with the related work and
Section VII concludes the paper.

II. SYSTEM MODELS AND ASSUMPTIONS

A. Sensor Network Model

We consider a sensor network composed of a large number
of small sensor nodes. We further assumes that the sensor nodes
are deployed in high density, so that a stimulus (e.g., a tank) can
be detected by multiple sensors. Each of the detecting sensors
reports its sensed signal density and one of them is elected as
the center-of-stimulus (CoS) node. The CoS collects and sum-
marizes all the received detection results, and produces a syn-
thesized report on behalf of the group. The report is then for-
warded toward the sink, potentially traversing a large number
of hops (e.g., tens or more). The sink is a data collection center
with sufficient computation and storage capabilities, and it may
also implement advanced security solutions to protect itself.

Due to cost constraints we assume that each sensor node is not
equipped with tamper-resistant hardware.1 However, dense de-
ployment enables cross-verification of a reported event among
multiple sensors even in the presence of one or more compro-
mised nodes. SEF design harnesses the advantage of large-scale.
Rather than relying on a small number of powerful and expen-
sive sensors, SEF utilizes large numbers of small sensors for
reliable sensing and reporting.

1Tamper-resistant hardware can prevent the exposure of stored secrets [6]
even when a node is captured by the attacker.

B. Threat Model

We assume that the attacker may know the basic approaches
of the deployed security mechanisms, and may be able to either
compromise a node through the radio communication channel,
or even physically capture a node to obtain the security infor-
mation installed in the node. However, we assume that attackers
cannot subvert the data collection unit, i.e., the sink, because
the protection at the sink is powerful enough to defeat such sub-
version efforts. Once compromised, a node can be used to in-
ject false reports into the sensor network. Node and message
authentication mechanisms [1]–[3] prevent naive impersonation
of a sensor node. However, they cannot block false injection of
sensing reports by compromised nodes.

Besides false data injection, a compromised sensor node can
launch various other attacks. It can stall the generation of reports
for real events, block legitimate reports from passing through
it (which we call false negative attacks), or record and replay
old reports, etc. As the first effort in tackling the threats from
compromised components, this paper focuses on the detection
of false event reports, which we call false positives attacks, in-
jected by compromised nodes. We plan to address other attacks
in subsequent efforts.

III. STATISTICAL EN-ROUTE FILTERING (SEF)

In this section, we present the SEF design. Section III-A gives
an overview of the design, followed by a more detailed descrip-
tion of the three major components of SEF, key assignment
and report generation, en-route filtering, and sink verification
in Sections III-B–III-D, respectively. Finally we discuss how to
reduce overhead with two different techniques in Section III-E
(with more detailed comparison in Section IV-B).

A. Overview

SEF aims at achieving the following goals.

• Early detection of false data reports: by detecting false re-
ports the user can avoid responding to fabricated events.
Although the detection can be done after the data reports
arrive at the sink, en-route early detection and dropping
of false reports can conserve energy and bandwidth re-
sources of sensor nodes along data forwarding paths.

• Low computation and communication overhead: Given
the resource constraints of low-end sensor nodes, we rule
out solutions based on computation-intensive asymmetric
cryptography2 and only use efficient one-way functions.

SEF consists of three components that work in concert to de-
tect and filter out forged messages: 1) each legitimate report car-
ries multiple MACs generated by different nodes that detect the
same stimulus; 2) intermediate forwarding nodes detect incor-
rect MACs and filter out false reports en-route; and 3) the sink
verifies the correctness of each MAC and eliminates remaining
false reports that elude en-route filtering.

In SEF, the sink maintains a global key pool. Each sensor
stores a small number of keys that are drawn in a randomized

2It has been reported that encryption/decryption operations based on asym-
metric keys consume two to three magnitudes more energy than symmetric ones,
sometimes signing a bit is even more expensive than transmitting a bit [7].

YE et al.: SEF OF INJECTED FALSE DATA IN SENSOR NETWORKS 841

fashion from the global key pool before deployment. When-
ever a stimulus appears in the sensor field, multiple surrounding
nodes can detect the event and a CoS node is elected to generate
the event report. Each detecting sensor endorses the report by
producing a keyed MAC using one of its stored keys. The CoS
node collects the MACs and attaches them to the report. This set
of multiple MACs acts as the proof that a report is legitimate. A
report with insufficient number of MACs will not be forwarded.

The key assignment ensures that each node can generate only
partial proof for a report. Only by the joint efforts of multiple
detecting nodes can the complete proof be produced. A single
compromised node has to forge MACs to assemble a seemingly
complete proof in order for the forged data report to be for-
warded. Because nodes share common keys with certain prob-
abilities, when the report with forged MACs is forwarded by
intermediate nodes, the nodes can verify the correctness of the
MACs probabilistically, thus detecting and dropping false ones
en-route.

The sink serves as the final goal-keeper for the system. When
it receives event reports, the sink can verify all the MACs carried
in the report because it has complete knowledge of the global
key pool. False reports with incorrect MACs that sneak through
en-route filtering will then be detected.

Several questions in the above design must be answered.

1) How should the keys be assigned to nodes to prevent a
compromised node from forging the complete proof while
enabling verification by intermediate forwarding nodes?

2) How are false reports detected and filtered out en-route by
forwarding sensors?

3) What procedures does the sink follow to detect any re-
maining forged reports?

4) How can the size of the multiple MACs carried in a report
be kept minimal to reduce the overhead?

The rest of this section addresses each of these four questions in
order.

B. Key Assignment and Report Generation

There is a pregenerated global pool of keys
, divided into nonoverlapping partitions

. Each partition has keys (i.e.,), and each
key has a unique key index. A simple way to partition the global
key pool is as follows:

Before a sensor node is deployed, the user randomly selects one
of the partitions, and randomly chooses keys from
this partition to be loaded into the sensor node, together with the
associated key indices (see Fig. 2, for an example).

When a stimulus appears, all surrounding nodes that detect
the signal will prepare an event report in the form of ,
where is the location of the event, is the time of detection,
and is the type of event.3 Similar to [8], each detecting node
sets a random timer, upon the timer expiration it broadcasts its
values of . If another node finds the difference be-
tween the broadcast values and what it observes is within some

3The report may also contain other information about the event. To simplify
presentation, we only list the above three.

Fig. 2. Example of a global key pool with n = 9 partitions and four nodes,
each of which has k = 3 keys randomly selected from one partition. In a real
system, k, n can be much larger.

predefined error range, it accepts them and cancels its own timer.
Otherwise, it broadcasts its own observed values on expiration
of its timer. The node whose broadcast values are accepted by
others becomes the CoS node.

When real events occur in the sensor field, the CoS election
allows detecting nodes to generate MACs for the same report
content in the absence of compromised nodes. The predefined
error range is decided based on the sensing accuracy of nodes
and the application’s requirements to suppress duplicate data re-
port generation. However, when no real event occurs, well-be-
having sensors will not send out detection results and the asso-
ciated MACs. Therefore, the compromised node(s) (in a worst
case scenario, even the CoS itself may be compromised) are
forced to forge MACs in order to generate false reports, which
can be subsequently detected by SEF. However, note that SEF
does not address false negative attacks. A compromised node
can stall the proper reporting of a real event by sending many
incorrect values to block the communication channel. For ap-
plications that require more complex decision making where
the report contains more than the target type and each sensing
node has very different detecting result, a consensus needs to be
reached before the report can be endorsed, which is beyond the
scope of this paper.

After the election process finishes, a detecting node ran-
domly selects , one of its keys, and generates a MAC

(1)

where denotes stream concatenation and com-
putes the MAC of message using key . Many crypto-
graphic one-way functions may serve this purpose [9]. The node
then sends , the key index and the MAC, to the CoS. The
CoS collects all the ’s from detecting nodes and classify
MACs based on the key partitions. We define MACs generated
by keys of the same partition as one category. Suppose CoS col-
lects categories (). From each category, the CoS ran-
domly chooses one tuple and attaches it to the report.
The final report sent out by the CoS to the sink looks like

The choice of parameter trades off between detection
power and overhead. The sink can set a system-wide value for

so that each report carries exactly key indices of distinct
partitions and MACs. A report with less than MACs or key
indices, or more than one key index in the same partition, will
not be forwarded. A larger value makes forging reports more
difficult at the cost of increased overhead. When more than

842 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 4, APRIL 2005

Fig. 3. Operations in en-route filtering.

categories exist, the CoS can randomly choose of them. In
areas with sparse sensor deployment, there could be less than

categories. The node density should be high enough so that
such cases rarely happen. More analysis on setting parameters
will be given in Section IV.

C. En-Route Filtering

As a result of the randomized key assignment, each for-
warding node has certain probability to possess one of the
keys that are used to generate the MACs in a data report, i.e.,

, and verify the correctness of the corre-
sponding MAC, i.e., . A compromised node
has keys from only one partition and can only generate MACs
of one category. Since MACs of distinct categories and
key indices of distinct partitions must be present in a legitimate
report, the compromised node needs to forge the other
key indices and corresponding MACs. This explains why the
global key pool is partitioned: Had each node carried keys
chosen from the entire pool, one compromised node can use

of its keys to generate multiple MACs, which would be
indistinguishable from those generated by nodes.

When a node receives a report, it first examines whether there
are key indices of distinct partitions and MACs in the
packet. Packets with less than key indices, or less than
MACs, or more than one key index in the same partition are
dropped. Then if the node has any of the keys indicated by
the key indices, it reproduces the MAC using its own key and
compares the result with the corresponding MAC attached in the
packet. The packet is dropped if the attached one differs from
the reproduced. Only if they match exactly, or this node does
not possess any of the keys, the node passes the packet to the
next hop. The pseudo code for en-route filtering operations is
given in Fig. 3.

If an attached MAC differs from the one locally produced by
a forwarding node, it indicates that the report was not gener-
ated with the correct key. Such a MAC is considered forged,
and the packet is dropped. Note that a forwarding node sends
the report downstream if it does not have any of the keys, be-
cause the report might be a legitimate one with MACs by keys
not possessed by this node. This may cause a forged MAC to
escape the screening of certain node, but the forged report will
be detected and dropped with higher and higher probabilities as
it travels more and more hops. The detection power of a single
sensor is constrained, but the collective detection power grows
as more nodes deliver the report. We will further analyze the
performance in Section IV.

D. Sink Verification

When the sink receives a report, it can check the correctness
of every because it has all the keys. Any forged MAC that

eludes the en-route filtering by chance will be caught. When the
sink receives a report, it first examines whether the report car-
ries key indices of distinct partitions and MACs similarly.
It then recomputes each of the MACs and compares them
with the attached ones. If one mismatch happens, the packet is
discarded.

Any forged MAC that passes en-route filtering can be de-
tected by the sink. The sink serves as the final defense that
catches false reports not filtered out by forwarding nodes. As
long as a MAC is forged, the sink can detect and discard the
report. Therefore, SEF can detect bogus reports forged by an at-
tacker compromising keys in up to partitions. We further
analyze SEF’s detection power in Section IV.

E. Reducing the MAC Size

In addition to sensing data, each report carries key indices
and MACs, both of which increase the packet length and trans-
mission energy consumption. Some sensor networks may also
have stringent limit on the packet length due to hardware or soft-
ware configuration (e.g., TinyOS [10] uses less than 36-byte
packets), or potentially high error rates. In SEF MAC poses a
main source of packet size increase. However, we cannot reduce
the MAC size by decreasing , because a too small value re-
duces SEF’s false detection power. In the following, we present
two techniques for reducing the overhead while retaining cer-
tain security protection strength. This raises an interesting ques-
tion, which technique is better? We will compare their strength
in Section IV-B and point out under what conditions which is
better.

1) Shorter MACs: One method is to use MACs of shorter
lengths. This reduces the overhead directly, at the cost of in-
creasing the chance that an attacker can “guess” the MAC cor-
rectly, but it still requires multiple nodes to collectively endorse
an event.

2) Bloom Filters: We propose a second technique, Bloom
filter, where we use a much shorter bit-string, instead of a list
of MACs, to reduce packet size while retaining the false data
detecting power.

Bloom filter is a well-known data structure that can be used
for efficient membership checking, i.e., given an element, find
whether it is in a predefined set. A Bloom filter is made of a set

using a string of bits and indepen-
dent hash functions [11]. Each maps an item

uniformly to the range , each of which cor-
responding to a bit in the -bit string. (Note that we use , ,

, for different meanings in this section). The -bit string is
initially set to 0.

For each element , we hash it with all the hash func-
tions and obtain their values . The bits cor-
responding to these values are then set to 1 in the string. Note

YE et al.: SEF OF INJECTED FALSE DATA IN SENSOR NETWORKS 843

Fig. 4. Bloom filter that represents n = 5 elements using a string of m =
18 bits and k = 3 hash functions, each maps any element to range f0; . . . ; 17g.
Notice h (s) and h (s) both map to bit 6.

that more than one of the values may map to the same bit in
the string (see Fig. 4, for an example). To find whether an item

, bits are checked. If all of them are 1, is con-
sidered to belong to ; is definitely not in if at least one of
them is 0.

Bloom filter may yield false positives, i.e., an element is not
in but its bits are collectively marked by other elements
in . If the hash is uniformly random over the values, the
probability that a bit is 0 after all the elements are hashed and
their bits marked is . Therefore, the
probability for a false positive (i.e., the bits of an element are
already marked) is .

Certain changes are needed to use Bloom filter for SEF. The
CoS applies system-wide hash functions to map the selected
MACs (each with bits) to a -bit string ,
where we have to reduce packet size and to
retain en-route filtering capability. These functions are known
by every node and the sink. For each , we
have

if , s.t.
otherwise

The final report sent by the CoS to the sink is

Now, we need to modify both the en-routing filtering and sink
verification procedures to accommodate the use of Bloom filter.
When a forwarding node receives the report, it checks whether
there are key indices of distinct partitions and an -bit Bloom
filter with at most “1”s. If it has one of the keys, it repro-
duces the hash values and verifies whether the corresponding
bits are “1”s. The details of the forwarding protocol for an in-
termediate sensor node are as follows.

1) Check that key indices and an -bit string exist
in the packet, and there are at most “1”s in ; drop the
packet, otherwise.

2) Check the key indices belong to
distinct partitions; drop the packet, otherwise.

3) If it has one key , it computes
as in (1). Then, it computes

each and see if the corresponding bit is “1” in .
The packet is dropped if at least one of them is “0;” it is
forwarded to the next hop if all of them are “1.”

4) If it does not have any of the keys in ,
sends the packet to the next hop.

When the sink receives the report, it checks whether there are
key indices of distinct partitions and a -bit with at most

“1”s in the packet. It then regenerates the Bloom filter and
compares with that carried in the packet. Specifically, the sink
prepares an -bit string , with all bits set to “0.” For each key

, it computes the MAC and marks
the corresponding bits to “1.” The packet is
accepted only if is identical to .

Both shorter MACs and Bloom filter can greatly reduce
the packet size. As an example, assume that each key index
is 10 bits, each MAC is bits, key indices,
and MACs are required for each report. They take
370 bits (about 46 bytes). Using either shorter MACs, or a
Bloom filter of hash functions, which map 5 MACs to
an bit string, the total required space is reduced to 30%
(about 14 bytes). On the other hand, they maintain reasonable
levels of security strength and detecting power, as we will
compare and analyze in Section IV-B.

IV. PERFORMANCE EVALUATION

In this section, we first quantify the effectiveness of en-route
filtering in Section IV-A, and compare the security strengths of
shorter MACs and Bloom filter, in Section IV-B. Based on the
results, we discuss in Section IV-C how to choose appropriate
parameters to optimize the detecting power of SEF. We then
describe its implementation in Section IV-D and analyze SEF’s
energy savings through dropping bogus data in Section IV-E.
Finally, we provide simulation results in Section IV-F.

Since SEF relies on the carried MACs to detect false re-
ports, an attacker that compromises keys in or more distinct
partitions can successfully fabricate reports. SEF cannot detect
or drop such forged reports, which is a limitation of the current
design. In the rest of this section, we analyze cases where the
attacker has keys in () distinct partitions.

A. En-Route Filtering Effectiveness

The attacker cannot generate correct MACs of other
distinct categories. To have his data reports forwarded, the at-
tacker has to forge key indices of distinct partitions
and MACs. We first compute the probability that a for-
warding node has one of the keys, thus, being able to
detect an incorrect MAC and drop the report. We analyze the
scenarios that use the original MACs here; Section IV-B exam-
ines the scenarios using shorter MACs or Bloom filter and shows
that the results are almost the same.

If the attacker randomly chooses other partitions and
randomly chooses a key index in each partition, then the prob-
ability that a node happens to have one of the keys,
denoted by is

(2)

844 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 4, APRIL 2005

Fig. 5. Portion of dropped false reports as a function of the number of traveled
hops. The three curves are for p = 0:2, 0.1, 0.05, where the attacker has keys
in 1, 3, and 4 distinct partitions, respectively. Each report carries T = 5MACs.

where is the number of keys each node possesses, is the
number of keys a partition has, and is the number of key
partitions.

The expected fraction of false reports being detected and
dropped within hops is

The average number of hops that a forged report traverses is
given as

Fig. 5 illustrates how the detected fraction increases as
the number of hops grows. Consider an example of

partitions, keys per partition, each node
stores keys, and each packet carries MACs.
When , 3, and 4, we have , 0.1, 0.05, respec-
tively. Fig. 5 shows that 90% false reports are dropped within
ten hops if the attacker has keys in one partition, and 80% are
dropped within 15 hops if two partitions. In the worst case,
only one MAC is incorrect, 80% false reports are dropped in 32
hops and they travel 20 hops on average.

B. Security Strengths of Shorter MACs and Bloom Filter

1) False Positive at the Sink: Now, we analyze and com-
pare the false positive probabilities (i.e., a false report is not
detected and finally accepted by the sink) of the two overhead-
reducing techniques: shorter MACs and Bloom filter. This is
important to check whether they maintain sufficient security
protection against falsified reports, and identify under what con-
ditions which is better. We assume both techniques use bits
in MACs or a Bloom filter.

Each shorter MAC is of bits, thus, the chance that an
attacker can successfully guess one MAC is . The chance
he guesses all the remaining MACs in addition to the

MACs he already knows, thus cheating the sink successfully,
is

(3)

With Bloom filter, the attacker has two ways to attack. He
knows the hashing results of correct MACs, thus, at
most “1”s of an -bit Bloom filter (note that more than one
result may map to the same bit). Therefore, he needs to guess
the remaining bit positions of the forged
MACs. Since different hashings may map to the same bit, the

hash results of forged MACs map to at least one and
at most distinct bit positions. The total number of bit
patterns by hash results is

(4)

Randomly guessing one of them has chance of success.
A second way of attack is not to mark any additional bit,

but to send the Bloom filter of the correct MACs directly.
Given the false positive of Bloom filters, it is possible that the
“1” bits of the remaining MACs are already marked.
The probability is given by . Given ,

, and , the above probability can be minimized as

(5)

Under the first attack, Bloom filter is always better than
shorter MACs. This is because the attacker needs to guess in a
larger space (versus). As an example, with the
same overhead of 64 bits, each report carrying MACs,
in Bloom filter hash functions are used, whereas each
shorter MAC is of 12.8 bit. If the attacker has keys in one
partition, the chances of success are 2 and 2 ; in the
worst case when he has keys of distinct partitions,
2 and 2 .

Under the second attack, Bloom filter is better when is
small, but not as good when is large. By comparing (3)
and (5), we find that when the attacker compromises keys in

partitions, it is far more difficult to succeed in
forging the Bloom filter. In the same example, when ,
the probabilities are 2 and 2 .

Thus, the conclusion is that neither of the two overhead-re-
ducing techniques is always better than the other; they each ex-
cels under certain conditions. Note that the above probabilities
are not the probability of successfully guessing the value of a
key, whose strength is decided by its length and independent of
the Bloom filter’s or shorter MAC’s size.

2) False Positive at Forwarding Nodes: An attacker may
also try to fool intermediate nodes in order to at least waste
energy of sensors along the data delivery paths. With shorter
MACs, the chance that an attacker can successfully cheat a for-
warding node without having the correct key, is . The
probability of detecting false reports becomes

(6)

YE et al.: SEF OF INJECTED FALSE DATA IN SENSOR NETWORKS 845

where is the one-hop filtering probability in (2). Since
, the one-hop detecting probability is almost

unaffected.
With Bloom filter, the attacker may mark as many bits as pos-

sible, trying to cover all the marked bits in a correct Bloom filter.
When intermediate nodes find that the bits they calculate are al-
ready marked, they will forward the message. Since there are

MACs and each is hashed times, there are at most “1”
bits in a correct . If more than bits are “1,” an intermediate
node can simply drops the report. Thus, the attacker’s strategy
is: mark the (at most) bits of the correct MACs, then
randomly mark other bits as “1.” Now, we calculate
the probability that a forwarding node with one of the
keys finds all its bits marked, thus failing to detect such a false
report.

Since the hash functions map a MAC to each of the bits
uniformly, the probability that ’s bits all fall in the “1”s
marked by the compromised node is . When

, this probability can be minimized as . For
example, when and , then . Thus, the
probability of detecting the false report at a forwarding node is

(7)

reduced by merely 1%. When , we have .
This implies that 89.0% false reports are filtered out within the
initial ten hops and they travel 5.05 hops on average. Compared
with the corresponding results of Section IV-A, the differences
are almost negligible.

Therefore, both shorter MACs and Bloom filter retain the
en-route filtering power. The difference in their detecting power
is almost negligible and they are both effective in defeating an
adversary’s attack in cheating intermediate forwarding nodes.

C. Parameter Selection

In this section we discuss the impact of parameter choices on
SEF effectiveness.

1) Global Key Pool Parameters: The main impact of global
key pool structure and key assignment is on en-route filtering.
From (2), and should be large to increase the one-hop
detection probability . In practice, is constrained by the
sensor’s storage. If each key is 64 bits, storing 50 keys needs
400 bytes. This can take a certain portion of low-end nodes’
storage. should not be too big, either. Because each com-
promised node reveals a portion of the global key pool. With too
big a ratio, a few compromised nodes can reveal a signifi-
cant portion of the key pool.

The choice of is limited by how many bits the packet can
hold. On some low-end nodes, packets cannot be too long, e.g.,
more than 36 bytes. should be decided based on the available
space excluding the report content, headers, etc., also affects
energy consumption in forwarding. Longer packets consume
more energy. We should choose such that it provides sufficient
en-route filtering power, while still small enough to conserve en-
ergy. We will study its impact on energy in Section IV-E.

The partition number affects the en-route filtering proba-
bility. A smaller gives a higher (2). On the other hand,

Fig. 6. Average number of partitionsE[n] forD nodes. The three curves are
for n = 10, 20, and 30, where n is the total number of partitions.

should be larger than . A larger makes it more difficult for
the attacker to gather keys from all the partitions. The absolute
numbers of , affect the probability that two nodes have the
same set of keys. We should avoid such cases, where compro-
mising one effectively compromises the other. The probability
for such cases is determined by the absolute numbers of , ,
and , given as . Larger and lead to smaller prob-
abilities, even though the ratio , thus, the filtering proba-
bility , remains the same. In practice, a few thousand keys are
sufficient to give very small probabilities of two nodes carrying
the same set of keys.

2) Deployment Density: Another factor we must consider is
the node deployment density . Since we require MACs from
distinct categories for each legitimate report, the number of
detecting nodes for the same stimulus should be large enough
to possess keys from at least partitions. We can calculate

, the expected number of nodes needed to collectively
possess keys from distinct partitions, as follows (details
omitted due to space limit):

where is the total number of partitions. Suppose nodes’
sensing radius is , the number of nodes detecting the same
stimulus is . We should set such at is at
least or larger to ensure sufficient number of detecting
nodes. Fig. 6 illustrates how many nodes are needed to collec-
tively possess keys in a given number of distinct partitions.

3) Bloom Filter Parameters: After the key pool parameters
are decided, the Bloom filter parameters can be set accordingly.
The key index length is , thus, key indices and an -bit
Bloom filter take bits for each packet. Within the
allowed packet size, should be large enough to reduce the
false positive probabilities, as shown in (4) and (7). The number
of hash functions used in Bloom filter can be chosen based on
the analysis of (7) to minimize the chance of a false data report
to escape en-route filtering.

846 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 4, APRIL 2005

D. Implementation

To help evaluate the performance and complexities of SEF on
real sensors, we implemented the communication and cryptog-
raphy modules of SEF, as well as its APIs, on the MICA2 motes
produced by X-Bow [12]. The communication module provides
an interface that can be used to efficiently send and receive a
packet of any length. The cryptography module facilitates SEF
with cryptographic primitives, such as computing the MAC for
a given event report, or hashing a MAC for generating Bloom
filters.

Each Mica2 sensor is equipped with an 8-bit 4 MHz mi-
crocontroller running an event-driven operating system, called
TinyOS [10], from its internal flash memory. The memory size
available at each node is rather limited: 128 kB of program
memory and 4 kB of data memory. These stringent resource
constraints clearly require a compact implementation that can fit
into the underlying platform. Therefore, we do not intend to pro-
vide general-purpose codes in our implementation. Instead, mo-
tivated by the application-driven feature of sensor networks, we
optimized our codes based on the specific needs of SEF when-
ever possible.

1) Wireless Communication Module and API: The API ex-
ported by the communication module consists of send and re-
ceive primitives whose meanings are self-evident. Although
TinyOS provides a GenericComm interface that can transmit
and receive packets, we do not use it and choose to implement
our own modules for two reasons. First, the maximum payload
size per packet that can be transmitted using this interface is
only 29 bytes. Any message that is longer than 29 bytes has to
be fragmented. We do not want to constrain the scenarios for
our experiments. Second, each packet that goes through this in-
terface is added with an extra 7-byte header, which incurs sig-
nificant communication overhead if the payload size is small.
Some of the fields in the header are not useful for SEF, either.
Therefore, we developed a communication module specifically
tailored to SEF.

Our communication module directly reads and writes the
buffer that is associated with the low-level radio device. It
can transmit and receive a packet of any length, though the
chance of corruption increases as the packet becomes longer
and longer. Moreover, each packet only has a 1-byte header,
which contains one field, Length. Note that the packet length
information is the minimum requirement that should be carried
in the packet header, as it is used by the receiver to delimitate
the packet. Although this is not appropriate for general-purpose
wireless communications, it provides an efficient solution in
the context of SEF. Based on the length of a received packet, a
node can infer which type of packet it is, and then interpret the
packet content accordingly.

2) Cryptography Module and API: We do not intend to
implement a complete set of cryptographic primitives in this
module. Instead, it provides a simple API, a MAC(plaintext,
key) call that allows the application to compute the message
authentication code for any packet, given a specific symmetric
key. Similar to TinySec [13], our implementation of message
authentication is based on a single block cipher using RC5
algorithm [14]. RC5 is simple and efficient as it involves

TABLE I
CODE SIZE BREAKDOWN (BYTES) IN MICA2 PLATFORM

addition, XOR, and bit shifting operations only, and has low
memory requirement. Hence, it is well suited for providing
security in the resource-stringent sensor nodes.

We further optimize our codes by taking advantage of the ap-
plication semantics. In SEF, the message authentication compu-
tation is performed solely on the event content that has a fixed
size. Therefore, we need not implement general-purpose MAC
computation schemes, such as the CBC-MAC [15], to accom-
modate input streams with arbitrary lengths. In fact, the event
content in our implementation has a size of 8 bytes, which is suf-
ficient to hold the event type, location and detection time, and
is exactly the length of a block in a 32-bit RC5 block cipher.
This way, a single encryption operation suffices to generate the
MAC.

To reduce code size, we maximize code reuse by using the
same RC5 crypto for hash computations. Implementing con-
ventional hash functions such as MD5 needs separate code and
memory to store tables. What we need here is a lightweight func-
tion that maps an 8-byte input to a range (e.g., 0–63). We take
the first several (e.g., 6) bits of the RC5 output as the hash value.
Using the same keys, each node have the same set of hash
functions for Bloom filters.

3) Code Breakdown: Table I shows a breakdown of the
implementation codes in the MICA2 platform. The cryptog-
raphy module takes about 0.5% of ROM and 2.8% of RAM,
the generic radio communication stack consumes about 3.2%
of ROM and 2.8% of RAM. They leave about 124 kB in ROM
and 3.8 kB in RAM for other components such as applications.

E. Energy Savings

SEF saves energy of sensors along the data dissemination
paths through its early detection and dropping of false data re-
ports. On the other hand, SEF requires that each report carry

key indices and MACs (or a Bloom filter), in addition to the
normal fields of a report. Such extra fields incur energy con-
sumption in transmission, reception and computation. We use
the following model to quantify SEF’s energy savings. Let the
length of the MACs or Bloom filter, and key index be and ,
respectively. The length of a normal report without any extra
field is denoted as . Then, the length of an SEF report be-
comes . We normalize the packet length to

and let , where .
Let the number of hops a report travels be , and the amount
of legitimate data traffic and false injected traffic be 1 and ,
respectively. Without SEF, every report (including those forged
ones) travels all hops. With SEF, a false report with
forged MACs has probability to travel exactly

YE et al.: SEF OF INJECTED FALSE DATA IN SENSOR NETWORKS 847

Fig. 7. Energy consumption as a function of the normalized amount of injected
traffic � and the number of carried MAC’s T . e is the energy amount without
SEF; E1 and E4 are the amounts with SEF and the attacker has keys in 1 and
4 distinct partitions, respectively. SEF uses much less energy when the amount
of injected traffic exceeds that of legitimate traffic.

hops,4 where . Therefore, the energy con-
sumed to deliver all the traffic, denoted by without SEF and

with SEF, will be

(8)

(9)

where the energy consumed in transmitting, receiving one byte
are and .

Another part of energy of SEF is in computations. We im-
plement RC5 [14] block cipher in Mica2 and use it for both
MAC and hash computations. Denote the energy in one hash
or MAC computation , the number of hash functions , and
the number of detecting nodes for the same stimulus . The
computation energy for all the traffic is5

(10)

The total energy consumed for SEF is . Mea-
surements [12] show that Mica2 nodes consumes 10 mA current
when idling or receiving, 13 mA transmitting. Based on the bat-
tery voltage (3 V) and data rate (19.2 kb/s), we can calculate
that it takes , to transmit/receive a
byte. Each RC5 computation takes about 0.5 ms [16] and con-
sumes about . Since the implementation uses the
same RC5 crypto for both MAC and hash computations, it takes
0.5 ms to finish one MAC computation (2.5 ms to finish the five
hash computations for the Bloom filter).

Fig. 7 plots how and change as functions of different
and , when , the overhead of Bloom filter (

hash functions are used) or shorter MACs is bits, key
index is bits, original packet size is bytes, the
global key pool has ten partitions, and a node has 50% of the
keys in a partition nodes detect the same stimulus.
SEF energy is plotted for two cases, the attacker has keys in

, 4 distinct partitions.

4The actual per hop detecting probability should be p = p (1� p). Since
p is very small (Section IV-B), we ignore it in the computation.

5This is for SEF with Bloom filter. For shorter MACs, there is no hash com-
putation, thus, the energy is even less. We omit it due to space limit.

Fig. 8. Percentage of dropped false reports grows as the number of hops
increases. The attacker has keys in 0 and 1 partition, respectively.

We find that grows much faster than , and SEF saves en-
ergy in most cases. For example, when , if the packet
carries MACs and the attacker has keys in one parti-
tion, with SEF more than 80% energy can be saved compared
with the case without SEF. Even with the worst case of ,
where the one-hop filtering probability is merely 0.05, still
about 65% of the total energy can be saved by dropping false
reports.

In reality, an attacker may inject false data reports that are
orders of magnitude more than legitimate traffic, to inflict severe
damage to the network. SEF saves significant amount of energy
in these scenarios. When the number of false reports is low, SEF
may not save as much energy, but it still enables the sink to
detect bogus events and reduce false alarms.

We also find that dominates SEF’s total energy consump-
tion, which is consistent with the observation that it saves energy
to trade off computation for less communication. An additional
discovery is that should not be too small to reduce energy
consumption. Otherwise, the one-hop filtering probability is de-
creased and injected reports will travel more hops and consume
more energy.

F. Simulation Results

We use simulations to further verify our analysis. Due to
space constraint, we only present results for en-route filtering
and energy consumption in cases of , 1. We use a
field size of 200 20 , where 340 nodes are uniformly dis-
tributed. One stationary sink and one stationary source sit in op-
posite ends of the field, with about 100 hops in between. The
power consumptions of transmission and reception are 60 mW
and 12 mW, respectively. The transmission time for a packet
is 10 ms. The source generates a report every 2 s. We use a
global key pool of 1000 keys, divided into 10 partitions, with
100 keys in each partition. Each node has 50 keys. The results
are averaged over ten simulated topologies.

1) En-Route Filtering: Fig. 8 shows the percentage of
dropped false reports as a function of the number of traveled
hops, for 0 and 1 compromised key partition, respectively.
The source generates 1000 bogus reports in each run. When
the attacker mimics wireless transmission to inject traffic,

848 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 4, APRIL 2005

Fig. 9. Energy consumption as a function of injected traffic ratio � and the
number of MAC’s T each report carries. The attacker has keys in one partition.
SEF saves energy when the amount of injected traffic exceeds that of legitimate
traffic.

about 90% false reports are dropped within ten hops. With one
compromised node, about 80% are dropped within ten hops.
As the reports travel, more and more are detected and dropped:
less than 5% reports can go beyond 20 hops and none reaches
the sink—all of them are detected and dropped before they
finish half of the 100 hops. These results are consistent with
the theoretical analysis. They show that SEF turns the network
scale into an asset to achieve greater detection power with a
larger node population.

2) Energy Tradeoff: We use similar parameters as those in
Section IV-E and the attacker has keys in one partition. The
source generates 100 reports. The number of forged reports is

, where is the injected traffic ratio. Fig. 9 confirms our
previous analysis (Section IV-E): when the injected traffic is
more than the legitimate traffic, SEF saves energy.

V. DISCUSSIONS AND FUTURE WORK

A. Other Network Factors

SEF turns the scale into an asset by accumulating detecting
power over data delivery paths. It works the best in large-scale
networks where reports need to travel many hops to reach the
sink. The longer the data delivery path, the more powerful the
en-route filtering. SEF may not filter reports injected from lo-
cations close to the sink effectively. In such cases the energy
savings might not be significant. However, the sink’s detecting
power is not affected. Any forged reports with incorrect MACs
are still detected and do not trigger false alarms.

SEF design is not tied to any particular data forwarding
protocol. The probabilistic key assignment allows any node
to verify MACs regardless of its location or functionality. As
long as sensors can store some keys and perform the MAC
computations, injected false reports can be detected and filtered
en-route. It works with existing data forwarding protocols such
as directed diffusion [17], GRAB [8], and TTDD [18].

SEF requires that data reports be generated collaboratively by
multiple detecting sensors of the same stimulus. If the node den-
sity is low, detecting nodes may not generate sufficient numbers
of MACs. We expect the guidelines in Section IV-C to help set-
ting appropriate deployment densities to avoid such situations.

The topology of a sensor network may change dynamically
due to energy conserving protocols such as [19] and [20], or un-
expected node deaths in a harsh environment. SEF does not need
any extra mechanism to deal with topology changes, because
the state used for detection, key indices and MACs, is carried in
packets, not by sensors.

B. Future Work

When nodes are densely deployed, the detecting nodes of a
stimulus can collectively hold keys of all the partitions. In
this scenario, if the attacker has keys belonging to or more,
but less than partitions, we may still detect their false reports
over time. Since CoS can choose to load consecutive data reports
with MACs from different sets of categories, a few successive
reports will collectively carry MACs of all categories. The
sink can then reject those stimuli whose reports have MACs of
less than a threshold () of distinct categories.
Further exploring the temporal redundancy of sensor network
data reports in addition to the spatial redundancy, SEF can de-
tect false data reports injected by attackers holding keys of up
to distinct partitions.

A compromised detecting node may launch false negative at-
tacks against the collaborative report generation process. Thus,
a legitimate event may not be reported properly. This is a dif-
ferent problem from false positives that SEF addresses. Besides,
being elected as the CoS is nontrivial. Unless the compromised
node broadcasts values that are consistent with other detecting
sensor nodes’ observation, effectively reporting the truth, they
will not follow and endorse the compromised node’s data report.
Another legitimate detecting node will announce its values and
be elected.

One way to improve the resilience of the CoS election against
attacks and detect incorrect MACs is to add pairwise keys shared
between each pair of neighbors and require each message be
authenticated. Thus one compromised node can send at most
one incorrect MAC to the CoS, but cannot impersonate other
nodes. The probabilistic key assignment of SEF already allows
certain degrees of key sharing between neighbors to establish
pairwise keys during network bootstrapping.

Currently, SEF does not address identifying compromised
nodes or replacing compromised keys, which may be needed
for the continuous operation of a network. For identification,
neighbor nodes may overhear the channel to detect unusual ac-
tivities of compromised nodes such as high traffic volume and
notify the sink. After the nodes are identified, the sink should
flood instructions to revoke compromised keys and propagate
new ones. The sink’s instructions can be authenticated by hash
chains as proposed in [1]. As more nodes are compromised or
deplete energy, new nodes should be deployed. To work with ex-
isting nodes, they can carry some keys from the same global key
pool. However, those keys that are already compromised should
be avoided.

Finally, SEF is not designed to address other attacks a com-
promised node may launch, such as dropping legitimate reports
passing through it, recording and replaying legitimate reports, or
injecting false control packets to disrupt other protocols. Certain
techniques can be applied. The authors in [21] point out mul-
tipath forwarding can alleviate dropping of legitimate reports.

YE et al.: SEF OF INJECTED FALSE DATA IN SENSOR NETWORKS 849

Each sensor can use a cache [8], [17] to store the signatures of
recently forwarded reports, thus replayed packets are not for-
warded again. Solving these various problems requires different
solutions.

We are currently exploring a location dependent key man-
agement scheme to confine the impact of a compromised sensor
node to its locality. In the new scheme, keys are only valid in en-
dorsing data reports regarding events in certain locations. There-
fore, an attacker has to compromise sensor nodes locally and ac-
cumulate or more partitions in order to have its injected false
data reports forwarded by the sensor network.

VI. RELATED WORK

Sensor network security has been studied in recent years in a
number of proposals. Karlof et al. [21] analyzes attacks against
sensor network routing protocols and points out possible ways
of defense. Wood et al. [22] studies DoS attacks against dif-
ferent layers of sensor protocol stack and concludes that secu-
rity should be considered at the design phase. Sasha et al. [23]
proposes to tradeoff overhead and security strength based on
the importance of data. Lin et al. [24] studies how to reduce en-
ergy consumption in cryptographic algorithms using dynamic
voltage scaling. Carman et al. [7] compares the energy con-
sumptions of different public key algorithms on various sensor
hardware. SEF addresses a different problem of detecting and
en-route filtering injected false data.

SPINS [1] implements symmetric key cryptographic algo-
rithms with delayed key disclosure on motes to establish se-
cure communication channels between a base station and sen-
sors within its range. Basagni et al. [6] uses a single “mission
key” for the entire sensor network assuming that tamper-resis-
tant hardware is available so that no secret can be compromised.
They do not address the false data injection problem in the pres-
ence of compromised sensor nodes.

SEF key assignment bears similarities with [2], [3], which use
probabilistic key sharing to establish trust between neighboring
nodes. Chan et al. [3] further trades off the unlikelihood of large-
scale attacks for higher strength against smaller ones, but SEF
solves a different problem, and it assigns keys differently: each
node has keys from only one partition of the global pool. This is
to ensure each node can only generate part of the proof for the
truthfulness of a report. Only through the joint effort of multiple
nodes can the complete proof be generated. Eschenauer et al. [2]
does not impose such a constraint and nodes can choose keys
from the whole key pool. Finally, [2] requires any two nodes
have very high probabilities of sharing keys to build a connected
network; the probability in SEF can be much lower since we
exploit the network scale to make en-route filtering effective.

In principle, the joint generation of MACs by multiple nodes
is similar to [4] where several nodes collectively issue a cer-
tificate for a new node in mobile ad hoc networks, but [4] uses
public key algorithms, which are infeasible on small sensors of
constrained computing, energy, and memory resources. Canetti
et al. [25] proposes multiple MACs to ensure source authentica-
tion in multicast so that a group of less than a threshold number
of colluding receivers do not have all the keys needed to cheat
other receivers. SEF has many data sources but one sink and

only the sink has all the keys. The purpose is to prevent compro-
mised nodes from cheating the sink. Reference [25] assumes one
source but many receivers and the purpose is to prevent cheating
each individual receiver. Also, packet size is not a big concern
in the Internet but it is a serious issue for low-end sensors.

There is also a rich literature on secure routing in mobile ad
hoc networks such as [26] and [27]. Yang et al. [28] proposes
self-organized algorithms and protocols to secure homogeneous
ad hoc wireless networks, and Kong et al. [29] for heteroge-
neous mobile ad hoc networks. SEF works for large-scale sensor
networks, whose communication is usually from many to one
and the resources are severely constrained.

SEF design is also related to intrusion detection [30] and
Internet packet filtering against DoS attacks through forged
source IP addresses [5]. However, these designs either rely on
the network infrastructure that does not exist in a self-organized
wireless sensor network, or involve complex and sophisticated
mechanisms that are beyond the capabilities of low-end sen-
sors. SEF only requires that sensor nodes store tens of keys and
perform efficient keyed MAC computations.

VII. CONCLUSION

Large-scale sensor networks may be deployed in a potentially
adverse or even hostile environment. Due to the unattended op-
erations of the network and the relatively small sizes of the sen-
sors, sensor nodes may have a high risk of being captured and
compromised. Instead of relying on, and complementing the
efforts of, tampering prevention, in this paper, we focused on
detecting false sensing reports that can be injected by compro-
mised nodes.

We have developed SEF for false report detection. Authen-
ticating event reports requires that nodes share certain security
information, however, attackers can obtain such information by
compromise just a single node. To overcome this dilemma, SEF
design divides a global key pool into multiple partitions and
carefully assigns a certain number of keys from one partition to
individual node. Given that any single node knows only a lim-
ited amount of the system secret, compromising one or a small
number of nodes cannot disable the overall network from de-
tecting bogus reports. SEF design harnesses the advantage of
large-scale by requiring endorsement of an event report from
multiple detecting nodes and by detecting false reports through
collaborative filtering of all forwarding nodes along the path.
Our analysis and simulations show that SEF can drop up to 70%
of bogus reports injected by a compromised node within five
hops, and up to 90% within ten hops along the forwarding paths.
When the amount of injected traffic is high, it saves more than
80% of energy by dropping false data en-route.

Although several recent research efforts have addressed
sensor network security issues such as node authentication,
data secrecy, and integrity, they provide no protection once
any single node is compromised. SEF represents the first step
toward building resilient sensor networks that can withstand
compromised nodes. SEF achieves this goal by balancing the
tradeoff between the amount of security information assigned
to individual nodes and the false detection power of the nodes.
The more security information each forwarding node has, the

850 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 4, APRIL 2005

more effective the en-route filtering will be, but also the more
secret the attacker can obtain from a compromised node. Our
plan for the next step is to conduct systematic evaluation of
the tradeoffs between these two conflict goals, and to gain
further insight in how to build a sensor network that can be at
once resilient against multiple compromised nodes, as well as
effective in detecting false data reports through collaborative
filtering.

REFERENCES

[1] V. Wen, A. Perrig, and R. Szewczyk, “SPINS: Security suite for sensor
networks,” in Proc. ACM MobiCom, 2001, pp. 189–199.

[2] L. Eschenauer and V. D. Gligor, “A key-management scheme for dis-
tributed sensor networks,” in Proc. ACM CCS, 2002, pp. 41–47.

[3] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes
for sensor networks,” in Proc. IEEE Symp. Security. Privacy, May 2003,
pp. 197–213.

[4] H. Luo, J. Kong, P. Zerfos, S. Lu, and L. Zhang, “URSA: Ubiquitous
and robust access control for mobile ad hoc networks,” Proc. IEEE/ACM
Trans. Netw., vol. 12, no. 6, pp. 1049–1063, Oct. 2004, to be published.

[5] K. Park and H. Lee, “On the effectiveness of route-based packet filtering
for distributed DoS attack prevention in power-law Internets,” in Proc.
ACM SIGCOMM, 2001, pp. 15–26.

[6] S. Basagni, K. Herrin, E. Rosti, and D. Bruschi, “Secure pebblenets,” in
Proc. ACM MOBIHOC, 2001, pp. 156–163.

[7] D. W. Carman, P. S. Kruus, and B. J. Matt, “Constraints and approaches
for distributed sensor network security,” NAI Laboratories, Tech. Rep.
00–010, 2000.

[8] F. Ye, G. Zhong, S. Lu, and L. Zhang, “GRAdient broadcast: A robust
data delivery protocol for large scale sensor networks,” ACM Wireless
Netw. (WINET), vol. 11, no. 2, Mar. 2005.

[9] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for
message authentication,” Proc. Crypto, pp. 1–15, 1996.

[10] TinyOS Operation System [Online]. Available: http://millennium.
berkeley.edu

[11] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[12] Xbow Sensor Networks [Online]. Available: http://www.xbow.com/
[13] C. Karlof, N. Sastry, U. Shankar, and D. Wagner, TinySec: TinyOS Link

Layer Security Proposal–Version 1.0, 2002.
[14] R. Rivest, “The RC5 encryption algorithm,” in Proc. Workshop on Fast

Software Encryption, Jun. 1995, pp. 423–432.
[15] “Data Encryption Standard (DES),” U.N.I. standards and technology,

Draft Federal Information Processing Standards Publication 46–3, 1999.
[16] C. Karlof, N. Sastry, and D. Wagner. (2002) TinySec: Security for

TinyOS. [Online]. Available: www.cs.berkeley.edu/~nks/tinysec/
TinySec.ppt

[17] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A
scalable and robust communication paradigm for sensor networks,” in
Proc. ACM MOBICOM, 2000, pp. 56–67.

[18] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A two-tier data dissem-
ination model for large-scale wireless sensor networks,” in Proc. ACM
MOIBCOM, 2002, pp. 148–159.

[19] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. B. Srivastava, “Opti-
mizing sensor networks in the energy-latency-density design space,”
IEEE Trans. Mobile Comput., vol. 1, no. 1, pp. 70–80, Jan.-Mar. 2002.

[20] F. Ye, G. Zhong, S. Lu, and L. Zhang, “PEAS: A robust energy con-
serving protocol for long-lived sensor networks,” in Proc. ICDCS, May
2003, pp. 28–37.

[21] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks:
Attacks and countermeasures,” in Proc. IEEE SPNA, May 2002, pp.
113–127.

[22] A. Wood and J. Stankovic, “Denial of service in sensor networks,” IEEE
Comput., vol. 35, no. 10, pp. 54–62, Oct. 2002.

[23] S. Slijepsevic, M. Potkonjak, V. Tsiatsis, S. Zimbeck, and M. Srivastava,
“On communication security in wireless ad-hoc sensor networks,” in
Proc. 11th IEEE Int. Workshops Enabling Technol.: Infrastructure for
Collaborative Enterprises, Jun. 2002, pp. 139–144.

[24] L. Yuan and G. Qu, “Design space exploration for energy-efficient se-
cure sensor networks,” in Proc. IEEE Int. Conf. Appl.-Specific Syst., Ar-
chitectures, Processors, Jul. 2002, pp. 88–97.

[25] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas,
“Multicast security: A taxonomy and some efficient constructions,” in
Proc. INFOCOM, Mar. 1999, pp. 708–716.

[26] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A secure on-demand
routing protocol for ad hoc networks,” in Proc. ACM MOBICOM, 2002,
pp. 12–23.

[27] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens, “An on-de-
mand routing protocol resilient to byzantine failures,” in Proc. ACM
Workshop on Wireless Security (WiSe), 2002, pp. 21–30.

[28] H. Yang, X. Meng, and S. Lu, “Self-organized network layer security in
mobile ad hoc networks,” Proc. WiSe, pp. 11–20, 2002.

[29] J. Kong, H. Luo, K. Xu, D. L. Gu, M. Gerla, and S. Lu, “Adaptive
security for multi-layer ad hoc networks,” Wireless Commun. Mobile
Comput., Special Issue on Mobile Ad Hoc Networking, vol. 2, pp.
533–547, 2002.

[30] W. R. Cheswick and S. M. Bellovin, Firewalls and Internet Secu-
rity. Reading, MA: Addison-Wesley, 1994.

Fan Ye received the B.E. degree in automatic
control and the M.S. degree in computer science
from Tsinghua University, Beijing, China, in 1996
and 1999, respectively, and the Ph.D. degree in
computer science from the University of California,
Los Angeles, in 2004.

He is currently with the IBM T. J. Watson Research
Center, Hawthorne, NY. His research interests are in
wireless networks, sensor networks, and security.

Haiyun Luo received the B.S. degree from the
University of Science and Technology of China,
Hefei, and the M.S. and Ph.D. degrees in computer
science from the University of California, Los
Angeles.

He is currently an Assistant Professor in the
Department of Computer Science, University of
Illinois at Urbana–Champaign, Urbana. His research
interests include wireless and mobile networking
and computing, security, and large-scale distributed
systems.

Songwu Lu (S’95–M’00) received the M.S. and Ph.D. degrees from the
University of Illinois at Urbana–Champaign, Urbana.

He is currently an Assistant Professor of Computer Science at the University
of California, Los Angeles. His research interests include wireless networking,
mobile computing, wireless security, and computer networks.

Dr. Lu received the National Science Foundation (NSF) CAREER Award in
2001.

Lixia Zhang (S’81–M’86–SM’94) received the Ph.D. degree in computer sci-
ence from the Massachusetts Institute of Technology, Cambridge.

She was a Member of the Research Staff at the Xerox Palo Alto Research
Center, Palo Alto, CA, before joining the faculty of the Department of Computer
Science, University of California, Los Angeles, in 1995.

Dr. Zhang has served on the Internet Architecture Board and was Co-Chair
of the IEEE Communication Society Internet Technical Committee. She served
on technical program committees for many networking-related conferences
including SIGCOMM and INFOCOM. She is currently serving as the Vice
Chair of ACM SIGCOMM. She was on the Editorial Board of the IEEE/ACM
TRANSACTIONS ON NETWORKING.

	toc
	Statistical En-Route Filtering of Injected False Data in Sensor
	Fan Ye, Haiyun Luo, Songwu Lu, Member, IEEE, and Lixia Zhang, Se
	I. I NTRODUCTION

	Fig. 1. Compromised node injects false reports of nonexistent ta
	II. S YSTEM M ODELS AND A SSUMPTIONS
	A. Sensor Network Model
	B. Threat Model

	III. S TATISTICAL E N -R OUTE F ILTERING (SEF)
	A. Overview
	B. Key Assignment and Report Generation

	Fig. 2. Example of a global key pool with $n=9~ \hbox{partitions
	Fig. 3. Operations in en-route filtering.
	C. En-Route Filtering
	D. Sink Verification
	E. Reducing the MAC Size
	1) Shorter MACs: One method is to use MACs of shorter lengths. T
	2) Bloom Filters: We propose a second technique, Bloom filter, w

	Fig. 4. Bloom filter that represents $n=5~ \hbox{elements}$ usin
	IV. P ERFORMANCE E VALUATION
	A. En-Route Filtering Effectiveness

	Fig. 5. Portion of dropped false reports as a function of the nu
	B. Security Strengths of Shorter MACs and Bloom Filter
	1) False Positive at the Sink: Now, we analyze and compare the f
	2) False Positive at Forwarding Nodes: An attacker may also try

	C. Parameter Selection
	1) Global Key Pool Parameters: The main impact of global key poo

	Fig. 6. Average number of partitions $E[n^{\prime}]$ for D nod
	2) Deployment Density: Another factor we must consider is the no
	3) Bloom Filter Parameters: After the key pool parameters are de
	D. Implementation
	1) Wireless Communication Module and API: The API exported by th
	2) Cryptography Module and API: We do not intend to implement a

	TABLE I C ODE S IZE B REAKDOWN (B YTES) IN MICA2 P LATFORM
	3) Code Breakdown: Table€I shows a breakdown of the implementati
	E. Energy Savings

	Fig. 7. Energy consumption as a function of the normalized amoun
	Fig. 8. Percentage of dropped false reports grows as the number
	F. Simulation Results
	1) En-Route Filtering: Fig.€8 shows the percentage of dropped fa

	Fig. 9. Energy consumption as a function of injected traffic rat
	2) Energy Tradeoff: We use similar parameters as those in Sectio
	V. D ISCUSSIONS AND F UTURE W ORK
	A. Other Network Factors
	B. Future Work

	VI. R ELATED W ORK
	VII. C ONCLUSION
	V. Wen, A. Perrig, and R. Szewczyk, SPINS: Security suite for se
	L. Eschenauer and V. D. Gligor, A key-management scheme for dist
	H. Chan, A. Perrig, and D. Song, Random key predistribution sche
	H. Luo, J. Kong, P. Zerfos, S. Lu, and L. Zhang, URSA: Ubiquitou
	K. Park and H. Lee, On the effectiveness of route-based packet f
	S. Basagni, K. Herrin, E. Rosti, and D. Bruschi, Secure pebblene
	D. W. Carman, P. S. Kruus, and B. J. Matt, Constraints and appro
	F. Ye, G. Zhong, S. Lu, and L. Zhang, GRAdient broadcast: A robu
	M. Bellare, R. Canetti, and H. Krawczyk, Keying hash functions f

	TinyOS Operation System [Online] . Available: http://millennium.
	B. Bloom, Space/time trade-offs in hash coding with allowable er

	Xbow Sensor Networks [Online] . Available: http://www.xbow.com/
	C. Karlof, N. Sastry, U. Shankar, and D. Wagner, TinySec: TinyOS
	R. Rivest, The RC5 encryption algorithm, in Proc. Workshop on Fa

	Data Encryption Standard (DES), U.N.I. standards and technology,
	C. Karlof, N. Sastry, and D. Wagner . (2002) TinySec: Security f
	C. Intanagonwiwat, R. Govindan, and D. Estrin, Directed diffusio
	F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, A two-tier data di
	C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. B. Srivastava, O
	F. Ye, G. Zhong, S. Lu, and L. Zhang, PEAS: A robust energy cons
	C. Karlof and D. Wagner, Secure routing in wireless sensor netwo
	A. Wood and J. Stankovic, Denial of service in sensor networks,
	S. Slijepsevic, M. Potkonjak, V. Tsiatsis, S. Zimbeck, and M. Sr
	L. Yuan and G. Qu, Design space exploration for energy-efficient
	R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. P
	Y.-C. Hu, A. Perrig, and D. B. Johnson, Ariadne: A secure on-dem
	B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens, An on-dem
	H. Yang, X. Meng, and S. Lu, Self-organized network layer securi
	J. Kong, H. Luo, K. Xu, D. L. Gu, M. Gerla, and S. Lu, Adaptive
	W. R. Cheswick and S. M. Bellovin, Firewalls and Internet Securi

