
Argus: Multi-Level Service Visibility Scoping for
Internet-of-Things in Enterprise Environments

Qian Zhou
Electrical and Computer Engineering

Stony Brook University
qian.zhou@stonybrook.edu

Omkant Pandey
Computer Science

Stony Brook University
omkant@cs.stonybrook.edu

Fan Ye
Electrical and Computer Engineering

Stony Brook University
fan.ye@stonybrook.edu

Abstract—In IoT, what services from which nearby devices are
available, must be discovered by a user’s device (e.g., smartphone)
before she can issue commands to access them. Service visibility
scoping in large scale, heterogeneous enterprise environments
has multiple unique features, e.g., proximity based interactions,
differentiated visibility according to device natures and user
attributes, frequent user churns thus revocation. They render
existing solutions completely insufficient. We propose Argus, a
distributed algorithm offering three-level, fine-grained visibility
scoping in parallel: i) Level 1 public visibility where services are
identically visible to everyone; ii) Level 2 differentiated visibility
where service visibility depends on users’ non-sensitive attributes;
iii) Level 3 covert visibility where service visibility depends on
users’ sensitive attributes that are never explicitly disclosed.
Extensive analysis and experiments show that: i) Argus is secure;
ii) its Level 2 is 10x as scalable and computationally efficient as
work using Attribute-based Encryption, Level 3 is 10x as efficient
as work using Paring-based Cryptography; iii) it is fast and agile
for satisfactory user experience, costing 0.25 s to discover 20 Level
1 devices, and 0.63 s for Level 2 or Level 3 devices.

I. INTRODUCTION

In IoT, what services from which nearby devices are avail-
able, must be discovered by a user’s device (e.g., smartphone)
before she can issue commands to access them [1]. The visibil-
ity of services must be “scoped” to authorized users only, i.e.,
only the authorized service subset/variant should be “visible”
to the user device. Service visibility scoping in large scale,
heterogeneous enterprise environments has multiple unique
features, which render existing solutions [2], [3], [4], [5],
[6], [7] significantly ineffective or completely insufficient.

First, IoT interactions via short-range radios are largely
physical proximity based. A user mostly discovers and controls
nearby devices, such that desired physical changes would
occur in the local environment (e.g., door unlocking, higher
ambient brightness, lower room temperature, louder music
volume in the current room). A centralized server does not
know which devices are around the user device; accurate user
location requires more complexity in localization capability.
As a result, solutions [2], [3], [4] using centralized servers are
unfit for such proximity based discovery.

Second, multiple services of different natures usually exist
around a user, and all of them need to be discovered. Imagine
a university or corporate campus, thousands of users interact
with ten times or more devices/services: 1) public utilities
(e.g., thermometers in aisles) may be discovered to everyone,

even visitors; 2) yet most devices should be conditionally
disclosed according to users’ non-sensitive attributes (e.g.,
expensive multimedia devices, safes in an office should only be
visible to employees); 3) still there are services customized for
specific populations of sensitive attributes that should be dis-
covered with privacy preservation (e.g., a vending machine dis-
penses counseling/psychological support flyers, hidden within
regular magazines to students of needs). Existing distributed
schemes [5], [6], [7] are restricted to one type, and unfit for
enterprise IoT with numerous, heterogeneous services.

In this paper, we propose Argus, a distributed, proximity-
based IoT service discovery algorithm that offers three levels
(public, differentiated, covert) of visibility in parallel. Each
level is built on top of its prior level with minimum extension,
and together they achieve efficient, harmonious, concurrent
discoveries covering IoT services of different natures. Also,
it minimizes the huge overhead resulting from authorization
updating (e.g., user addition/revocation), which is the scalabil-
ity bottleneck in this context, and fits well with an enterprise
scale. We claim our contributions as follows:

• We identify unique requirements of visibility scoping in
enterprise IoT, and design a distributed 3-in-1 algorithm
for scalable, concurrent, fast service discovery at three
levels: Level 1: public visibility where services are
identically visible to everyone; Level 2: differentiated
visibility where service visibility depends on users’ non-
sensitive attributes; and Level 3: covert visibility where
visibility depends on users’ sensitive attributes that are
never explicitly disclosed for the sake of privacy.

• We identify Level 2 as the scalability bottleneck in IoT
discovery. It is worth noting that, our Level 2 using con-
ventional crypto (e.g., ECDSA) is found 10x as scalable
and computationally efficient as more recent, fancier
crypto like Attribute-based Encryption (ABE) [8].

• Argus Level 3 goes beyond existing privacy preservation
discovery work, and realizes indistinguishability that
attackers cannot even know Level 3 is happening, let
alone prying into user privacy in Level 3. Besides, our
Level 3 is found 10x as computationally efficient as
work based on Pairing-based Cryptography (PBC) [9].

• We implement Argus’s all three levels, and ABE, PBC
for comparison. Extensive analysis and real experiments

on a 20-node testbed are conducted. Besides of the high
scalability and computational efficiency mentioned above,
it is found secure and fast, costing 0.25 s to discover 20
Level 1 devices, and 0.63 s for Level 2 or Level 3 devices.

II. MODELS AND ASSUMPTIONS

A. IoT Nodes in Enterprise Environments

Node Types. There are three types of nodes: the backend,
subject devices and objects. Subjects (i.e. users) use subject
devices (e.g., smartphones) to operate objects (i.e. IoT de-
vices). As is widely used in practice, the backend is not a
single server, but a hierarchy of servers run by the admin
to manage registered subjects/objects; it realizes a chain of
trust, and resists collapse under the load and a single point
of failure. Each subject/object has multiple attributes (e.g., a
user’s position, department; a device’s type, functions), and
must register at the backend (e.g., manually out of band),
which is a common requirement in real enterprises. It obtains a
private key, public key certificate (CERT) and attribute profile
(PROF) signed by the backend’s private key.

Resource & Power. Objects may have different resources.
Resource-constrained objects (e.g., temperature sensors) have
poor computing performance and are usually battery-powered.
Resource-rich ones (e.g., door locks, HVAC, surveillance
cameras) have fairly good computing performance and wall
power; they can run public-key algorithms at reasonable speed.
We assume objects with higher security requirements (Level
2 and 3) naturally come with richer resources.

Network Connectivity. Objects may have different commu-
nication interfaces, e.g., WiFi, Bluetooth, ZigBee. We focus on
security design above the network layer, and assume network
connectivity exists among all nodes (e.g., via bridging devices
with multiple radios) in proximity. The network formed by
subject devices and objects is called ground network.

B. Service Visibility

Access Control Policy. The backend stores and manages
access control policies about what services a subject can access
on an object. Given the large numbers of subjects/objects,
the policies are frequently defined on categories using at-
tribute predicates, not just individual identities, to avoid in-
efficient enumeration. E.g., [subject: position==‘manager’;
object: type==‘door lock’ && room type==‘conference’;
rights: {‘open’; ‘close’}] denotes that all managers have
open/close access to the door locks on conference rooms.

There are two types of attributes: non-sensitive attributes
can be safely included in signed credentials (e.g., PROF) and
publicly propagated, e.g., a regular employee’s position, a cor-
ridor light’s make/model; sensitive attributes must be kept on
need-to-know basis and secret from the public or unauthorized
subjects/objects, e.g., a student/employee’s financial (broke),
medical status (disabled, depressed).

Service Visibility. Visibility scoping policies are congruent
with access control policies such that subjects and their devices
should only “see” the services they are authorized to access.
We call both of them policies for short. To this end, a subject

device sends queries in the ground network, and nearby objects
return their profiles (PROF), revealing their service informa-
tion. Depending on the subject’s access rights, an object may
return differentiated variants of service information.

C. System Scale
We describe the typical scales of several aspects of enter-

prise IoT, where 10i, i ∈ Z denotes order of magnitude. E.g.,
100: several, 102: hundreds. They are intended to give a rough
sense, and actual systems may have larger/smaller scales.

1) huge subject/object amounts. Google search shows that
the numbers of employees are: Google 98K, Amazon 613K;
so subject amount is 104 ∼ 105. According to the field study
in [10], a typical lab/office may have ∼30 objects; even a 2-
story building may have ∼2K objects. A subject usually has
access to N objects, which is around 100 (if she can access a
few rooms) or up to 1K (if she can access objects in multiple
buildings, e.g., on campus); thus N is usually 102 ∼ 103.

2) subject/object categories. A subject category (according
to a predicate on subjects’ non-sensitive attributes, e.g., “all
students in CS Department, University X”) has α (usually
100 ∼ 102, and possibly ≥ 103) subjects (e.g., group: 100;
class: 101; department: ≥ 103; college: ≥ 104). An object
category (according to objects’ non-sensitive attributes) has β
objects, and β has a similar range as α (e.g., “all devices in
Room Y”: 101; “all lights in Building Z”: ≥ 102).

3) secret groups. If a policy allows subjects with certain
sensitive attributes to discover objects with certain sensitive
attributes, then they belong to one secret group. In reality,
the persons with sensitive attributes (e.g., disability) in an
enterprise and the objects serving them should not be too
many, and a secret group has size γ (100 ∼ 101 or 102).

4) frequent subject/object churns. In enterprises, employee
entry/exit or promotion/demotion/rotation, and device installa-
tion/decommissioning happen all the time. All these may affect
the access rights for individual/category subjects, and should
be effectuated quickly and efficiently. E.g., when a subject
leaves, all the N (102 ∼ 103) objects she could access should
be notified to reject her future discovery attempts.

III. DESIGN GOALS

Secrecy. We consider three subitems: 1) service information
secrecy for services behind walls (required by Level 2
and 3). Argus should keep subjects from easily gaining the
information (e.g., existence, functions) of objects in rooms
they cannot enter, otherwise the presence of indoor belongings
is exposed to outsiders. Though such objects behind walls are
physically invisible, they can be discovered by devices from
outside if no security countermeasure is taken (because many
radios penetrate walls). Note that protecting physical security
and accessibility is not an IT problem, thus out of the scope.

2) sensitive attribute secrecy (required by Level 3). Sensi-
tive attributes of a subject/object should only be disclosed to
an authorized object/subject during service discovery.

3) indistinguishability (required by Level 3). Whether a
subject/object has a sensitive attribute, or whether Level 3
discovery is happening, should be unknown to attackers.

Authenticity & Integrity & Freshness. Authenticity and
integrity ensure that an entity is indeed the claimed one and
a message is not forged or altered. Freshness means that a
message is recently generated and not a replayed one.

Efficiency & Scalability. The system should be efficient
in three aspects to fit for an enterprise scale: 1) updating
overhead. Upon any change in the backend database (e.g.,
policy addition, subject removal), the overhead of propagat-
ing and effectuating the changes to affected subjects/objects
should be acceptably small. 2) computation cost. The number
of compute intensive operations (e.g., public-key) should be
minimized. 3) discovery overhead. Discovery should be done
with as few rounds and short messages as possible.

Non-Goals. Attackers may know the existence of physically
visible devices (e.g., they see door locks). They may physically
steal objects’ service information or phish subjects’ sensitive
attributes; subjects may inadvertently leak service information
they discovered or sensitive attributes. Besides, attackers may
launch DoS attacks. We do no address those issues here.

IV. BACKEND OPERATIONS AND OVERVIEW

A. Backend Operations

Bootstrapping. A subject or object X must first register
at the backend out-of-band. This is a common requirement
in real enterprises. The backend adds its information to the
database, and issues a private key Kpri

X , public key certificate
(CERT) and possibly multiple attribute profiles (PROF) to X .
The admin’s public key Kpub

admin is also loaded onto the subject
device or object. CERT and PROF are signed by the admin and
cannot be forged/altered. A subject PROF lists the subject’s
non-sensitive attributes and can be publicly disclosed; an ob-
ject PROF lists provided functions (thus service information)
besides the object’s non-sensitive attributes.

Secret Groups & Fellows. We call subjects and objects in
the same secret group fellows. The backend issues fellows with
one symmetric group key (denoted as Kgrp

i for secret group
i). A subject or object may be in multiple secret groups.

Levels. An object gets its secrecy level defined (1, 2, or 3)
and must keep that to itself. The level usually depends on the
device type but can be configured by the admin.

1) Level 1. (no secrecy) These objects are usually resource-
poor, and offer publicly accessible services identical to every-
one (e.g., thermometers in aisles), or are behind walls but not
worth hiding (e.g., lights in offices). Their service information
needs no encryption, but is signed by the admin for integrity.

Level 1
Level 1

Level 2

Invalid Profile Valid Profile

Query
Level 1 Info
Level 2 Info

Fig. 1: Discovery in Level 1 and Level 2
2) Level 2. (service information secrecy) These objects have

sufficient resource and power for public-key operations. They
are behind walls and must resist discovery by outsiders: objects

return encrypted, differentiated service information accord-
ing to subjects’ non-sensitive attributes (carried by subjects’
PROFs). In Fig. 1, a multimedia device in an office checks
query senders’ PROFs, and returns encrypted information only
to the office employees, not to outsiders.

Level 3
Valid Profile &
Invalid Code

Valid Profile &
Valid Code

Level 3 Info

A flyer’s in.

Fig. 2: Discovery in Level 3

3) Level 3. (service information secrecy+sensitive attribute
secrecy+indistinguishability) Level 3 objects secretly offers
customized services to special populations (i.e. subjects with
sensitive attributes) while posing as Level 2 objects to oth-
ers. Imagine student S with learning disability shows his
diagnosis to the university, and is put in the corresponding
secret group. When S uses a campus magazine machine O,
if O happens to have a sensitive attribute “machine serving
students with learning disability”, they will secretly confirm
that they are fellows using a “code”, then O dispenses
medical/counseling/university-policy support flyers to S, hid-
den within regular magazines so others will not know Level
3 discovery is happening. This is one way to offer special
populations useful information when they are using daily IoT
services (e.g., buy magazines/newspapers). Others will get
“clean” magazines when using O, and think O is Level 2.
As a result, others cannot identify S as a sensitive attribute
owner, or O as a Level 3 machine serving special populations.

Profile. A Level 2 object providing m different services gets
m PROF variants from the backend: {predi, PROFO,i}, 1 ≤
i ≤ m, where predi is a predicate on subjects’ non-
sensitive attributes (e.g., [position==‘manager’ && depart-
ment==‘X’]). If the object finds a subject’s PROF matches
predi, it will send encrypted PROFO,i to her.

A Level 3 object in m′ secret groups gets m′ PROF variants
from the backend: {Kgrp

i , PROFO,i}, 1 ≤ i ≤ m′, where
Kgrp

i is the symmetric group key of group i. After the object
confirms that a subject possesses Kgrp

i , it will return encrypted
PROFO,i. A subject in n′ secret groups gets n′ group keys.
Note that even a subject with no sensitive attribute still gets a
(fake) group key, called cover-up key (details in Section VI).

Access Control Policy Update. The admin may need
to update the backend database at any time, and possible
operations include adding, removing, changing a subject/object
individual or category and the access rights. Changes on the
backend may need to be immediately propagated to the ground
network and effectuated on the affected subjects/objects, such
that newly authorized subjects can discover services, or de-
authorized subjects stop seeing previously visible services.

B. Overview of Three-Level Discovery

Argus is a 3-in-1 algorithm which discovers services in three
levels. We briefly describe the discovery process in each level.

Level 1 Discovery. The discovery of Level 1 objects is
a typical 2-way data discovery/retrieval [11] process in the
ground network. In Fig. 5, subject S broadcasts query QUE1
to objects around, and a Level 1 object O sends back its profile
(PROF) in plaintext in response RES1. QUE1 carries random
RS for objects to detect duplicate queries. Because PROFs are
signed by the admin, their integrity is ensured.

Level 2 & Level 3 Discoveries. They have two similar
phases (Fig. 5): 1) Phase-1. S broadcasts query QUE1, a
Level 2 or Level 3 object O sends response RES1 and waits
for further interaction. 2) Phase-2. S sends query QUE2
individually to each of the Level 2 or Level 3 objects found in
Phase-1. A Level 2 object checks the subject’s non-sensitive
attributes; a Level 3 object verifies that the subject is its fellow.
Then the suitable PROF variant is found out and sent back
securely in response RES2. We present the design details of
Level 2 and 3 discoveries in the following two sections.

V. LEVEL 2: DIFFERENTIATED DISCOVERY

This discovery targets Level 2 objects which provide dif-
ferentiated services according to subjects’ non-sensitive at-
tributes. Argus uses conventional cryptography (e.g., ECDSA,
ECDH) for mutual authentication and service information
secrecy. We present its design as follows, and will show in
Section VIII and IX that it outperforms alternatives using more
recent cryptography (e.g., 10x high scalability and computa-
tion efficiency), and suits our service discovery context best.

A. Argus’s Level 2 Scheme

Main Idea. Subject S reveals her non-sensitive attributes
to object O by presenting her profile PROFS ; O checks her
attributes and chooses the suitable PROFO variant to return.
The messages between S and O must be authenticated, and
PROFO must be encrypted for service information secrecy.

S O
QUE1

RS��!
1z }| {

PROFO;

2z }| {
RO; CERTO; KEXMO; [m]SIGO �� RES1

QUE2

2z }| {
PROFS ; CERTS ; KEXMS ; [⇤]SIGS ; MACS,2��!

2z }| {
[PROFO]ENCK2

; MACO,2 �� RES2

Fig. 3: v1.0, concurrent 2-in-1 algorithm for Level 1 and 2
discoveries. The content in a brace with number i is only
sent by subjects performing Level i discovery, or by objects
in Level i. PROFX , CERTX ,KEXMX : attribute profile,
public key certificate, key exchange material of entity X;
[...]SIGX : signature of content in [] signed by X; MACX :
hash-based message authentication code generated by X;
[...]ENCK : ciphertext of content in [] encrypted by key K;
||: concatenation; ∗: all the content sent and received so far.

Algorithm. As shown in Fig. 3, S first broadcasts query
QUE1 carrying random RS . O in Level 2 sends back response

RES1. Besides random RO, RES1 carries O’s public key cer-
tificate CERTO and key exchange material KEXMO which
is an ECDH public value. In Fig. 3, m = RS ||RO||KEXMO

is signed by O for integrity.
Second, on receiving RES1, S verifies the signa-

ture, and based on KEXMO she establishes the pre-
master secret preK. Level 2’s session key K2 =
HMAC(preK, labelK ||RS ||RO), HMAC(secret, seed) is
an HMAC-based pseudorandom function, labelK is ASCII
string “session key”. Then S sends query QUE2 to O, which
contains her profile PROFS , public key certificate CERTS
and key exchange material KEXMS . All the content sent and
received so far (denoted as ∗, i.e., QUE1, QUE2 and PROFS ,
CERTS , KEXMS) is signed for integrity. Also, Level 2’s
MACS,2 = HMAC(K2, labelS ||Hash(∗)), labelS = “sub-
ject finished”, is sent for O to verify the success of handshake.

Third, on receiving QUE2, O verifies the signature, and
based on KEXMS it establishes the same preK and
K2. Based on K2 it verifies MACS,2: if valid, O checks
which subject category (predi) matches the subject’s non-
sensitive attributes in PROFS , and encrypts the corresponding
PROFO using K2. O sends back response RES2 containing
the PROFO ciphertext and MACO,2, where MACO,2 =
HMAC(K2, labelO||Hash(∗)), labelO = “object finished”.
S verifies MACO,2 and decrypts the ciphertext using K2,
getting the service information for her securely.

Our design shares some similarities with TLS hand-
shake [12] in realizing mutual authentication and symmetric
key establishment. However, Argus efficiently embeds profile
exchange in, accomplishing the whole discovery in a 4-
way interaction; besides, it has minimum message overhead
by eliminating any unrelated component and fixing the key
exchange algorithm at ephemeral ECDH, and authentication
at ECDSA, which are significantly more efficient than other
algorithms like RSA (experiments in Section IX-B).

VI. LEVEL 3: COVERT DISCOVERY

This discovery targets Level 3 objects which provide covert
services according to subjects’ sensitive attributes. Like Level
2, object O in Level 3 ensures that subject S has qualifying
attributes before returning PROFO. However, those attributes
are sensitive (e.g., learning disability) and S does not want
to disclose them to O before seeing O’s sensitive qualifying
attributes (e.g., machine serving special populations). Note that
using K2 established by S and O in Section V to encrypt S’s
sensitive attributes does not work: it only protects S’s privacy
against third parties, but here S guards against not only third
parties, but also O, the one she is interacting with.

Neither S nor O is willing to make the first move, thus
a chicken-or-egg problem arises. We apply a symmetric-key
mechanism similar to [13] for private service discovery, such
that sensitive attribute secrecy on both sides (i.e. mutual
privacy) is achieved. Besides, we beef mutual privacy with
a novel scheme which hides Level 3 discovery in Level 2,
making them indistinguishable. As a result, attackers are even
unaware that Level 3 discovery is happening, let alone peeking

at entities’ sensitive attributes. In Section IX we show that it
outperforms alternatives using more recent cryptography (e.g.,
10x high computation efficiency), and suits our context best.

A. Argus’s Level 3 Scheme for Sensitive Attribute Secrecy
Main Idea. Recall that at bootstrapping subjects and objects

are put into the same secret group if they have sensitive
attributes which allow them to recognize each other. They are
called “fellows” and share one symmetric group key (Kgrp

i

for group i). Confirming one’s sensitive attributes is indirectly
realized by verifying its group membership, by verifying its
possession of the group key. S and O send to each other
an HMAC generated from the group key to prove her/its
possession. O verifies S first and then vice versa. O will send
the suitable PROFO confidentially only if S is its fellow.

S O
QUE1

RS��!
1z }| {

PROFO;

2,3z }| {
RO; CERTO; KEXMO; [m]SIGO �� RES1

QUE2

2,3z }| {
PROFS ; CERTS ; KEXMS ; [⇤]SIGS ; MACS,2;

3z }| {
MACS,3��!

2z }| {
[PROFO]ENCK2

; MACO,2;

3z }| {
[PROFO]ENCK3

; MACO,3 �� RES2

Fig. 4: v2.0, 3-in-1 algorithm for Level 1, 2, 3 discoveries.
It supports sensitive attribute secrecy in Level 3. The content
in a brace with number i is only sent by subjects performing
Level i discovery, or by objects in Level i. The content in red
boxes are newly added on top of v1.0 in Fig. 3.

Algorithm. Fig. 4 shows Level 3 discovery which is
built on top of Level 1 and 2. Level 3’s session key
K3 = HMAC(K2||Kgrp

i , labelK ||RS ||RO) (assume S is
in group i), is computed after K2. When S performs
Level 3 discovery, QUE2 carries Level 3’s MACS,3 =
HMAC(K3, labelS ||Hash(∗)). The definitions of labelK ,
labelS , labelO and ∗ can be found in Section V.
O in Level 3 can establish the same K3 only if it possesses

Kgrp
i , i.e., it is a fellow of S. On receiving QUE2, it does

all a Level 2 object does, and additionally verifies MACS,3:
if valid, it recognizes S as a fellow. Then it generates
MACO,3 = HMAC(K3, labelO||Hash(∗)), encrypts the
suitable PROFO variant with K3, and adds them to RES2.

Depending on O’s level, the HMAC of RES2 may be
MACO,2 or MACO,3. S first tries to verify it with K2 to
see if it is a MACO,2: if valid, S knows O is in Level 2 and
she decrypts the ciphertext using K2. Otherwise she uses K3

to verify if the HMAC is a MACO,3: if valid, S knows O is
in Level 3 and she uses K3 for decryption.

Sensitive Attribute Secrecy. Sensitive attribute secrecy is
realized on both S and O due to HMAC’s one-way feature:
if S and O are not in the same group, O will find MACS,3

invalid. However, all it knows is S is not its fellow, but which
secret group S is in stays unrevealed because the group key
is not explicitly exchanged. Vice versa, S will not know a
non-fellow O’s group membership.

Overhead of Extensions. We see v2.0 brings in little extra
discovery overhead to v1.0. Most components in RES1 and
QUE2 are reused. In QUE2, one HMAC (only 32 bytes if
using SHA-256) is added when performing Level 3 discovery.
The length of RES2 is unchanged, because either Level 2 or
Level 3 service information is sent back, not both. As for
computation cost, S and O need one more HMAC generation
and verification, together costing less than 1 ms.

B. Argus’s Level 3 Scheme for Indistinguishability

So far, Level 3 discovery prevents a non-fellow from
peeking at an entity’s sensitive attributes (aka privacy), but
performing Level 3 discovery itself implies that the entity has
at least one sensitive attribute. E.g., attackers find a subject is
seeking for Level 3 objects, then they guess she is a member of
special crowds, though which crowd (e.g., depression or addic-
tion) is unknown. Level 2 and 3 can be easily distinguished
due to their message composition differences: i) QUE2 has
one more component (MACS,3) when seeking for a Level 3
object; ii) RES2 from a Level 3 object carries MACO,3 other
than MACO,2. Attacks in detail are presented in Section VII.

Main Idea. We make Level 2 and 3 indistinguishable, real-
izing covert visibility. QUE2s from all subjects have identical
structures whenever, so are RES2s from all objects. Attackers
are even unaware that Level 3 discovery is happening.

S O
QUE1

RS��!
1z }| {

PROFO;

2,3z }| {
RO; CERTO; KEXMO; [m]SIGO �� RES1

QUE2

2,3z }| {
PROFS ; CERTS ; KEXMS ; [⇤]SIGS ; MACS,2; MACS,3��!

2z }| {
[PROFO]ENCK2

; MACO,2;

3z }| {
[PROFO]ENCKX ; MACO,X �� RES2

Fig. 5: v3.0, concurrent 3-in-1 algorithm for Level 1, 2, 3
discoveries. It supports both sensitive attribute secrecy and
indistinguishability in Level 3. The content in green boxes
are modified on top of v2.0 in Fig. 4.

Algorithm. Fig. 5 shows that Level 2 and 3 discoveries
now use identical QUE2 which always carries MACO,2 and
MACO,3, and are performed concurrently. Besides, a Level 3
object no longer sends MACO,3 constantly in RES2. Instead,
its RES2 has MACO,X , where X can be 2 or 3: MACO,3

to fellows, with PROFO encrypted by K3; MACO,2 to non-
fellows, with PROFO encrypted by K2.

Indistinguishable Subjects. 1) concurrent discoveries. A
subject uses the same QUE2 to discover both Level 2 and 3
objects, so attackers cannot tell Level 3 discovery is happening
based on QUE2’s composition difference. 2) cover-up key.
All subjects perform concurrent Level 2 and 3 discoveries,
even if some of them have no sensitive attributes and will
not succeed in finding any Level 3 service. Recall that at
bootstrapping even a subject S with no sensitive attribute still
gets a (fake) secret group key (called cover-up key) from the

backend. A cover-up key is a unique random number and there
is no second entity owning it, thus the MACS,3 generated
from it will not result in successful handshakes. But using it,
S can send MACS,3 like a sensitive attribute owner; now in
attackers’ eyes, every subject belongs to special populations
with sensitive attributes, and the real ones are concealed.

Indistinguishable Objects. 1) double-faced role. Each
Level 3 object plays a “double-faced” role: it returns MACO,3

and offers Level 3 special service information to its fel-
lows (special populations), while returns MACO,2 and offers
Level 2 services to non-fellows. Non-fellows always receive
MACO,2 and they do not know the object’s another role (i.e.,
Level 3). 2) constant RES2 length. The ciphertexts of service
information (PROFO) in Level 2 and 3 may have different
sizes. To eliminate that, O appends minimum meaningless
bytes to each of its PROFO variants before transmission to
make them identically long. 3) constant response time. In
Level 3 discovery O verifies one more HMAC (MACS,3)
than Level 2, so response times are different. It is negligibly
small (< 0.1 ms) on resource-rich platforms like Pi, but can
be longer on constrained platforms (mostly < 1 ms). O waits
for that time difference before sending Level 2 RES2.

Overhead of Extensions. We see v3.0 brings in little extra
overhead to v2.0. In QUE2, now MACS,3 is mandatory, so
QUE2 should always have these 32 bytes (if using SHA-256).
RES2’s length and computation cost are unchanged.

C. Multiple Sensitive Attributes

Level 3 discovers the fellow objects in one secret group
at a time, because MACS,3 is generated from one group
key. In reality a subject may have multiple (usually no more
than a few) sensitive attributes and are members in multiple
secret groups. Her device can automatically use her group
keys in turns (one at a time) to generate MACS,3 and launch
discoveries, till all her authorized covert services are found.

VII. SECURITY ANALYSIS

Threat Model. We assume the backend is trustworthy and
well-protected. Also, communication between the backend and
subject/object devices is secure. Subject devices and resource-
rich objects are reasonably well protected, e.g., by their OS.

We assume breaking the cryptographic algorithms (e.g.,
ECDSA, ECDH) are computationally infeasible when long
enough keys are used (e.g., 128-bit). Attackers can capture, in-
ject, modify and replay messages sent over the communication
channel. Sources. Attackers may be external—they are not
registered at the backend thus have no backend-signed public
keys, or internal ones that are registered but go rogue. Roles.
Attackers may behave passively as eavesdroppers, or actively
to impersonate subjects or objects and interact with benign
nodes. Targets. Attackers may aim at service information
secrecy, sensitive attribute secrecy, indistinguishability.

Like TLS and many other algorithms, the security of ours
is on the premise that secret information is kept to its owner,
and is computationally infeasible to compromise, and cannot
be obtained from sources outside of the channel. However, in

reality it can, e.g., attackers have military computing resources,
or they leverage malware or social engineering to steal private
keys from users/devices. Resisting those attacks is out of the
scope. Our analysis below shows that attackers will fail unless
they have session key K2, K3, or private key Kpri

X (X is a
subject or object) and/or secret group key Kgrp

i (for group i).

A. Level 2 Attacks from External Attackers

Service Information Secrecy. In Level 2, attackers may try
to view a PROFO they are unauthorized to. Also, they may
spread a false PROFO. Their possible roles and actions are:

Case1: Eavesdropper. Passive attacker E eavesdrops the
conversation between subject S and object O to view
PROFO. She must compromise K2 to decrypt the ciphertext
of PROFO, which is infeasible. Note that E cannot obtain
K2 by compromising Kpri

S or Kpri
O (cracking a long-term key

might be easier than a session key), because we use ephemeral
ECDH for key exchange which has forward secrecy.

Case2: Subject/Object Impostor. Active attacker ES poses
as S to interact with O and request PROFO. Since the
interaction is authenticated, she will fail due to the lack of
Kpri

S . EO poses as O to give S fake service information, but
it will fail without Kpri

O . Besides, PROFO is signed by the
admin for integrity, breaking which is considered infeasible.

B. Level 3 Attacks from External Attackers

Service Information Secrecy. First, attackers may launch
the same attacks in Level 2 to get PROFO. We assume S and
O are fellows in secret group i, and they share Kgrp

i .
Case3: Eavesdropper. This time E needs K3 to decrypt the

ciphertext of PROFO. She may: i) compromise K3 directly,
which is infeasible; ii) or compromise K2 and Kgrp

i because
they together generate K3, but this does not make things easier.

Case4: Subject/Object Impostor. ES poses as S to interact
with O for PROFO. To succeed, she needs Kpri

S and Kgrp
i .

Like in Case2, EO will fail in giving fake service information.
Sensitive Attribute Secrecy. Second, attackers may try to

find out what sensitive attributes S or O has.
Case5: Eavesdropper. Attacker E eavesdrops the conver-

sation of S and O, but she will know S or O is in group
i only if she can confirm that MACS,3 or MACO,3 is a
valid HMAC generated using Kgrp

i , which needs K2 and
Kgrp

i . Besides, knowing that an entity belongs to group i does
not mean knowing its sensitive attribute, unless the mapping
relationships between group IDs and attributes are also known.
However, that knowledge is kept to the admin only.

Case6: Subject/Object Impostor. ES poses as O’s subject
fellow to interact with O, and tries to find out O’s sensitive
attributes. To succeed, she needs a valid subject private key,
Kgrp

i and the mapping relationships. Similarly, EO may pose
as an object fellow to explore S’s sensitive attributes, and it
needs a valid object private key and Kgrp

i . Neither will work.
Indistinguishability. Third, attackers may try to find out if

S or O has any sensitive attribute (regardless of what sensitive
attribute), and if Level 3 discovery is happening.

Case7: Eavesdropper. i) subject distinguishability. As in-
troduced in Section VI-B, we use cover-up keys on subjects
who have no sensitive attributes to make them pose as real
sensitive attribute owners. E have no way to distinguish them.
ii) object distinguishability. Since only Level 3 objects’s RES2
may carry MACO,3 other than MACO,2, E may leverage this
to recognize Level 3 objects. However, to recognize MACO,3,
she needs K3, which is impractical.

Case8: Subject/Object Impostor. ES interacts with O to
see if it is in Level 3. If ES recognizes the HMAC in RES2 as
MACO,3, then she knows O is. This needs a valid private key
and Kgrp

i . Alternatively, she may try an elimination method:
tell if the HMAC is MACO,2, and if not, it is MACO,3 then.
Verifying MACO,2 only needs a valid private key, so the
security strength is degraded if this works. However, Level
3 objects play “double-faced” roles: they send MACO,2 to
attackers, thus attackers cannot use the elimination trick.
EO may impersonate O to interact with S to see if she has

any sensitive attributes, but cover-up keys impede that.
Case9: Side-Channel Attacks. Beware of side-channel at-

tacks which may compromise indistinguishability. Particularly,
due to a Level 3 object’s additional computation on base of
Level 2, it will take longer to respond than a Level 2 one.
An attacker may recognize Level 3 objects through timing
measurements and analysis (i.e. timing attacks). However, in
Argus a Level 3 object only needs to verify one more HMAC
(i.e. MACS,3) than a Level 2 one, which costs < 0.1 ms on
Raspberry Pi. It cannot be detected when buried under much
larger time fluctuations from OS, network, etc.

C. Attacks from Internal Attackers

Assume benign entity I goes rogue. Unlike an external
attacker, she already has a valid private key Kpri

I . However,
note that if she eavesdrops (Case1, 3, 5, 7) or impersonates
others (Case2, 4), her own private key is useless and the attacks
are the same as external attacks. It becomes easier to crack
Case6, 8: since I already has a valid private key, she just needs
to compromise Kgrp

i , which is still difficult.

D. Consequences of Key Compromise

If a session key is compromised, only that session’s content
(e.g., service information) will be exposed; if a private key
is compromised, only that entity will be impersonated. If a
private key and a group key are both compromised, attackers
may find out members in that one secret group only, by
interacting with them one by one instead of getting the entire
member list. Each of these cases has a limited impact, and
cannot paralyze the service discovery system.

VIII. SCALABILITY ANALYSIS

The system must be scalable to enterprises, and the most
critical metric for scalability in our context is updating over-
head instead of discovery overhead. This is because Argus is
for discovering services in proximity, the number of which is
usually not more than dozens. To the contrary, any change in
the backend database (e.g., policy addition, subject removal)

related to Level 2 or 3 should be immediately synchronized to
affected subjects/objects on the ground, otherwise authorized
users may fail to discover and access new services timely,
while unauthorized users continue to see services they are no
longer eligible for. Such updating overhead (defined as the
number of affected subjects and objects) can be huge.

Level 1 & 3 Scalability. Level 1 is little relevant to this
authorization-related updating because it offers identical infor-
mation to everyone. When changing a subject/object/policy in
Level 3, the worst case (e.g., remove a person from a secret
group) is all the other fellows in the group should get new
keys, i.e., the overhead is (γ−1) (defined in Section II, usually
100 ∼ 101). It is small due to a secret group’s limited size.

Level 2 Scalability. Level 2 has the largest updating
overhead. We find Argus is up to 1000x as efficient as ID-
based ACL alternatives in adding a subject, and up to 10x as
efficient as Attribute-based Encryption (ABE) alternatives in
removing a subject. To add/remove an object/policy, mostly
just that object or the objects mentioned in that policy should
be updated, thus the overhead is 1 or β (defined in Section II,
usually 100 ∼ 102). Adding/removing a subject is the bottle-
neck of scalability, so we show the analysis on it in detail.

A. Detailed Scalability Analysis on Level 2

ID-based ACL. In this method, every object locally stores
its access control list enumerating the identities of subjects
which are allowed to access and discover it. In Section II
we show that a subject may access N (102 ∼ 103) objects
typically. Then when subject S joins/leaves the system, the N
objects she can access should be notified to add/remove her
ID (i.e. IDS) to/from their ACLs.

TABLE I: Updating Overhead Comparison

Add a subject Rmv a subject

ID-based ACL N N
ABE 1 (ξoN + ξs(α− 1)) ≈ 10N
Argus 1 N

Argus. In Argus, an object stores an attribute-based ACL,
which uses predicates on subject attributes (e.g., [posi-
tion==‘manager’ && department==‘X’]) to describe its au-
thorized subjects. To access objects, a newcomer S just
needs to contact the backend once to get her attribute profile
(overhead: 1), and present it to objects; objects do not need
to update their ACLs. This significantly outperforms ID-based
ACL (up to 1000x). However, when S leaves, the backend
should notify the N objects that she could access, to remove
IDS from their ACLs and refuse her future discovery.

ABE. Ciphertext-Policy Attribute-based Encryption [8] can
be used for Level 2 discovery. At bootstrapping, the backend
issues S with a set of keys, each corresponding to her one
attribute (e.g., department:X); also, the backend issues O with
ABE ciphertexts—PROFO,i encrypted using policy predi
(e.g., [position==‘manager’ && department==‘X’]). Based
on ABE’s principle, the PROFO,i ciphertext can be decrypted
only if S has all the attributes (thus the keys) to meet predi.

112 128 192 256

Security Strength (bit)

0
15
30
45

T
im

e
 (

m
s
)

Sign

Verify

112 128 192 256

Security Strength (bit)

0
15
30
45

T
im

e
 (

m
s
)

Params

Secret

(a) Public-key operation time

Subject Object

Node Type

0

20

40

60

80

100

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

m
s
)

Lvl 1

Lvl 2

Lvl 3

(b) Argus computation time

2 4 6 8 10

Number of Policy Attributes

0

2

4

6

8

10

12

D
e
c
ry

p
ti

o
n

 T
im

e
 (

s
)

(c) ABE decryption time

Subject Object

Node Type

0

2

4

6

8

10

12

P
a
ir

in
g

 T
im

e
 (

s
)

(d) PBC pairing time

0 5 10 15 20

Number of objects

0

100

200

300

400

500

600

700

D
is

c
o

v
e
ry

 T
im

e
 (

m
s
)

Lvl 2 & Lvl 3
are overlapped

Lvl 1

Lvl 2

Lvl 3

(e) Single-hop discovery time

1 2 3

Object Level

0

100

200

300

400
D

is
c
o

v
e
ry

 T
im

e
 (

m
s
)

Compute,S

Compute,O

Transmit

(f) Single object time composition

0 5 10 15 20

Number of objects

0

200

400

600

800

1000

1200

D
is

c
o

v
e
ry

 T
im

e
 (

m
s
)

Lvl 2 & Lvl 3
are overlapped

Lvl 1

Lvl 2

Lvl 3

(g) Multi-hop discovery time

0 5 10 15 20

Object ID

0

200

400

600

800

1000

1200

D
is

c
o

v
e
ry

 T
im

e
 (

m
s
)

Lvl 1

Lvl 2

Lvl 3

(h) Impact of hops on discovery time

Fig. 6: Computation Time Cost and Discovery Time Cost

About updating, a newcomer S just gets her secret keys
from the backend, then she can discover services (overhead:
1). To revoke S, the backend has to globally revoke a set of her
attributes to make her no longer belong to any subject category.
E.g., to revoke her attribute department:X, it: i) re-encrypts all
ciphertexts whose encryption policies contain department:X,
and delivers them to their objects (overhead: ξoN, ξo ≥ 1); ii)
re-generates those attributes’ secret keys, and delivers them to
all subjects owning the attributes except S (overhead: ξs(α−
1), ξs ≥ 1). α (defined in Section II) is the number of subjects
in a subject category, usually 100 ∼ 103, possibly ≥ 104. Such
attribute-level updating often affects more subjects than S’s
category members, and more objects than what S could access,
that is why ξs, ξo mostly go over 1. The overall overhead is
(ξoN + ξs(α − 1)). When ξo, ξs > 1, or α is large (e.g.,
103 ∼ 104, if S is in a large category like a department or
college), the overhead easily goes to 10N or more.

IX. EXPERIMENTAL EVALUATION

We implement all the three levels of Argus. Besides, two
alternatives are implemented: one is based on Attribute-based
Encryption (ABE) and used for Level 2 (introduced in Sec-
tion VIII); the other uses Pairing-based Cryptography (PBC),
which has been applied on mobiles’ secret handshake [14],
and can be easily adapted for Level 3 discovery.

Testbed Rationality. We conduct experiments on a testbed
consisting of 1 subject device (Nexus 6) and 20 objects, each
emulated by a Raspberry Pi 3. 1) As mentioned in Section II,
we assume Level 2 and 3 objects, which have high security
requirements, are equipped with sufficient resource and power,
and can run public-key algorithms at reasonable speed. 2)
Though Level 1 objects in reality have poor computing re-
source, they simply return profiles after receiving queries, and

no computation is needed, thus emulating them using Pis or
Arduinos makes no difference. 3) Our design is above the
network layer and orthogonal to radios. As a result, we believe
Pis communicating with WiFi well emulate objects in all three
levels, and networking and power aspects. 4) Argus aims at
local discovery for services in proximity, the number of which
is usually not more than dozens. The scalability challenge
exists in updating (analyzed in Section VIII), not discovery;
for discovery tests, our testbed with 20 Pis is sufficient.

We test the computation time cost on the subject device
and objects, and find that to achieve 128-bit security strength,
Argus needs only 105 ms while ABE and PBC cost at least
10x long. As for the overall discovery time cost (mainly by
computation and transmission), Argus takes 0.25 s to discover
20 Level 1 objects and 0.63 s for 20 Level 2 or 3 objects (each
object is 1 hop from the subject). For a multi-hop case where
20 Level 2 or Level 3 objects are a mixture of objects from
1-hop to 4-hop away from the subject, Argus costs 1.15 s for
discovery completion and is still well responsive.

A. Message Overhead

When strength is 128-bit, CERTX is an X.509 ECDSA
certificate of 552 B; KEXMX and SIGX are 64 B. PROFX

averagely has 200 B. [PROFO]ENKK is assumed to use
AES in CBC mode with 16-byte IV and 32-byte MAC, thus
has 248 B. Besides, RX is 28 B and MACX (SHA-256) is 32
B. Level 1 has 28-byte QUE1 and 200-byte RES1, thus 228
B in total. Level 2 or 3 has 28-byte QUE1, 772-byte RES1,
1008-byte QUE2, 280-byte RES2, thus 2088 B in total.

B. Computation Time Cost

The cryptographic computation time for Argus, AES and
PBC are evaluated. We use crypto libraries OpenAndroidSSL

on the subject device and JCA on objects, for their efficient
implementation compared with others (e.g., Spongy Castle).
ECDSA is preferred to RSA because the latter costs much
longer (e.g., 18x for 128-bit strength). The experiments show
that Argus is 10x as computationally efficient as ABE, PBC.

Fig. 6 (a) shows the computation time on the subject side
for ECDSA (for signature) and ECDH (for key exchange)
operations, under strength 112-bit, 128-bit, 192-bit, 256-bit.
As shown, computation time increases with security strength,
e.g., 112-bit costs 4.7 ms in signing while 256-bit costs
26.0 ms. For each strength, ECDSA verification/ECDH secret
computation costs similar or slightly longer time than sign-
ing/parameter generation. Similar results are observed on the
object side. Other operations like HMAC and AES cost less
than 1 ms on both sides. In the following experiments, we use
128-bit due to its fast speed while sufficient strength.

Argus. Fig. 6 (b) shows the overall computation time on
subjects and objects in all levels. In Level 1 discovery, a
subject only needs to verify one signature (of PROFO),
costing 5.1 ms; an object has no compute intensive operation.
In Level 2 and 3, a subject needs 1 signing, 3 verifications
(for CERTO, KEXMO, PROFO), 2 ECDH operations
(parameter generation, secret computation), costing 27.4 ms;
an object needs the same, costing 78.2 ms. Note that the
public-key operations in Level 2 and 3 are identical.

ABE. When using ABE, encryption is performed by the
backend and decryption by subject devices. Objects do neither.
Considering that the backend has superior performance and
ciphertexts can be generated beforehand, here we focus more
on subject decryption time, tested using ABE library [15].
Fig. 6 (c) shows that ABE’s decryption time is well linearly to
the number of attributes in the ciphertext policy. Each attribute
leads to about 1 second decryption time increase.

PBC. Pairing time is the time cost for computing a pairwise
symmetric key using PBC keys. We evaluate JPBC library [16]
on the subject device and objects, and pairing costs 2.2 s and
7.7 s respectively, as shown in Fig. 6 (d).

Note that test results depend significantly on the crypto
library implementation. The ABE and PBC libraries currently
available are probably preliminary, thus the decryption time
and pairing time presented should not be interpreted literally,
but rather revealing the likely magnitudes. According to our
experiments, ABE and PBC cost at least 10x as long as Argus.

C. Overall Discovery Time Cost

We present in Fig. 6 (e) (g) the overall time cost (mainly
by computation and transmission) for Argus to discover 20
objects, in all the three levels, in both single-hop and multi-
hop conditions. Even in Level 2 and 3, discovering 20 single-
hop objects costs only 0.63 s, while multi-hop objects only
1.15 s. Such short latencies result in positive user experience.

Single-Hop. Fig. 6 (e) shows that in each level the discovery
time cost increases with the number of objects to be discov-
ered. The completion of discovering 20 objects is quick, which
costs 0.25 s for Level 1 and 0.63 s for Level 2 and 3. Level 1
needs less than half of the time of Level 2/3 because it is 2-way

communication while the other two are 4-way. Also, Level 1
has less computation. Fig. 6 (f) shows the time composition
for discovering 1 single-hop object: in Level 1 89% of the time
is on transmission; in Level 2/3 it is 45%. The variance in (f)
mainly comes from changeful wireless transmission time.

Notice that Level 2 and Level 3 have overlapped time
curves, thus indistinguishable time cost. This is because Argus
Level 3 only has one more HMAC generation than Level 2,
which averagely costs 0.08 ms on Pi. In practice, such tiny
difference will not give attackers chances to distinguish Level
3 objects from Level 2 ones via timing measurements, because
it is buried in timing fluctuations (e.g., from OS, program run,
network) of higher orders of magnitude.

Multi-Hop. We also test the discovery time cost in a multi-
hop condition. The 20 objects are divided to 4 equal groups:
Object 1–5, 6–10, 11–15, 16–20 are 1, 2, 3, 4 hops away from
the subject respectively. Fig. 6 (g) shows that the discovery
costs longer than the single-hop case: here discovering 20
Level 1 objects needs 0.72 s, and Level 2 or Level 3 objects
1.15 s. But still, the latency is short. Fig. 6 (h) reveals the
impact of hops on latency: discovering a 1-hop Level 1 object
averagely costs 0.13 s, while 4-hop needs 0.53 s; as for a
Level 2 or Level 3 object, 1-hop takes about 0.32 s (0.1 s
computation + 0.22 s transmission) while 4-hop 0.92 s (0.1 s
computation + 0.82 s transmission). We see transmission time
increases roughly linearly with hop counts. In all cases Argus
is fast enough to achieve satisfactory user experience.

X. RELATED WORK

A. Centralized vs. Distributed Discovery

Much existing work [2], [3], [4] depends on centralized
servers as repositories for efficient, scalable and wide-area
discovery. However, they may encounter a single point of
failure or long latency, and do not support proximity-based
discovery. Distributed solutions like UPnP [5] and Bluetooth
SDP [6] are infrastructure-less, and any service may announce
itself or reply a query. Multicast DNS [17] and Bonjour [7]
(Apple) support both centralized and distributed discoveries.
Distributed discovery has the advantage of discovering nearby
services robustly (no single point of failure) and quickly.
However, it does not have a wide-area discovery scope.

B. Secure Discovery

Authenticated & Encrypted Discovery. Security is limit-
edly covered in existing work. Some [2] authenticate neither
users nor service information, others [4] authenticate services,
and a few [3], [5] authenticate both. Besides, UPnP [5] and
Bluetooth [6] have messages encrypted for confidentiality.

Private Discovery. In an ad-hoc network, if a user and a
service both have privacy concerns, neither wants to expose
its sensitive information before the other does, a chicken-or-
egg problem arises. In solutions like [3], [18], a trustworthy
proxy is assumed and used as a bridge between users and
services. Both entities simply send to the proxy encrypted
messages which only the proxy can decrypt. This model avoids
the chicken-or-egg problem but is infrastructure-dependent.

Multiple cryptographies have been applied to achieve dis-
tributed private discovery. Some [19], [20] are public-key
based, and they have huge computational cost. Some [13],
[21] are symmetric-key based: a user and the service she
can discover get a symmetric key at bootstrapping; during
discoveries, they test each other’s possession of the symmetric
key. Besides, paring-based [22] solutions are also proposed,
which give users and services pairing-based keys at boot-
strapping which will be used to generate pairwise symmetric
keys during discoveries. Then the possession of the symmetric
key is tested. MASHaBLE [14] combines this with BLE to
discover secret community members.

Argus’s Features. 1) Argus consciously chooses a dis-
tributed, P2P discovery strategy because IoT interactions are
largely physical proximity based. 2) It achieves concurrent
visibility scoping at three levels, while existing solutions are
restricted to one and unfit for enterprise IoT with numerous,
heterogeneous services. 3) It minimizes the updating overhead
upon the frequent enterprise user churns, making the system
scalable to enterprise IoT. 4) It goes beyond mutual privacy
in existing work and achieves indistinguishability, such that
attackers do not even know Level 3 discovery is happening.

XI. DISCUSSION

Physically Visible Services. Argus prevents user devices
from collecting service information of unauthorized ob-
jects/services, especially those behind walls, which usually
have larger amounts and higher secrecy requirements than
those in public areas. Humans may still gain knowledge of
those physically visible services, but that belongs to physical
access security, which is out of the scope.

Revocation. When a subject loses access rights, Argus
efficiently revokes her discovery capabilities. Of course, if she
has already gained an object’s information, revocation cannot
remove the knowledge from her head. However, for proximity-
based discovery in a large-scale enterprise environment, it is
not uncommon that a subject has not yet discovered all the
objects she could, then revocation stops her knowing more.

Unlinkability. Unlinkable discovery [14] is a type of private
discovery with extra requirements: an eavesdropper should be
unable to determine that the two messages she sniffed are
from/to the same entity, thus she cannot identify or track
users. Those work usually has a city-scale context, where
the visiting to certain places (e.g., hospitals, bars) involves
privacy and should be kept secret. Argus does not target
unlinkability, because we believe a person’s location history
within an enterprise/campus scope is less sensitive.

XII. CONCLUSION

In this paper, we describe the design, implementation and
evaluation of Argus, a proximity-based service discovery al-
gorithm which efficiently discovers three levels of visibility
(public, differentiated and covert) in parallel, and is scalable to
IoT in enterprise environments. It has much less computation
cost and updating overhead than alternatives using ABE and
PBC. It is very responsive, taking only 0.25 s to discover 20

nearby public services, 0.63 s for 20 differentiated or covert
services, agile for satisfactory user experience.

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation under grant number 1652276.

REFERENCES

[1] Q. Zhou and F. Ye, “Apex: automatic precondition execution with
isolation and atomicity in internet-of-things,” in Proceedings of the Inter-
national Conference on Internet of Things Design and Implementation.
ACM, 2019, pp. 25–36.

[2] P. V. Mockapetris, “Domain names: Implementation specification,” Tech.
Rep., 1983.

[3] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz,
“An architecture for a secure service discovery service,” in MobiCom,
vol. 99, 1999, pp. 24–35.

[4] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service location
protocol, version 2,” Tech. Rep., 1999.

[5] U. Forum, “UPnP Device Architecture 2.0,”
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf.

[6] B. SIG, “Bluetooth SDP,” https://www.bluetooth.com/
specifications/assigned-numbers/service-discovery.

[7] A. Inc., “Bonjour,” https://developer.apple.com/bonjour/.
[8] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-

based encryption,” in 2007 IEEE symposium on security and privacy
(SP’07). IEEE, 2007, pp. 321–334.

[9] N. Koblitz and A. Menezes, “Pairing-based cryptography at high security
levels,” in IMA International Conference on Cryptography and Coding.
Springer, 2005, pp. 13–36.

[10] Q. Zhou, M. Elbadry, F. Ye, and Y. Yang, “Heracles: Scalable, fine-
grained access control for internet-of-things in enterprise environments,”
in IEEE INFOCOM 2018-IEEE Conference on Computer Communica-
tions. IEEE, 2018, pp. 1772–1780.

[11] X. Song, Y. Huang, Q. Zhou, F. Ye, Y. Yang, and X. Li, “Content
centric peer data sharing in pervasive edge computing environments,” in
Distributed Computing Systems (ICDCS), 2017 IEEE 37th International
Conference on. IEEE, 2017, pp. 287–297.

[12] T. Dierks and E. Rescorla, “The transport layer security (tls) protocol
version 1.2,” Tech. Rep., 2008.

[13] J. Lindqvist, T. Aura, G. Danezis, T. Koponen, A. Myllyniemi, J. Mäki,
and M. Roe, “Privacy-preserving 802.11 access-point discovery,” in Pro-
ceedings of the second ACM conference on Wireless network security.
ACM, 2009, pp. 123–130.

[14] Y. Michalevsky, S. Nath, and J. Liu, “Mashable: mobile applications of
secret handshakes over bluetooth le,” in Proceedings of the 22nd Annual
International Conference on Mobile Computing and Networking. ACM,
2016, pp. 387–400.

[15] J. Wang, “Java realization for ciphertext-policy attribute-based encryp-
tion,” 2012.

[16] A. De Caro and V. Iovino, “jpbc: Java pairing based cryptography,”
in 2011 IEEE symposium on computers and communications (ISCC).
IEEE, 2011, pp. 850–855.

[17] S. Cheshire and M. Krochmal, “Multicast dns,” Tech. Rep., 2013.
[18] F. Zhu, M. Mutka, and L. Ni, “Splendor: A secure, private, and

location-aware service discovery protocol supporting mobile services,”
in Proceedings of the First IEEE International Conference on Pervasive
Computing and Communications, 2003.(PerCom 2003). IEEE, 2003,
pp. 235–242.

[19] M. Abadi and C. Fournet, “Private authentication,” Theoretical Com-
puter Science, vol. 322, no. 3, pp. 427–476, 2004.

[20] D. J. Wu, A. Taly, A. Shankar, and D. Boneh, “Privacy, discovery, and
authentication for the internet of things,” in European Symposium on
Research in Computer Security. Springer, 2016, pp. 301–319.

[21] F. Zhu, W. Zhu, M. W. Mutka, and L. M. Ni, “Private and secure
service discovery via progressive and probabilistic exposure,” IEEE
Transactions on Parallel and Distributed Systems, vol. 18, no. 11, pp.
1565–1577, 2007.

[22] S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pairings for cryptogra-
phers,” Discrete Applied Mathematics, vol. 156, no. 16, pp. 3113–3121,
2008.

