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Abstract—The rapid growth of sense-and-respond applica-
tions and the emerging cloud computing model present a new
challenge: providing publish/subscribe as a scalable and elastic
cloud service. This paper presents BlueDove, an attribute-based
pub/sub service that seeks to address such challenge. BlueDove
uses one-hop look-up to organize servers into a scalable
overlay. It proactively exploits skewness in data distribution to
achieve high performance. By assigning each subscription to
multiple servers through a multi-dimensional subscription space
partitioning technique, it provides multiple candidate servers
for each message. The message can be matched on any of its
candidate servers with one hop forwarding. The performance-
aware forwarding in BlueDove ensures that the message is sent
to the least loaded candidate server for processing, leading to
low latency and high throughput. The evaluation shows that
BlueDove has a linear capacity increase as the system scales
up, adapts to sudden workload changes in tens of seconds, and
achieves throughput multi-fold higher than techniques used in
existing enterprise and peer-to-peer pub/sub systems.
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I. INTRODUCTION

Publish/Subscribe (pub/sub) is a commonly used asyn-
chronous communication pattern among application compo-
nents. Senders and receivers of messages are decoupled from
each other and interact with an intermediary—a pub/sub
system. A receiver registers its interest in certain kinds of
messages with the pub/sub system in the form of a sub-
scription. Messages are published by senders to the pub/sub
system. The system matches messages (i.e., publications) to
subscriptions and delivers messages to interested subscribers
using a notification mechanism.

There are several ways for subscriptions to specify mes-
sages of interest. In its simplest form [10], [6], [22],
messages are associated with topic strings and subscrip-
tions are defined as patterns of the topic string. A more
expressive form is attribute-based pub/sub [15], [9], [16],
where messages are further annotated with various attributes.
Subscriptions are expressed as predicates on the message
topic and attributes. An even more general form is content-
based pub/sub [19], [7], [21], where subscriptions can be
arbitrary Boolean functions on the entire content of messages
(e.g., XML documents), not limited to attributes!. Attribute-
based pub/sub strikes a balance between the simplicity and

I'We note that some work [16] considers attribute-based pub/sub as one
kind of content based pub/sub.

performance of topic-based pub/sub and the expressiveness
of content-based pub/sub. Many large-scale and loosely-
coupled applications including stock quote distribution, net-
work management, and environmental monitoring can be
structured around a pub/sub messaging paradigm. Attribute-
based pub/sub is the subject of this paper.

The recent years have witnessed two significant trends
that pose new requirements on pub/sub systems. The first
trend is the ever increasing number of sense-and-respond
applications that adapt their behavior to events in the cyber
or real world, based on continuous readings from potentially
a prolific number of physical or logical sensors. One exam-
ple is a smart transportation system using a large number of
sensors such as smart-phones and road-side cameras [11].
These devices publish messages with attributes such as
time, location and traffic conditions. Individual drivers can
subscribe to messages on congestion and accidents specific
to their particular routes. The second trend is the emergence
of cloud computing, which offers the compute infrastruc-
ture, platform, and applications as services to one or more
tenant organizations. The cloud computing model eliminates
upfront capital costs and in-house operational costs for the
tenants, allowing the tenants to incur service costs on an
as-needed basis. A cloud further minimizes the costs to
tenants by elastically scaling its services based on changing
workloads.

These two trends require that pub/sub become a scalable
and elastic cloud service. However, building pub/sub as a
service entails a number of challenges. First, the service
must be extremely scalable to support large number of
subscriptions and high message rates. For example, traffic
sensors may publish millions of messages per second while
tens of thousands of drivers may each register several
subscriptions. A pub/sub service may even have to accom-
modate many applications of this kind. Such a level of
scalability requirement is unprecedented in traditional enter-
prise pub/sub systems. Second, a modern pub/sub service
must be ‘“elastic” to quickly adapt to workload changes
that may happen in a short amount of time. For instance,
during rush hours, a huge volume of traffic messages and
subscriptions are generated; at night, the volume of both
reduces substantially. As mentioned earlier, elasticity is also
critical to the low-cost benefit of a cloud-hosted service.
Third, the service must be resilient to both server and



network failures. The new requirements on workload and
scalability necessitate the provisioning of a pub/sub service
from a very large number (e.g., hundreds) of servers. The
service must remain available when some of the servers
fail or when not all servers can communicate with each
other directly. The large number of servers makes server
and network failures a common phenomenon that must be
handled effectively.

Existing enterprise pub/sub products are not adequate to
meet the above requirements. In these products, servers
form a cluster and each client establishes affinity with one
server by connecting to it directly. Subscriptions are often
replicated on all servers, such that any server can match
messages and forward them to the interested subscribers.
Enterprise pub/sub products are not designed with elasticity
in mind because the enterprise typically over-provisions the
computation resources to meet the needs of peak workload
and does not have financial incentives to un-provision the
resources during off-peak hours. The full replication and
client-server affinity also impose limits on scalability.

There has been a large body of academic research [10],
[8], [12], [16] that uses different overlay techniques [23],
[17], [18] to provide pub/sub functionality in a peer-to-
peer (P2P) manner. In these systems, each peer node is
responsible for a small portion of the whole subscription
space. Messages and subscriptions are forwarded to cor-
responding nodes through multi-hop overlay routing. This
strategy targets the adverse conditions in wide-area P2P
systems: unreliable links and high node churn rates due to
frequent node leave/join. It is inappropriate for a pub/sub
service provisioned from a data center, where the network
connections are much more reliable and the node mem-
bership much more stable than the P2P environment. The
multi-hop overlay routing incurs unnecessary processing and
network delays and does not take advantage of the well
engineered data center environment.

This paper presents an attribute-based pub/sub service,
dubbed BlueDove. BlueDove uses one-hop look-up [13]
to organize servers into an overlay. Such an overlay is
inherently scalable and tolerant to both server failures and
network partitions. Adding nodes to increase the capacity
can be accomplished by the overlay in a matter of seconds.
To ensure scalable pub/sub matching and high through-
put, BlueDove employs mPartition, a multi-dimensional
subscription space partitioning scheme that exploits the
skewness of subscriptions. It assigns each subscription to
multiple discreetly chosen nodes, such that each message
can be matched on any of its corresponding candidate
nodes. A performance-aware message forwarding technique
always forwards the message to the least loaded candidate
node for matching, and thus achieves low latency and high
throughput.

To the best of our knowledge, BlueDove is the first
effort that studies how to provide attribute-based pub/sub

as a service. > We identify the differences in the cloud
environment compared to traditional enterprise or peer-to-
peer pub/sub systems, and point out the implications on
the pub/sub architecture. We propose new techniques (i.e.,
mPartition and performance-aware forwarding) that turn data
skewness into an asset for scalability and performance,
and combine them with existing technique (i.e., one-hop
lookup) to build a prototype for scalable, elastic and fault-
tolerant pub/sub service. We have carried out thorough and
systematic experiments to validate our design and evaluate
its performance. The results demonstrate a linear capacity
increase as the system scales up, agile response to workload
changes, and multi-fold improvement in throughput com-
pared to representatives of alternative approaches.

II. BLUEDOVE SYSTEM ARCHITECTURE
A. Attribute-based Pub/Sub Model

BlueDove uses a multi-dimensional attribute-based
pub/sub model similar to that of [16], [24]. Consider k
attributes {L1, Lo, ..., Ly}, let V* be the (ordered) set of all
possible values of attribute L;, then V = VikVex...xVk
is the entire attribute space. The attribute space is a k-
dimensional space, and from now on we use the terms di-
mension and attribute interchangeably. A message is defined
as a point in the attribute space, m = (v!,v?,...,v¥) € V.
For instance, in a traffic monitoring application, four di-
mensions may be used to describe a message: longitude,
latitude, speed, and timestamp. A subscription is modeled
as the logical conjunction of k range predicates, each along
a different dimension, (I < v! < ul)A-- A (IF <ok <
u®). Alternatively, a subscription can be viewed as a k-
dimensional hyper-cuboid S = S! x --- x S* C V, where
St = [I*,u*). By this definition we say a message m matches
a subscription S if and only if m € S.

This form of multi-dimensional range query is common
in many applications. For example, a driver interested in
traffic congestion in a metro area may specify a rectangle
covering his proximate area, which can be translated into
a subscription, e.g., [-41 < long < —42) A [70 < lat <
74) A [0 < s < 25). The subscription indicates that the
driver wants to receive messages where vehicle speed is in
the range of [0,25) miles per hour, and vehicle location in
a rectangular area, with longitude range [—41°, —42°) and
latitude range [70°,74°).

B. System Architecture

Being a cloud-based service, BlueDove operates under
different environments than what existing pub/sub systems
are designed for. In a traditional enterprise pub/sub system,
scalability is achieved by using a number of brokers, each of
which serves a set of locally connected clients (as shown in

2 Amazon has recently offered a topic-based pub/sub service. But they
do not publicize the design or implementation of their service.
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Figure 1: Comparison between three different architectures:
enterprise pub/sub, broker-less peer-to-peer pub/sub, and the
BlueDove cloud pub/sub.

the top left side of Figure 1). The brokers form a network
and by advertising subscriptions they receive from locally
connected subscribers, they build states in the network for
content-based routing []. Such states guide the forwarding
of messages in the network, such that they are delivered
to matching subscribers. Because a client has to receive
messages via its locally connected broker (i.e., the so called
client-broker affinity), the main challenges in such a system
are how to build states among brokers to route messages
towards matching subscribers efficiently. In a cloud-based
deployment, the client-broker affinity is no longer required
or even desired. This freedom enables more efficient match-
ing and high throughput for BlueDove by grouping “similar”
subscriptions on the same server, and limiting routing to only
one hop.

On the other hand, a broker-less pub/sub system can be
constructed using multi-hop DHT overlays for the Internet
environment (as shown in the top right side of Figure 1).
Subscriptions and messages are routed to certain peers
for matching, and messages are delivered to peers with
matching subscriptions, all through multihop DHT routing.
As discussed in Section I, such a design is motivated by the
high node churn and message loss in the P2P environment,
which do not apply in a cloud data center. Typical data
center servers are connected by high speed local networks.

The network delay between servers is small and the packet
loss rate is low. Servers stay online for long periods of
time unless failures or maintenance happen. Such a well-
engineered environment enables BlueDove to adopt the
much simpler and faster one-hop lookup [13] for organizing
servers.

Based on these observations, we propose a two-tier archi-
tecture for the BlueDove pub/sub system, as shown in the
bottom of Figure 1. A small subset of dispatching servers
(called dispatchers) are exposed to the Internet as the “front-
end”. The IPs of these dispatchers can be publicized through
the DNS [14], and any publisher or subscriber can connect to
them directly. They perform very light-weight dispatching to
send subscriptions and messages to matching servers (called
matchers) at the “back-end”. For low latency, a message only
traverses one hop from a dispatcher to a matcher, where
all matching subscriptions are identified. The matcher then
delivers messages to subscribers.

The delivery of messages to corresponding subscribers
can be direct or indirect. A matcher can send messages di-
rectly to matching subscribers if they can listen and wait for
incoming connections or messages. Otherwise, messages can
be delivered indirectly: after receiving a subscription from
a client, a dispatcher returns a handle to some temporary
storage (e.g., a message queue) that the subscriber polls
periodically to retrieve matching messages. The matchers
only need to deliver messages to the temporary storage. This
delivery model is suitable for subscribers such as mobile
phones that may not be able to listen on an IP/port waiting
for incoming messages.

Such an architecture has a few distinct features that
make it suitable for a cloud environment. First, because the
elimination of the client-broker affinity, there is no need to
build and maintain possibly costly states for content-based
routing in a broker network. Instead, a message only goes
through very light-weight dispatching and is then matched
and delivered to matching subscribers via one matcher. This
incurs much less latency and processing compared to multi-
hop forwarding in a broker or P2P network. Second, it allows
the system to group “similar” subscriptions (e.g., those with
same or close predicate ranges) on the same server, such
that the local index searching time can be greatly reduced.
This is a key factor to the high throughput.

III. BLUEDOVE COMPONENT DESIGN

The two-tier architecture addresses how servers should
be organized in a cloud pub/sub service. There are still
a number of more detailed questions that we need to an-
swer. First, how should we assign subscriptions to matchers
such that only one matcher is needed to find all matching
subscriptions for any message, while still providing high
performance? Obviously, a full replication approach where
each subscription is stored on all matchers needs only
one matcher for each message. But each matcher needs to
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Figure 2: An example of mPartition where three dimensions
are each split into 6 segments. A matcher is responsible for
one segment along each dimension; it stores subscriptions
whose predicate ranges overlap with its segments. E.g., the
sample subscription’s range on latitude [70 — 74) overlaps
with segment [60, 90), so it is stored in the corresponding
matcher F'. Similarly it is stored in C for longitude. Along
speed dimension its range [0,25) overlaps with two seg-
ments responsible by matchers A and B. So both store a
copy of the subscription.

search through all subscriptions for a message, which leads
to high latency and low throughput. Second, how should
dispatchers decide which matcher to forward a message?
They need not just to select the correct matcher that can
find all matching subscriptions, but also the best one to
achieve high performance. Due to the dynamic changes in
both message workload and matcher resource availability,
the best matcher for each message differs. In this section,
we propose two main components that answer the above
questions. They collectively provide high throughput and
low latency pub/sub.

o mPartition, a multi-dimensional subscription space par-
titioning component decides how subscriptions are
stored on matchers. It assigns each subscription to
multiple matchers so that for any message there exist
multiple candidate matchers, each of which can finish
the matching without involving other matchers.

e A performance-aware message forwarding component
enables dispatchers to always identify the best candi-
date matchers to achieve high performance despite the
dynamic changes in workload and resources.

A. Multi-dimensional Partitioning

In order to take advantage of the many matchers in
the system, BlueDove divides the entire subscription space
among the matchers, so that each matcher only handles a
small subset and searchs through much fewer subscriptions.
In BlueDove, subscriptions are assigned to matchers using a

multi-dimensional subscription space partitioning approach,
called mPartition. Let N be the total number of matchers
and k be the number of dimensions. For each dimension L?,
mPartition splits V%, the set of all possible attribute values
on L', into N continuous and non-overlapping segments
{Vji,j =1,..., N}. Each matcher M, is responsible for k
such segments V', one in each dimension. Figure 2 shows
a traffic monitoring example, in which each of the three
searchable dimensions (longitude, latitude, and speed) are
split into 6 segments and assigned to 6 matchers A — F'.

Given a subscription S = S' x --- x S*, a dispatcher
assigns S to matchers k times, each time along a different di-
mension L. It takes the predicate range S°, then finds which
segment(s) {Vf} overlap with S?, and forwards a copy of the
subscription to corresponding matcher(s). The copy includes
not just the predicate S* on dimension L?, but all predicates
of the subscription. In the example (shown in Figure 2), the
subscription’s range on latitude dimension [70—74) overlaps
with segment [60,90), which is responsible by matcher F.
Thus F receives a copy of the subscription. Note that one
predicate may overlap multiple segments and more than one
matcher may receive the subscription along that dimension
(e.g., see dimension speed in the example).

Formally, the matcher(s) receiving a subscription along
dimension L* are M*(S) = {M,|V/NS* # @}, those whose
responsible segments overlap with the predicate range S°.
Since all segments along each dimension cover the whole
possible value space, a predicate range has to overlap with
at least one segment. Thus the subscription is assigned to at
least one matcher in each dimension. In total it is assigned
k times to at least k& matchers. With this assignment scheme,
the entire set of subscriptions & = {S} is partitioned
among the N matchers k times; each time along a different
dimension.

Each matcher receives subscriptions along all dimensions.
Formally, for each dimension L', the subset of subscriptions
assigned to matcher M; is &/ (M;) = {S = S' x .-+ x
Sk|Vj nS* # @}. A matcher stores subscriptions in each
of the k subsets Gi(Mj) separately and builds a seperate
index for each subset. This is critical for high performance
and will be further explained later.

Using a gossip protocol described in Section III-C, the dis-
patchers maintain a global view of the segment assignment.
When a subscription S enters the system, a dispatcher can
find overlapping segments on each dimension and forward
S to the corresponding matchers M(S). Figure 2 shows an
example subscription and how it is assigned to 4 matchers
along 3 dimensions.

The above mPartition looks similar to the way many DHT
overlays partition a ring of ID space into segments and
assign them to nodes. However, there are key differences
that confer distinct advantages to BlueDove over enterprise
or other DHT-based pub/sub.



1) Multiple Candidate Matchers: Given a message m =
(v',v?, ..., v*), mPartition ensures that there exist k& match-
ers on each of which all matching subscriptions can be
found. We call them candidate matchers for m. > We briefly
explain why. For a dimension L?, v* has to fall into one
segment V/ (i.e., v' € V). For any subscription S that
matches m, its predicate S* must contain v* (i.e., v* € S°).
Thus S* overlaps with V;'. By mPartition, S would have been
assigned to the matcher CM*(m) = M; responsible for V.
So on M all these subscriptions can be found. Note that
M; may also store subscriptions not matching m. They are
those whose predicates do not contain m’s value on other
dimensions.

This enables high performance matching because for each
message, any dispatcher can find all its candidate matchers
by examining global segment assignment, and forward the
message to any of them in just one hop. In contrast, in
enterprise or other DHT-based pub/sub [10], [8], [12], [16],
messages are forwarded over multiple hops and experience
long delays to find all matching subscriptions. Exactly which
candidate matcher to choose, is the subject of Section III-B.

2) Exploit data skewness: Real world data distribution is
often skewed. The popular “20-80” rule states that 80% of
events come from 20% of causes [3]. Some recent study [20]
on 7 million users of Twitter (which can be viewed as
a topic-based pub/sub system) finds that 80% users (i.e.,
“topics”) have less than 10 followers (i.e., “subscriptions”),
while the top 100 “hot” (i.e., “popular”) users each has more
than 1.5 million followers [4].

Although this is not direct evidence for attribute-based
pub/sub, we expect similar skewness would appear in the
distribution of predicate ranges along some dimensions.
Thus some matchers are assigned disproportionately more
or less subscriptions along these dimensions than the av-
erage (i.e., |G'(M;)| > or < average(|&'(M,)|)). Such
matchers are on the “hot spots” or “cold spots” of those
dimensions. For example (Figure 3), matcher A is at the
“hot spot” of dimension Y and assigned 13 subscriptions
on Y, while D is at the “cold spot” on Y and assigned only
4 subscriptions. During matching they need to search much
more or less subscriptions than the average on those dimen-
sions. Note that because a matcher maintains a separate set
and index for subscriptions received along each dimension,
a matcher may be at the "hot spots” and “cold spots” of
different dimensions at the same time (e.g., matcher A is on
the "hot spot” of Y but a relatively “cold spot” on X).

Because k candidate matchers exist for each message
along k dimensions, some of them may be on "hot spots”
while others on “cold spots”. It is desirable to choose those
candidates on “cold spots”, such that much less searching
is needed. A message becomes “unlucky” only if all its

3These k candidates may not be distinct, if some of the corresponding
segments are assigned to the same matcher.
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Figure 3: An example of subscription amount based policy.
The table shows the segments and amounts of subscriptions
stored by matchers on each dimension. The message (the
small dot) falls in the intersection of segments X, and Y7,
which are responsible by matcher D and A, respectively.
Since D has only 4 subscriptions to search on dimension X,
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to D to match against its subscription set on dimension X.
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candidate matchers are on the*hot spots” of corresponding
dimensions, which is unlikely given multiple candidates. We
will explain the details in the next subsection.

3) Fault tolerance: Because each subscription has at
least k& copies stored on different matchers, it provides a
natural means of fault-tolerance. If a dispatcher finds that
a candidate matcher has failed, or the network connection
to that matcher is unavailable, it can forward the message
to another candidate. The maximum number of concurrent
node failures it can tolerate, is simply one less the number
of distinct matchers.

B. Performance-aware message forwarding

As pointed out previously, given a message m, there are
k candidate matchers for it, CM*(m). Because the amount
of subscriptions |G¢(C'M?)| assigned to, and the workload
on CM?, may vary greatly depending on the skewness
of the subscription distribution, there exists opportunity to
choose a “cold spot” candidate matcher to improve the
performance. Here we examine two policies for choosing
the best candidate.

1) Subscription amount based policy: The most intuitive
way of choosing a candidate is to select the one with the least
number of subscriptions on the corresponding dimension.
Formally, for a message m, the best candidate matcher is
given by

CM(m) = arg Czrgjugn) |GH(C M (m))].



To this end, each matcher M; stores subscriptions re-
ceived along each dimension L’ in a separate set &¢(M).
A matcher has £ such sets, whose sizes are communicated
to all dispatchers using the gossip protocol described in
Section III-C. When a dispatcher receives a message m,
it first finds the candidate CM* for each dimension, then
it identifies which one has the smallest set of subscriptions
on its corresponding dimension. The dispatcher marks that
dimension in the message and forwards it to that matcher.
The matcher matches the message against the corresponding
set of subscriptions only. To avoid interference, a separate
queue is used to store incoming messages on each dimension
before they are matched.

Figure 3 shows an example where two dimensions are
each partitioned into 4 segments and assigned to 4 matchers.
The subscriptions (shown as small grey rectangles) have “hot
spots” in row Y7 and column X5 along the two dimensions.
The table shows the segment and the subscription amount
for each matcher along the two dimensions. When a message
(shown as the dot in the intersection of row Y7 and column
X, in the right top corner) arrives, it falls in two segments,
row Y7 and column X,. The two corresponding matchers
D and C are found to have 4 and 13 subscriptions in those
segments. D has the smallest amount of subscriptions to
search and is chosen to process the message.

The matching throughput is ultimately determined by the
total processing time of a message, which includes elements
besides matching time. Subscription amount offers only an
approximation to the processing time:

o When a matcher is loaded, many messages are waiting
in the queue before being matched. The queuing time
can be significantly higher than the matching time. This
is not reflected by the amount of subscriptions.

o Message matching along different dimensions is an-
other factor. A matcher receives messages, each of
which to be matched against one of its k£ sets of sub-
scriptions. The competition of resources for matching
among different sets also affect the matching time of a
message, which is not captured in this policy.

Thus this policy does not always achieve optimal perfor-
mance, which is confirmed by the performance evaluation
(see Section IV).

2) Adaptive Policy: To address the deficiencies in the
previous policy, we find an adaptive approach that considers
the impact of the queue length and competing workloads
among different dimensions. Instead of using relatively static
subscription amount, it considers the overall processing time,
which includes both the queuing time and matching time.
The message is forwarded to the candidate matcher with the
shortest processing time.

The adaptive policy works as follows. For each dimension
L?, a matcher monitors the message queue length ¢* and
periodically calculates the average message arrival rate \°
and matching rate p’ of the past w seconds. It then sends
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Figure 4: An example of the adaptive policy. Matcher A
and B have same matching rate, but different queue length
in the beginning. The adaptive policy seeks to keep the
total processing time on each matcher the same in order to
minimize overall processing time. Plots show the processing
time of A and B when dispatcher does and does not estimate
queue length of A and B between two updates. Each vertical
line represents an update from matchers.

A%, u?, and ¢ to all dispatchers. The dispatcher estimates the
processing time along each dimension for the corresponding
candidate matcher, then it forwards the message to the
matcher with the shortest estimated processing time.

The estimation is based on linear extrapolation before the
next update, assuming that the message arrival and matching
rates remain the same between updates. Suppose at last
update time t’, the queue length on a matcher for dimension
L was ¢!/, the message arrival rate was \’,, and the message
matching rate was u!, . The queue length at time ¢ is
calculated as

g =gi + (No — piN(t—t'),

where (A{, — i, )(t—t') is the number of messages that have
arrived but are not processed since ¢’. Then the time it takes
to process the next message is

(a; +1)/ppr

where ¢!/, is the queuing time and 1/u!, is the matching
time.

Figure 4 shows an example of two matchers A and B both
processing messages from a dispatcher. * Suppose matcher
A matches messages much faster than B initially and it
has a much smaller total processing time. The dispatcher
will forward messages to A and the message queue on A
grows quickly. Even before the next update, A’s processing
time becomes longer than B. Without the extrapolation, the
dispatcher will continue to use stale information from the
last update, and A’s queue will continue to grow while B
can become idle. Only after receiving the next update can

4Only one queue is shown for each matcher for one dimension. In reality,
each matcher has multiple queues, one for each dimension.



the dispatcher start to redirect messages to B. This causes
significant unbalanced load and possibly oscillation among
matchers. With the extrapolation, the dispatcher can find out
that A’s processing time becomes longer than B’s before the
next update, thus redirecting messages to B promptly. This
leads to much more balanced load and avoids oscillation.
In essence, this adaptive policy tries to keep the total
processing time the same among all candidate matchers
for a given message. This is done by keeping the queue
length in proportion to the matching rate of matchers, so that
a faster matcher will receive proportinally more messages
than a slower one. Another benefit of this policy is that it
coordinates multiple dispatchers via the feedback, so that
dispatchers do not need to exchange messages explicitly.
This makes adding or removing dispatchers much simpler:
the leaving or joining dispatcher does not need to calculate
or inform other dispatchers how much more or less messages
they should forward. They will adjust their forwarding rates
automatically via the feedback loop to achieve load balance.

C. Maintenance of Global State

In order to perform the multi-dimensional subscription
partitioning and message forwarding as described above,
BlueDove dispatchers have to maintain a globel view of
the contact and segmentation information of all matchers.
When the number of matchers is large, keeping this global
view can be highly expensive. BlueDove employs a gossip-
based protocol[13] that exchanges state information among
matchers with low overhead. Each matcher maintains a table
with the contact information (e.g., IP/port) and segment
boundaries (one pair on each dimension) of all matchers, and
periodically exchanges the table with log(IN) (XN is the total
number of matchers) randomly selected matchers to keep its
table up-to-date. Then each dispatcher pulls the table from
a randomly chosen matcher once a while to get up-to-date
view of the global state.

When a new matcher joins the system, it can contact any
of the dispatchers. Based on the workloads, the dispatcher
chooses a heavily loaded matcher, splits each of its segments
into two smaller segments, and assigns one piece to the
newly joining one. The old matcher also transfers to the
new matcher subscriptions it should store. The changes are
propagated through gossip. The leaving of a matcher incurs
merging of segments and subscriptions to adjacent matchers.
We do not elaborate because it is simply the reverse of
joining.

The gossip protocol provides elasticity since adding or re-
moving matchers are handled automatically without manual
configuration. It also tolerates node or network failures due
to the random selection of nodes to gossip with. Finally, it
involves log(IN) rounds of gossiping to propagate any state
change to the whole network, which is reasonably efficient
for large number of matchers. We will present its overhead
in Section IV.

IV. IMPLEMENTATION AND EVALUATION

We have implemented BlueDove based on the code of
Cassandra [13], a distributed storage system that handles a
large volume of data across many servers. The performance
of the prototype is evaluated on a compute cloud platform.

A. Implementation

‘We have added about 20,000 lines of Java code to the Cas-
sandra code base to support new functions such as dispatch-
ing and matching for pub/sub. The prototype leverages three
existing components in Cassandra: the gossip-based one-hop
look-up, the SEDA multi-threading architecture [25], and
the event-driven messaging service. The unrelated portion of
Cassandra such as the storage service, is disabled so that it
does not interfere with BlueDove components. The prototype
supports different message forwarding policies, including the
subscription amount based policy and the adaptive policy
described earlier.

B. Evaluation Methodology

We evaluate the performance of BlueDove in a 24-server
testbed in the IBM Research Compute Cloud (RC2). Each
server is a virtual machine(VM) with four processor cores,
4 GB memory, 60 GB storage, and is connected to Gigabit
Ethernet switches. We use 22 VMs in BlueDove: two as dis-
patchers and the rest as matchers. We run the other two VMs
as workload generators; they run simulated applications that
generate subscriptions and publish messages.

Subscriptions and publications have four attribute dimen-
sions, each of which has a length of 1000. As described
in Section II-A, subscriptions are conjunctions of range
predicates and publications are points in the attribute space.
In most experiments, 40, 000 subscriptions are generated and
they follow a normal distribution with standard deviation of
250. Under such skewness, the matchers at the “hot spot”
have about 2.7x as many subscriptions as the average. The
hot spots of dimensions are distributed evenly along the
full range of 1,000. This is to emulate different skewness
between dimensions. The predicate ranges are 250 and the
attribute values of messages are distributed randomly in each
dimension. In Section IV-F we also evaluate the effect of the
skewness of both subscriptions and publications on system
performance.

We compare BlueDove against two alternative pub/sub
approaches: peer-to-peer (P2P) and full-replication. The P2P
pub/sub system builds a peer-to-peer overlay and distributes
subscriptions among all nodes. Our implementation of P2P
pub/sub system uses the same gossip-based overlay as in
BlueDove for a fair comparison. The difference is that the
P2P approach assigns subscriptions using one dimension,
whereas BlueDove utilizes multiple dimensions. The full-
replication approach replicates all subscriptions to all match-
ers. A message can be forwarded to any matcher to get
matched.
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Figure 5: The message response time at the message rate
below (100,000 messages/sec) and above (150,000 mes-
sages/sec) the saturation rate of 114,000 messages/sec.

We use a few metrics in the experiments: the response
time and the saturation message rate. The response time is
the duration from when a message arrives at a dispatcher to
when the message is returned to interested subscribers. The
saturation message rate is the highest message arrival rate
that the pub/sub system can sustain without being saturated.
Saturations happen when the message matching speed is
lower than the message arrival rate, thus more and more
messages are queued and the response time grows linearly.

Figure 5(a) and 5(b) show the response time as time goes
for two message rates, one below and another above satu-
ration. The response time stays constant when the message
rate is lower than saturation. The dramatic linear growth
when the rate goes above saturation means more and more
messages are waiting in the queue. We use this to detect
the saturation point by feeding the system with increasing
message rates, and checking every five minutes if response
time has been growing linearly.

C. Scalability

In this section we evaluate BlueDove’s scalability of han-
dling high message rates and large number of subscriptions.
Specifically we seek to answer two questions: 1) How does
the highest sustainable message rate change as the number
of matchers increases? 2) How does the highest sustainable
number of subscriptions change as the number of matchers
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Figure 6: Scalability as the number of matchers increases.
(a) The saturation message rate with 40,000 subscriptions.
(b) The maximum number of subscriptions each system can
handle with a message rate of 100,000 messages/second.

increases? We compare BlueDove to the P2P and the full-
replication approaches.

We first evaluate how the saturation message rate changes.
During each experiment, the workload generators first send
40,000 subscriptions to dispatchers, then they start to publish
messages. The message rate is increased every 5 minutes
until the system becomes saturated, indicated by monotoni-
cally increasing queue lengths and response time. We run the
experiment with different numbers of matchers from 5 to 20.
Figure 6(a) shows that as the number of matchers increases,
the message saturation rate of BlueDove increases much
faster than those of the other two approaches. With 5 match-
ers, the gains of BlueDove over P2P and full-replication are
3.5x and 14x. When the number of matchers increases to
20, these gains became 4.2 and 67 x, respectively. In full-
replication, adding matchers reduces the number of mes-
sages that each matcher needs to handle. But the matching
time is not reduced because each matcher needs to search
all subscriptions. In both BlueDove and P2P approach,
subscriptions are assigned among matchers thus matching
time decreases as more matchers are added. Therefore they
handle higher message rates than full-replication. BlueDove
also takes advantage of data skewness and chooses the least
loaded candidate matcher, which usually needs to search
much less subscriptions than average.

We then evaluate how many subscriptions each pub/sub
system supports as the system size increases. The workload
generators send messages at a constant rate of 100,000



messages/second. Every five minutes, the workload gen-
erators send new subscriptions until the system saturates.
Figure 6(b) shows that BlueDove handles significantly more
subscriptions than the other two approaches. With 20 match-
ers, the gains of BlueDove are 4x over the P2P approach,
and 30x over the full-replication approach.

We also measure the message overhead to maintain the
overlay and to update the workload information on dis-
patchers. The overhead consists of three major components:
1) Using gossip protocol, each matcher exchanges about
2.9K bytes of information with a random matcher every sec-
ond. 2) Each dispatcher pulls the segment table of 60V bytes
from a random matcher every 10 seconds, where N is
the number of matchers. Therefore, the average overhead
on each matcher is 60N x D/10/N = 6D byte/second,
where D is the number of dispatchers. 3) Each matcher
pushes 64 bytes of workload information to each dispatcher
every second if the load changes more than 10%. The total
overhead on each matcher is about 2.9 K 420D byte/second.
Even with tens of dispatchers this overhead is only a few
thousand bytes per second for each matcher; this is very
small for servers connected by Gigabyte switches.

D. Forwarding Policy and Load Balancing

Impact of Message Forwarding Policies: Message for-
warding policy determines to which matcher a message is
forwarded. It affects the workload allocation among match-
ers. Figure 7 shows the saturation message rates with 20
matchers for four different policies: the default adaptive
policy, the response time based policy (without intrapolation
between updates), the subscription amount based policy, and
the random policy. The first three policies are performance
aware; they select the matcher for each message based on
certain performance metrics. The random policy selects a
matcher randomly and serves as the baseline for comparison.

The adaptive policy has the highest message saturation
rate, which is 1.1x that of the response time based policy,
1.2x of the subscription amount based policy, and 3.5x of
the random policy. The adaptive policy estimates the work-
load on matchers between two consecutive load updates,
while the response time based policy does not make such
estimates and uses less up-to-date workload information.
Thus the adaptive policy outperforms the response time
based policy. The subscription amount based policy uses the
static workload metric of the number of subscriptions; it does
not take into consideration the dynamic changes in queuing
and matching times. So it has lower throughput than the
previous two policies. Nevertheless, the subscription amount
based policy still makes forwarding decision based on some
performance metric, thus it achieves 3x the throughput of
the random policy.

Load balancing compared to P2P: We compare the
load balancing capability of BlueDove with the P2P ap-
proach. Because load is uniformly distributed in the full-

replication approach, we do not include it in this comparison.
We examines the CPU load across different matchers. We
use the one-minute average of work load obtained from
/proc/loadavg’.

The simulators send 40,000 subscriptions at the beginning
of each experiment. Then they send messages slightly below
the corresponding saturation message rate for each pub/sub
system to fully load but without saturating them. Figure 8
shows the CPU load on each matcher. The CPU load on
matchers in BlueDove has much less variation than that in
the P2P approach. Their normalized standard deviations (i.e.,
standard deviation divided by the average) are 0.14 and 0.82,
respectively. This is because the P2P approach forwards
messages to matchers without considering load on them,
while BlueDove chooses the least loaded matcher among
all candidates.

E. Elasticity and Fault Tolerance

We evaluate BlueDove’s elasticity and fault tolerance
in this section. Elasticity refers to the system’s ability to
adapt to sudden changes in workload. It is essential to
cloud services since the workload changes continuously.
We start the experiments at a small system size of five
matchers, an initial message rate of 500 message/second,
and 40,000 subscriptions in the system. During the exper-
iments, workload generators increase the message rate by
500 messages/second every five minutes. When a BlueDove
dispatcher detects system saturation, it adds a new matcher
to distribute the workload. When a new matcher is added,
it finds the most loaded matcher (in number of subscrip-
tions) in each dimension and takes over about half of its
subscriptions.

Figure 9 shows how the response time changes as new
servers are added. The three vertical lines show the times
when new servers are added. The message response time
decreases quickly after new servers are added to the system.
The average time from adding a new server to observing a
drop in the message response time was 5 seconds. Note that
less improvement is observed after the third node addition
(it is the 8th node in the system), because it brings relatively
smaller increase in the system capacity.

We then evaluate BlueDove’s ability to recover from
server failures. The experiment starts with 20 matchers.
During the experiment, we take one matcher offline every
five minutes. Since it takes some time for dispatchers to
detect matcher failures, messages sent to failed matchers be-
fore detection are lost. Figure 10(a) shows that the message
loss rate increases to around 5% after each matcher failure,
but drops back to 0% within 17.5 seconds on average.
Figure 10(b) shows the message response time over time;

>The load information from /proc/loadavg combines CPU load and
1/0 load. Since matching operations only involve in-memory operations and
almost no disk I/0, the load information is a reasonable reflection of CPU
load.
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the vertical lines indicate matcher failures. The message
response time increases slightly after each failure, but the
system continues to function normally without saturation.

FE. Impact of Workload Characteristics

This section evaluates how different workload character-
istics may impact the system performance.

Number of Searchable Dimensions: BlueDove relies on
the mapping of subscriptions to matchers along multiple
dimensions to have the flexibility of multiple candidate
matchers to choose from. The flexibility increases with
more searchable dimensions. We evaluate the impact of
dimensionality on performance. Figure 11(a) shows that
the saturation message rate increases as the number of
searchable dimensions increases from 1 to 4. The rate with
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four dimensions is 5.5x as high as that of one dimension.
Having more searchable dimensions gives dispatchers more
candidate matchers to select from, and thus increasing the
probability of avoiding “hot spots”. Although the mainte-
nance overhead increases with more dimensions, the results
show that the gain significantly over-weights the overhead.

Skewness of Subscription Distribution: BlueDove takes
advantage of the skewness in the distribution of subscriptions
to achieve high throughput. What if the subscriptions do
not have much skewness? We evaluate how the degree of
skewness impacts the performance. We change the standard
deviation of the cropped normal distribution of subscrip-
tions to emulate different levels of skewness. The larger
the standard deviation, the “flatter” and less skewed the
distribution. Figure 11(b) shows the saturation message rate
with different standard deviations from 250 to 1000, where
the total range of a dimension is 1000. At the standard
deviation of 1000, the distribution is quite “flat”:the highest
number of subscriptions stored by matchers is only 1.17x
of the average. Clearly, the message rate keeps decreasing
when the standard deviation increases, and drops almost
40% when the standard deviation increased from 250 to
1,000. However, the message rate is still much higher than
that of P2P (~30,000 messages/second, see Figure 6(a)).
This shows that as long as some skewness exists, BlueDove
can take advantage of it to improve performance.

Skewness of Message Distribution: How does Blue-
Dove perform when messages (publications) are adversely
skewed? In all other experiments, messages are distributed
evenly in all dimensions. In reality, they can be skewed as
well. There are two scenarios: one hurts BlueDove and the
other benefits it. First, messages may be skewed in the same
way as subscriptions; the “hot spots” of messages coincide
with the “hot spots” of subscriptions. These “hot spots”
have many more messages, and they need to be matched
against a large number of subscriptions. This decreases
the performance. Second, if the “hot spots” of messages
do not overlap with the “hot spots” of subscriptions, the
performance actually improves—compared to uniform dis-
tribution, many more messages are matched against matchers
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with a small number of subscriptions.

We evaluate how skewness in message distribution im-
pacts the performance of BlueDove. Figure 11(c) shows
the saturation message rate when the number of dimensions
with adverse skewness is increased from 1 to 4. On those
dimensions, messages followe the same cropped normal
distribution as subscriptions. The rate drops more than 50%
when all 4 dimensions are adversely skewed. However, the
rate (~50K) is still much higher than the ~30K rate of
P2P (see Figure 6(a)) with evenly distributed messages. In
short, even with adversely skewed message (publication)
distribution, BlueDove still outperforms P2P by taking the
advantage of the skewed subscription distribution.

V. RELATED WORK

There has been a large body of work on pub/sub systems,
which can be classified into topic-based, attribute-based,
and content-based depending on the matching model. Much
early work on pub/sub is topic-based (e.g., Scribe [10],
TIBCO [6]). They filter messages based on a single
topic string and offer limited expressiveness. Content-based
pub/sub systems (e.g., Elvind [21], XmlBlaster [19])are the
most expressive ones. They use XPath [19] like subscriptions
to match the whole content of messages. Attribute-based
pub/sub systems provide more flexibility than topic-based,
while requiring less intensive computation than content-
based systems. BlueDove falls into the attribute-based cate-
gory: Each message has values on multiple “dimensions”
or “attributes”. These values are evaluated against the
subscriptions’ predicates (e.g., ranges) on these dimen-
sions to identify matching subscriptions. Note that in quite
some work [16], [24], attributed-based ones are also called
content-based.

In many pub/sub systems, especially those designed for
enterprise environment, clients establish affinity with bro-
kers: each client connects to its chosen broker among a
connected broker network. A subscriber sends subscriptions
and receives matching messages through its chosen broker.
Because messages could be published at any broker, brokers
need to advertise subscriptions to build routing state in the
network. Messages are matched and delivered following

reverse paths to reach matching subscribers. For example, in
Siena [9] and Gryphon [15], each subscription is flooded to
the whole network. Every broker maintains certain informa-
tion to determine to which neighboring brokers to forward
messages. In Hermes [16], subscriptions and messages of
the same topic are sent to a rendezvous server, which uses
reverse paths to send back messages to matching subscribers.
Compared to them, BlueDove does not have this affinity
constraint. We intentionally assign “similar” subscriptions
to the same sets of matching nodes (called matchers), such
that the same matching computation does not need to be
repeated on many nodes. Matching a message takes only
one matcher, and no reverse path forwarding or computation
over multiple intermediate nodes is required.

In other work targeting peer-to-peer environments, pub-
lishers and subscribers are also matching nodes. There is no
dedicated brokers. Such systems usually use structured over-
lay techniques [23], [17], [18] to deal with dynamics such as
node churns, unreliable links and long delay commonly seen
in the Internet. Subscriptions and messages are distributed by
DHT. For instance, each node in Meghdoot [12] is responsi-
ble for a high dimensional cube. Messages and subscriptions
are routed through CAN [17] to corresponding nodes, which
perform matching. Pastrystrings [8] builds distributed index
trees, one in each dimension, over Pastry [18] overlay. Each
message has to traverse multiple trees in parallel to find
matching subscribers. Yang et al. [26] build multi-dimension
search trees(k-d tree) on Chord overlay [23]. In comparison,
there is much less dynamics in a cloud data center envi-
ronment. Thus BlueDove can use much simpler techniques
such as one-hop lookup [13] for scalable organization of
dedicated servers. Messages and subscriptions are forwarded
only one hop before being matched. The new techniques of
mPartition and performance-aware forwarding ensure that
each message can choose the fastest from multiple candidate
matchers for best performance.

A number of cloud providers have offered a series of
cloud based services such as queuing, storage and database
services [2], [5], [13]. The most relevant one to BlueDove
is the Amazon Simple Notification Service(SNS [1]) that
provides topic based pub/sub service. BlueDove provides a



more expressive attribute-based pub/sub, therefore can better
support advanced applications. Cassandra[13] is a highly
scalable and elastic storage system for cloud applications.
BlueDove uses the same one-hop lookup as in Cassandra,
but it provides a pub/sub service instead of a storage service.

VI. CONCLUSIONS AND FUTURE WORK

We have presented the BlueDove attribute-based pub/sub
service that is intended to support the emerging sense-
and-respond applications and the cloud computing model.
BlueDove takes advantage of the data center environment
to match publications with subscriptions in just one hop.
Through multi-dimensional assignment of messages and
performance-aware forwarding, it turns the challenge of
skewness in data to an asset for high throughput and low
latency. Our experiments show that BlueDove can han-
dle workload two orders of magnitude larger than a full-
replication approach that is typical in existing commercial
pub/sub software, and that it can handle workload three
times larger than the multi-hop overlay approach commonly
used in existing peer-to-peer pub/sub systems. It also adapts
to load changes and server failures in a matter of seconds.

We plan to take a number of steps to address the limita-
tions of the current BlueDove and make it more pragmatic
and mature. First, due to the failure detection delay, Blue-
Dove may lose a few messages after a server failure. We will
add message persistence mechanism to support applications
that do not tolerate message loss. Second, when there are
large numbers of attributes, using all these dimensions in
mPartition can incur significant overhead. Since it is likely
that only a small number of attributes are commonly used
in subscriptions, we want to study how to identify these
attributes and adjust the partitioning accordingly. Third,
when certain subscriptions have very wide predicate ranges
on some attributes, they will be stored by many matchers
along those dimensions. Furthermore, different applications
may use different sets of attributes. We will investigate how
to alleviate these problems by partitioning the subscription
space in a hierarchical manner. One possibility is to divide
dispatchers and matchers into different subsets and let them
handle different applications. Finally, we also want to com-
pare its performance with a third-party research prototype, to
gain better understanding of the trade-offs in load balancing
and performance.
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