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Abstract—Federated systems have recently attracted much at-
tention because they allow loosely coupled organizations to share
resources for common benefits. However, discovering resources
across administrative boundaries is challenging. Despite their
willingness to share resources, many organizations prefer not to
export their internal resource description to unfamiliar parties.
While it is highly desirable to facilitate such voluntary sharing,
the system also needs to resolve resource queries in an efficient
manner. Unfortunately, none of the existing resource discovery
designs, either hierarchical or DHT-based, can address these two
challenges in the same time.

In this paper, we present the design and evaluation of ROADS,
a Replication Overlay Assisted resource Discovery Service for
federated systems. In ROADS, the resource owners only export
summaries, which are condensed representations of their resource
records. These summaries are aggregated along a hierarchy
and used to direct queries to appropriate resource owners.
To improve its efficiency and resiliency, ROADS replicates the
summaries using server overlays that enable “shortcuts” in query
forwarding. We have implemented ROADS and evaluated its
performance through extensive analysis and experiments. The
results show that ROADS outperforms a DHT-based design with
1-2 orders of magnitude less overhead in update messages and
50% less query forwarding time.

I. INTRODUCTION

Federated systems have become increasingly popular nowa-
days because they allow loosely coupled systems within dif-
ferent organizations to share previously isolated resources for
mutual benefits. Distributed System S [1] is an example where
multiple stream processing sites, each owned and managed by
a different organization, collaborate in performing complex
processing tasks that are beyond the capabilities of any single
site. However, discovering resource across the administrative
boundaries is challenging. In particular, a participant’s willing-
ness to share resources by no means implies surrendering the
control over its resources. Many organizations prefer voluntary
sharing that preserves their autonomous management. Due to
security and privacy concerns, they may decide not to disclose
the detailed description of their resources to the public. They
want to retain the final control over which resource records
are returned for a given query. For example, a company may
provide more resources to a business partner than arbitrary
third parties.

This voluntary sharing poses new research challenges for
resource discovery. Existing resource discovery designs, both
hierarchical [2] and peer-to-peer [3], [4], [5], [6] approaches,
do not lend themselves well to voluntary sharing. On one

hand, the hierarchical designs suffer from inefficiency in multi-
dimensional queries because the hierarchy is typically orga-
nized around a single attribute (e.g., a global namespace). To
resolve a query with multiple attributes specified, the system
needs to flood the query in a portion of the hierarchy. On the
other hand, the peer-to-peer designs require each organization
to export its original resource records to other participants. For
example, in DHT-based schemes, the hashed ID of a resource
record decides where it should be stored, which is typically
not controlled by the original owner.

In this paper, we address the above challenges with ROADS,
a Replication Overlay Assisted resource Discovery Service for
federated systems. ROADS allows each participant to retain
final control over its resources yet supports efficient multi-
dimensional queries over dynamic resources. In ROADS, the
participants form a hierarchy based on voluntary association
among themselves, and each resource owner decides the extent
and form of sharing by exporting resource data in coarse
summaries. These summaries are aggregated in a bottom-up
manner in the hierarchy to enable query forwarding along
the reverse direction. To improve the system efficiency and
resiliency, ROADS further uses replication overlays to enhance
the hierarchy, where each node replicates the summaries of a
few remote nodes and uses such “shortcuts” to speed up the
query forwarding.

We have implemented ROADS and evaluated its perfor-
mance using both analysis and experiments. Our results show
that ROADS can effectively support voluntary resource sharing
from diverse ownerships, and outperforms a peer-to-peer based
resource discovery design [3] by reducing message and storage
overhead by 1-2 orders of magnitude and decreasing query
latency by more than 50%. To our best knowledge, ROADS is
the first resource discovery design that can facilitate voluntary
sharing and support efficient multi-dimensional search among
diverse resource owners in a federated system.

The rest of the paper is organized as follows. Section II
describes our federated system models and design constraints.
Section III presents the design of ROADS in detail. We evalu-
ate the performance of ROADS using analysis and experiments
in Sections IV and V respectively, and discuss the related work
in Section VI. Finally, Section VII concludes the paper.

II. SYSTEM MODELS AND REQUIREMENTS

We consider a federated system that consists of loosely-
coupled autonomous systems (called resource owners), man-
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aged by various organizations and falling under different ad-
ministrative authorities. Each owner is willing to contribute a
variety of resources, such as data sources, computing, memory
and storage resources. These resources can be described by
high-dimensional attribute-value pairs, and users submit multi-
dimensional range queries to precisely specify their interests.

While the resource owners are willing to share resources
for mutual benefits, they also prefer to retain the autonomous
management of their resources. For example, based on who is
requesting resources, it may decide which types of resources
will be provided, thus presenting different “views” to different
parties. Moreover, due to security and privacy concerns, many
organizations do not want to disclose their internal resource
description to third parties.

We believe that voluntary sharing is critical to address these
practical issues and stimulate collaboration in a federated sys-
tem. The resource discovery system should provide sufficient
flexibility to resource owners such that each resource owner
can independently make the most appropriate decisions about
how to answer queries.

Different resource owners may use different attributes to
describe their resources. For example, one may use “memory”
to denote the available memory size while the other may
use “RAM”. This problem, known as schema mapping or
integration, has been well studied in both the database [7] and
grid computing communities [8]. We do not consider such
issues and assume that all participants use a common schema
for representing their resource records.

There are certainly many security and privacy issues in
enabling resource sharing. For example, a resource owner may
need to know the identity of the requesting party to decide
which records to return, and some owner may misbehave.
However, in this work, we assume that appropriate authen-
tication mechanisms exist and participants are not malicious.

III. ROADS DESIGN

In this section, we present the design of ROADS, a Replica-
tion Overlay Assisted resource Discovery Service for federated
systems. ROADS can not only faciliate voluntary sharing but
also support efficient search over dynamic resources. This
is achieved through a hybrid approach, with both federated
hierarchy and replication overlay techniques, that balances
between the system flexibility and efficiency. In what follows,
we will describe these mechanisms in detail.

A. Federated Hierarchy

As shown in Figure 1, ROADS provides resource discovery
through servers that form a federated hierarchy. The resource
data are propagated along the hierarchy, while the user queries
are also resolved through the hierarchy. A server is a machine
that can be provided by resource owners or third parties who
can benefit from the sharing. We call them server providers.

Forming the Hierarchy The ROADS hierarchy is formed
incrementally. To join the system, a new server needs to know
one existing server in the hierarchy, say the root. This can
be done by manual configuration or contacting any existing
server. For the purpose of efficient search, it is desirable to
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Fig. 1. An example of server hierarchy in ROADS. Server providers
A and B provide servers 1 and 2 respectively; resource owners C
and E host their own servers 3 and 4 respectively; resource owner D
exports its resource summaries to server 2.

maintain a relatively balanced hierarchy. As such, each server
keeps track of the depth and total number of descendants
for each child branch. This information can be derived and
maintained from periodic bottom-up aggregation messages
(see Section III-B).

A new server queries the root server, and chooses the
child whose branch has the least depth, or least number of
descendants when depths are equal. It repeats the same process
with the chosen child, until it finally reaches a server that is
willing to accept it as a new child. It then attaches itself to this
server. If it has reached a leaf server but still no one accepts it,
it can backtrack to search other branches, until it finally finds
a parent server. In the example (Figure 1), resource owner C
hosts server 3; it chooses server 2 provided by another party
B as server 3’s parent. This way, server 3 becomes server 2’s
child in the hierarchy.

When deciding whether to accept a new child, a server may
consider many factors, such as management and operational
convenience, its current load, bandwidth utilization and net-
work delay. For example, it may prefer servers in the same
administrative domain, as it is easier to set up and maintain
the association.

A resource owner can set up its own server or choose one
server from the existing hierarchy. In either case, the resource
owner exports its resource record data to the chosen server.
We call this server the attachment point for this resource
owner. The selection of attachment points follows a similar
process as choosing parent server. Depending on whether a
resource owner controls the attachment point or not, it can
export resource records differently.

In the example shown in Figure 1, resource owner C hosts
server 3 by itself. Since it has complete control over server 3,
it can export detailed resource records on server 3. In contrast,
resource owner D chooses server 2 provided by B, a different
administrative ownership. Since resource owner D does not
have control over B or sever 2, it exports summarized resource
data. This way, it keeps the detailed resource records only to
itself, but still allows its resources to be discovered.

Propagating Resource Data After receiving the detailed,
or summarized resource record data from possibly multiple
attached resource owners, a server stores them for use in
evaluating queries. It also aggregates them into summaries
and sends the results to its parent. Each server, after receiving

455



the summaries from its children, will again aggregate them,
produce a branch summary and send it to the parent. Even-
tually the root server receives resource data through multiple
levels of aggregation, originated from all resource owners.

Such bottom-up aggregation provides each server a coarse
“view” of all resources exported under its branch. The root
server has the global view of all available resources. These
views will eventually guide the search down the hierarchy to
the resource owners who have the matching data; they can then
decide which resource records to return and in what formats.

Searching for Resources After the aggregation, the root
server can serve requests for resources. A client can send the
request in the form of a multi-dimensional query. The root
searches through the summaries received from its children and
discovers which branches have the requested data. It directs
the client to further query those children, which then search
their own data and direct the client further down appropriate
branches of the hierarchy. Eventually the client reaches the
resource owners or servers that have the detailed resource
records. Now these resource owners can return specific re-
source records based on their local policies and preferences.

Hierarchy Maintenance The servers in the hierarchy
may leave or fail, in which case the hierarchy must be properly
maintained. Hierarchy maintenance has been well studied in
other contexts, such as End-host Multicast, where a plethora
of literature exists. We adopt a solution similar to [9], which
can maintain a relatively balanced tree upon server departure
or failures. A brief description is as follows.

Each parent and its child can exchange periodic heartbeat
messages to detect failures. When several heartbeat messages
are lost, one can assume the other end has failed. Each node
also maintains a root path, containing all servers from the root
to itself. This can be piggybacked on the heartbeat messages
from a parent to its children. When a node leaves the hierarchy,
it informs its parent P and its children. A child will try to
rejoin the hierarchy starting from its grandparent P , found
from its root path. If it cannot successfully find a new parent,
it can start from one level up, the parent of its grandparent.
Eventually it can start from the root again if needed.

Upon the departure or failure of a child, a parent will remove
the summary and other state information associated with that
child. The root path is also used to avoid loops: when a server
joins a parent, it needs to ensure that it is not itself on the
root path of the potential parent. Otherwise it should choose
another parent. A special case is the failure of the root. The
children of the root can elect one of them as the new root,
using some simple rules such as the one with the smallest IP
address or the lightest load. These children have to know each
other, which can be achieved by the root sending a children
list to each of them.

B. Bottom-up Aggregation

Aggregation Methods Aggregated summaries serve mul-
tiple purposes in ROADS. They are used to direct the search to
appropriate resource owners in the hierarchy. They also reduce
the amount of messages propagated in the hierarchy to make
ROADS scalable. Different aggregation methods can be used
in ROADS and we describe below a few typical ones.

As mentioned before, each resource is represented by a
record with multiple attribute-value pairs. For example, a
camera data source might be described as

{type=camera, encoding=MPEG2,
rate=100Kbps, resolution=640x480}

The attributes may be of different types such as integer, string,
or categorical. Given a set of resource records, an aggregation
method generates a summary, which is a condensed (and
usually lossy) representation of the original records yet still
supports query evaluation.

There are different ways to aggregate the records into
summaries. A numeric attribute can be aggregated using a
histogram consisting of multiple buckets of value ranges. Each
bucket has a counter for how many values in this range
are present. For categorical attributes, a set can be used to
summarize all values in the given resource records. The set
can directly enumerate all such values, which is acceptable
if the number of distinct values is limited. More efficient
data structures such as Bloom filters [10] or multi-resolution
summarization [11] can also be used, as long as they compress
data and support query evaluation.

Given a set of resource records, the values of each search-
able attribute are aggregated, and the collection of such aggre-
gated values becomes the summary of resource records. Such
summaries can be further aggregated when they are propagated
bottom-up in the hierarchy. For example, two histograms can
be combined by adding their respective counters in each
bucket. In this way, the amount of data is kept manageable
for each server. We will analyze this in Section IV-B.

Evaluating Queries against Summaries After receiving
a query, the server examines whether each child’s summary
matches the query. If so, it directs the client to further query
that child. For example, upon receiving a query for

type=camera AND rate>150Kbps
AND encoding=MPEG2,

the server evaluates these three expressions against the sum-
maries of the corresponding attributes. For example, the ex-
pression rate>150Kbps will be “true” when any of the buckets
beyond 150 is non-empty in the histogram for data rates. An
expression on categorical values (e.g. encoding=MPEG2) is
“true” when the set contains the value (e.g., “MPEG2” is
found in the set of encoding schemes). Finally the server
obtains “true” or “false” results on each child’s summary, and
directs the client to query those children with results of “true”.

Such coarse-grained summaries can utilize all queried di-
mensions to confine the search scope to only those servers
with matching summaries. This avoids searching a wide range
of servers, as in many other hierarchical based systems where
the hierarchy is formed based on one special attribute (e.g., a
unique name space).

Note that the process of exporting and aggregating resource
data is repeated at each resource owner and server. Data and
summaries are soft-state and have TTLs associated with them.
This is because many resources are dynamic, thus we need to
continuously update the corresponding resource records and
summaries.
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Fig. 2. Server D1 has the summaries replicated from its sibling (D2),
its ancestors (C1, B1, A) and their siblings (C2, B2). The exchange of
summaries between each parent and its children keeps the replicated
data fresh. A client’s search starts at D1 and is redirected to C2 and
B2, which then search their own descendants.

C. Replication Overlay

In the basic hierarchy, all queries must start from the root
before they traverse the hierarchy. This increases the query
resolving delay perceived by the clients, and the root becomes
the bottleneck as well as a single point of failure. To address
such issues, we use replication overlays on top of the hierarchy
to improve the system availability and performance.

With replication overlays, each server replicates the branch
summaries of its siblings, its ancestors, and its ancestors’
siblings (in addition to storing the summaries from its children
and directly attached owners). We choose such nodes such
that each server stores summaries which combined together
cover the whole hierarchy. As illustrated in Figure 2, server
D1 replicates the summary of its sibling D2, its ancestor C1’s
sibling C2, B1’s sibling B2, and its ancestors C1, B1, A. Thus
each server has summaries for all portions of the hierarchy
and the search can start at any server.

The above overlays require a server’s branch summary be
replicated at its descendants, its siblings and their descendants.
This can be done by leveraging the existing hierarchy as
follows. To replicate at its own descendants, a server simply
propagates its summary down its own branch. To replicate
at its siblings and their descendants, its parent can send its
summary to its siblings, who can propagate the summary
further to their descendants.

Upon receiving a query, a server evaluates the query against
all summaries, including the replicated ones. When a match
is found in a summary, the server directs the client to further
query the corresponding server. For example (in Figure 2),
the client first sends the request to D1. After searching all
summaries, D1 finds that the summaries of C2, B2 match the
request. It directs the client to send further queries to C2, B2,
which can then search down their branches individually.

Such simple replication overlays provide several benefits.
First, the bottleneck at the root is eliminated. Now search
can start from any server in the hierarchy, not necessarily
the root. Second, it reduces the query response time. The
search can start from an attachment point server, which is
usually lower in the hierarchy and closer to detailed resource
records. If the attachment point server has eligible resource
data, the client can obtain results immediately. Finally, it gives
the client flexible control of the search scope. Each ancestor

(or their siblings) of the starting server is one level higher in
the hierarchy, providing more resources but requiring a longer
search path. Based on the needs of how wide a range should
be searched, the client can choose one or several branches to
start its queries.

IV. ANALYSIS

In this section, we analyze the performance of ROADS
and compare it with two alternative approaches: a centralized
repository and SWORD [3], a representative DHT-based re-
source discovery design.

With a central repository, all resource owners export their
resource records to the repository, which answers queries by
searching these records locally. With SWORD, the servers are
organized into multiple DHT rings1, one for each searchable
attribute. The hash function in use preserves data locality and
maps a range of values to a continuous segment on the ring.
A resource owner registers its resource records in all rings,
i.e., each record is replicated multiple times (one copy for
each searchable attribute). A multi-dimensional range query
is resolved in one ring and forwarded to the segment that
corresponds to the queried range for the attribute associated
with this ring. Servers within this segment search their local
records against all attributes in the query, and then return any
matching records.

Note that neither SWORD nor the centralized repository
supports voluntary sharing because they require the exporting
of original resource records. However, we are still interested
in how ROADS compares to them in terms of system perfor-
mance. To briefly highlight, our analysis finds that ROADS
has 1-2 orders of magnitude less resource update and storage
overhead than these alternative designs.

A. Notations

We use the following notations in the analysis. There are
N resource owners in the system, each holding K resource
records. Each record has r numeric attributes taking values
from unit range. The size of an attribute’s value is 1, thus
each record has a size of r. The summary uses histogram and
has m buckets for each attribute. Regardless of the number
of resource records N , it always has a constant size of mr.
Moreover, the records are dynamic and each record changes
every tr seconds, while a summary changes every ts seconds.
When a record has a changed attribute, the summary may
stay the same, e.g., when the changed value remains within
the same bucket in the histogram. Thus, typically we have
ts << tr. The user query has q attributes, each specifying a
range with length α (α < 1). There are n servers and they form
a balanced hierarchy of L + 1 levels in ROADS. Each parent
has k children. The resources are exported to leaf servers.

B. Results

Resource Update Overhead We first analyze the total
message overhead for resource updates in different approaches.

1All these rings are connected and can be viewed as multiple sub-rings in
a single ring.
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As dynamic resources are updated periodically, we use the
message overhead per second as the metric.

In ROADS, the resource update overhead is incurred by
exporting summaries to attachment point servers, bottom-up
summary aggregation and top-down summary replication. As
the N resource owners each exports one summary of size rm,
the summary exporting overhead is O(rmN). The bottom-up
aggregation incurs n − 1 messages, one over each link, and
the top-down replication incurs O(knlogn) messages. Each
of these messages contains one summary and has a size of
rm. Note that these updates are sent every ts second, thus the
per-second resource update overhead is

TROADS = O(
rm(N + knlogn)

ts
) (1)

In SWORD, however, the resource update overhead is
incurred by exporting original resource records to the DHT
rings. Note that each record is stored in r servers, one copy
for each ring, and it takes O(logn) steps to route the record in
each ring. The overall message overhead to store KN records,
each having a size of r, is O(r2KNlogn). This process repeats
every tr seconds. Therefore, the per-second resource update
overhead in SWORD is

TSWORD = O(
r2KNlogn

tr
) (2)

With a central repository, each resource owner directly
exports its resource records to the repository. As such, every tr
seconds, it takes O(KN) messages to export the KN records.
Thus the per-second resource update overhead is

TCentral =
rKN

tr
(3)

To get a sense out of the equations, we consider some
specific parameter settings as follows. Each record has r = 25
attributes; a histogram contains m = 100 buckets; there are
k = 5 children for each ROADS server in a L = 4 level
hierarchy (156 servers in total); the relative update frequency
tr/ts = 0.1 (i.e., summary changes one order of magnitude
slower than records). We calculate their overhead and find that
1) ROADS has about 1-2 orders of magnitudes less overhead
than SWORD (confirmed by simulation results in Figure 4).
This is because the summary size is orders of magnitude
smaller than the original resource records, and it remains
constant regardless of the number of records; 2) Both SWORD
and the central repository have linearly increasing overhead
w.r.t the number of records (KN ), while SWORD has an
overhead r log n times higher than the central repository. This
is because in SWORD, each record is replicated r times, one
copy for each attribute.

Summary Maintenance Overhead The message over-
head for summary maintenance is unique to ROADS. For a
level-i node, the overhead is about O(k2i). Thus, the total
summary maintenance overhead in the worst case is

Sworst
ROADS = O(k2logn)/ts (4)

For a L = 7 level hierarchy where each parent has
k = 5 children, the largest per-node overhead is about 150

ROADS SWORD Central
Storage Overhead rmk(i + 1) r2KN/n rKN

Exemplary Value 2 × 105 6.4 × 108 109

TABLE I
STORAGE OVERHEAD COMPARISON AMONG ROADS, SWORD

AND THE CENTRAL REPOSITORY

summary messages per ts seconds (on the order of several
minutes at least). In other words, each node only sends a few
summaries per second, which is very small. This demonstrates
the efficiency of the summary replication. Even with a large
hierarchy, the summary maintenance does not incur much
wide-area traffic.

Storage Overhead The data stored by ROADS servers
are the summaries, while in SWORD and the central repository
they are the original resource records. For ROADS, a level-i
node maintains k summaries from its children, ki summaries
from its ancestors and ancestors’ siblings. For SWORD, all the
KN records are stored in each ring of n/r servers. Assume
each server receives the same amount, it is rKN/n records
per server. For the central repository, it is KN records. Table
I summarizes their overheads and give exemplary values2,
assuming N = 103 resource owners, K = 104 records,
and other numbers are the same as used before. We can see
that ROADS has orders of magnitude lower storage overhead
than the other two. Again, this shows the benefit of using
summaries whose size is much smaller and remains constant
regardless of the number of records.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of ROADS and
compare to SWORD using simulations. The metrics of our
interest include: 1) query latency, defined as the time from the
client initiating a query to the query reaching the last server it
needs to contact; 2) resource update overhead, defined as the
total number of bytes sent for updating the resource records
or summaries; and 3) query message overhead, defined as the
total number of bytes sent for forwarding the queries. We also
evaluate how data distribution and node degree, two factors
that apply only to ROADS, affect its performance. Finally we
report some benchmarking results obtained from a prototype
ROADS system.

By default, our simulations use 320 nodes, each having 500
records. Each record has 16 attributes, with 4 different types
of distribution: uniform (uniformly distributed in [0,1]), range
(uniformly distributed in ranges of length 0.5), Gaussian and
Pareto (scaled and truncated into [0,1]). There are 500 queries,
each having 6 dimensions: two on uniform attributes, two on
range attributes, one each on Gaussian and Pareto attributes.
Each query dimension specifies a range of length 0.25, and
each query is initiated from a randomly chosen node. We
use the 5-dimensional synthesized coordinate system in [12]
to simulate the network latency between any given pair of
nodes over the Internet. In the ROADS hierarchy, a node has
a maximum of 8 children. The histogram has 1000 buckets
for each attribute. The results are averaged over 10 runs.

2It is the worst case for ROADS, which happens at the leaf nodes.
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A. Comparison with Sword

Impact of System Size We first vary the number of
nodes from 64 to 640, in increments of 64, and measure its
impact on query latency and message overhead. The query
latency results are shown in Figure 3, from which we can
make two observations. First, ROADS has much less (40-
50%) query latency than SWORD. This is because ROADS
can search multiple branches in parallel and the latency is
determined by the number of levels in the hierarchy, which is
3∼5 in the simulations. Second, the query latency increases
logarithmically for ROADS, while linearly for SWORD. This
is because the query in SWORD sequentially traverses nodes
in the matching segment, the size of which is proportion to
the total number of nodes for a fixed query selectivity. The
small jump for ROADS at 640 nodes is due to the increase of
hierarchy level from 4 to 5.

The results of resource update overhead and query overhead
are shown in Figure 4 (in log scale) and Figure 5 (in linear
scale) respectively. We can see that ROADS and SWORD
make different tradeoffs between these two overheads. On
the one hand, ROADS reduces the update overhead by nearly
two orders of magnitude (shown in Figure 4) due to the use
of highly condensed summaries. On the other hand, ROADS
incurs 2∼5 times higher query message overhead (shown in
Figure 5). This is because for voluntary sharing purpose, each
ROADS server retains the original resource records and thus
the query has to be forwarded to all nodes that have matching
records. In contrast, SWORD can hash the matching records
to a relatively smaller number of servers. Nevertheless, the
orders of magnitude reduction in update overhead dominates
the query overhead. Thus ROADS still incurs much less total
message overhead.
Impact of Query Dimensionality Next we vary the number
of dimensions in the query from 2 to 8 and evaluate how
ROADS and SWORD are affected. Since the update overhead
does not depend on external queries, ROADS still has about
two orders of magnitude less update overhead. Figures 6
and 7 show the query latency and query overhead results
respectively, as functions of query dimensionality. We can see
that the latency in ROADS decreases by roughly 40% as the
number of query dimensions increases from 2 to 8. This is
because ROADS utilizes all dimensions in the query to confine

the search scope. Only branches with summaries matching all
queried dimensions will be further searched, and this number
decreases when the query has more dimensions. In contrast,
SWORD only uses one dimension in the search. Thus its query
latency remains largely the same (shown in Figure 6), even
though more dimensions are available to confine search scope.

As shown in Figure 7, SWORD has linearly increasing
query overhead as the query dimensionality grows. This is
simply because the size of query messages becomes larger.
ROADS shows an initial decrease in query overhead, because
less query messages are sent as the search scope is confined
by the increased query dimensionality. However, as the query
message size further increases, the query overhead increases
again because the reduction of search scope flattens out. In
summary, ROADS can take advantage of the high dimension-
ality in queries, but SWORD cannot.
Impact of the Number of Records We also increase the
number of records per node from 50 to 500 and measure how it
affects ROADS and SWORD. When other parameters (number
of nodes, query dimensionality, etc.) remain the same and only
per-node record number increases, a query is forwarded along
the same path in SWORD, and almost the same servers in
ROADS. Thus query latency and overhead remain unchanged
in both cases. We depict the update overheads in Figure 8,
which again shows ROADS has orders of magnitude less
overhead (similar to Figure 4). Due to the use of constant-size
summaries, the update overhead in ROADS remains constant
when each node stores more records. In contrast, Sword
exports original records and thus its update overhead grows
linearly with more per-node records. As such, the benefits
of ROADS become more apparent when servers have larger
number of records.

B. ROADS-Specific Settings

In this subsection, we further evaluate the impact of several
system issues that are unique to the ROADS design.
Data Distribution How data is distributed among differ-
ent servers in ROADS affects which servers have matching
resource records, thus which servers will be contacted even-
tually. In general, the more heterogeneous the servers’ local
resource records are, the less query overhead ROADS has.
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We measure the impact of data distinction by using an over-
lap factor, Of , to control the extent of overlapping between
the resource data at different servers. Specifically, for each of
the first 8 attributes, we let the resource data of each server
distribute within a range of length Of/320, randomly located
within [0,1]. Note that there are 320 nodes in total, and we
vary Of from 1 to 12. The query latency results are shown
in Figure 9. We can see that as Of increases from 1 to 12,
the latency increases slightly from 810 to 860 ms (about 8%).
This is because more servers have matching records when their
data exhibit larger overlaps. We found a similar increase (about
10%) in the query overhead, but the update overhead is not
affected (Figures not shown due to space limit).
Node Degree The node degree affects the depth of the
hierarchy, thus how many hops a query traverses before
reaching the leaf nodes. We vary node degree from 4 to 12 and,
as Figure 10 shows, the query latency decreases from 1000
ms to 650 ms. Such latency reduction is mainly because the
hierarchy becomes “flatter”, thus a query is forwarded to leaf
nodes in fewer hops. For the same reason, we also observed
that the query overhead dropped from 3500 to 2000 bytes
(Figure not shown due to space limit).
Prototype Benchmarking We have implemented a ROADS
prototype using Java and benchmarked its performance on a
testbed. Since metrics such as message or state overhead can
be analyzed or simulated relatively accurately, we focus on the
total response time, which is the time for a client to receive all
matching records after it sends out a query. This response time
is incurred not only by the network latency but also by the time
the servers take to search through their local records and return
all matching results. Note that the latter part is difficult to
simulate or analyze because it may involve a backend database
storing many records. In our previous simulations, the query
latency includes only the time for query forwarding, but not
the server processing or result returning time.

Our testbed has a cluster of Linux machines with Xeon
3.4GHz CPU and 6 GB memory. Each server maintains a
DB2 database to emulate the attached resource stores, and uses
JDBC interface to query this database for specific resource
records or to generate summaries. We store 200K resource
records at each server, and each record has 120 attributes,
including integer, double, timestamp, string, categorical types.
We populate these databases using both synthesized and real

data collected from the Distributed System S platform [1].
During the experiments, we feed the system with a large

set of multi-dimensional search requests. These queries are
grouped based on their selectivity, defined as the percentage
of resource records that match the query. There are 6 groups
in total, with a selectivity of 0.01%, 0.03%, 0.1%, 0.3%, 1%,
and 3%, respectively. Each group has 200 queries.

Figure 11 shows the average and 90 percentile total re-
sponse time as a function of query selectivity. The centralized
repository is faster when the selectivity is low. This is because
only one round of query and reply exchange is needed with
a central repository. As selectivity increases, however, the
response time of ROADS becomes comparable to (with 1%
selectivity), or even better than (with 3% selectivity), that
of a central repository. This is because the response time
is dominated by the time to retrieve and return resource
records. Multiple ROADS servers can do this in parallel, thus
outperform the central repository using a single server. We also
see that ROADS has response time of about 1000 ms when the
selectivity is below 0.3%. This is consistent with the previous
simulation results of roughly 800 ms query latency time.

VI. RELATED WORK

The existing resource discovery systems can be roughly
categorized into either hierarchical or flat, DHT-based designs
[13]. A hierarchical system, such as LDAP [2], is typically
organized based on a globally agreed dimension (e.g., a
namespace), along which the resource records are divided
top-down and delegated to participating parties. Queries are
resolved based on this special dimension, and the system
cannot leverage other attributes in a query to confine the
search scope. In contrast, the federated hierarchy in ROADS
is formed incrementally through voluntary association among
servers, which is critical to facilitate voluntary sharing in fed-
erated systems. The bottom-up aggregation of all searchable
attributes into summaries also allows ROADS to better confine
the search, because all attributes in a query are examined when
it is forwarded within the hierarchy.

The DHT-based resource discovery systems, developed for
Grid computing [4], [6] or other contexts [3], [14], organize
the servers into P2P networks and resolve the queries using
various P2P routing protocols. Such systems have both in-
centive and performance drawbacks in the voluntary sharing
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context. First, the owner has no control over where his resource
records are stored, because it is decided by a hash function. It
is possible that an owner’s records are hashed to undesirable
parties, such as arbitrary strangers. Also, the only form of
sharing is to export the detailed resource records. These
conflict with the owners’ desire to control how queries are
answered. Secondly, to handle multi-dimensional queries, the
DHT-based system typically builds multiple rings, one for
each dimension [15], [16]. For one particular query, however,
the search is performed only in one ring. As shown in our
evaluation, this incurs significant data replication overhead
with a high volume of dynamic resources. In contrast, ROADS
replicates only resource summaries, which are much smaller
and much less dynamic than the original records. It also
utilizes all dimensions in query forwarding: only those nodes
whose summaries satisfy all dimensions are further queried.

Several content-based publish/subscribe systems [17], [18]
also use summaries, such as set union and Bloom Filters,
in routing events to relevant brokers. However, in these sys-
tems, the summaries are the aggregation of subscriptions (i.e.,
queries), and every broker knows the summaries of all other
brokers. In contrast, ROADS uses data summaries to facilitate
voluntary sharing, and each server only knows the summaries
of O(log N) other servers (i.e., its children, its ancestors and
its ancestors’ siblings) in the hierarchy.

VII. CONCLUSIONS

Discovering resources across loosely coupled yet au-
tonomously managed organizations presents unique challenges
in federated systems. To this end, we have presented the design
and implementation of ROADS, a resource discovery service
that can facilicate voluntary sharing. ROADS preserves the
autonomous control of resource owners through a flexible
federated hierarchy and the use of coarse resource summaries.
It also provides efficient support for high-dimensional range
queries using summary replication overlays. Our extensive
analysis and experiments have demonstrated the scalability and
efficiency of ROADS in terms of both message overhead and
query latency.

In a broader context, there are many other issues, such as
security, load balancing and churns, that a resource discovery
system must address. We plan to explore various techniques

to enhance the ROADS design along these dimensions in our
future research.
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