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Abstract—Stream processing is widely used by today’s appli-
cations such as financial data analysis and disaster response. In
distributed stream processing systems, machine fail-stop events
are handled by either active standby or passive standby. However,
existing HA schemes have not sufficiently addressed the situation
when a machine becomes temporarily unavailable due to data
rate spikes, intensive analysis or job sharing, which happens
frequently but lasts for short time. It is not clear how well active
and passive standby fare against such transient unavailability. In
this paper, we first critically examine the suitability of active and
passive standby against transient unavailability in a real testbed
environment. We find that both approaches have advantages
and drawbacks, but neither is ideal to provide fast recovery
at low overhead as required to handle transient unavailability.
Based on the insights gained, we propose a novel hybrid HA
method that switches between active and passive standby modes
depending on the occurrence of failure events. It presents a
desirable tradeoff that is different from existing HA approaches:
low overhead during normal conditions and fast recovery upon
transient or permanent failure events. We have implemented
our hybrid method and compared it with existing HA designs
with comprehensive evaluation. The results show that our hybrid
method can reduce two-thirds of the recovery time compared to
passive standby and 80% message overhead compared to active
standby, allowing applications to enjoy uninterrupted processing
without paying a high premium.

I. INTRODUCTION

The world is entering a “digital era”, where digital devices

are widely deployed and massive amounts of data are gener-

ated continuously. It is reported that a total of 500 TB per year

of imaging data is created in the UPMC medical system, and

200 of London’s traffic cameras generate 8TB of data each

day [9]. Stream processing systems that can analyze massive

and continuous data streams in real-time are critical to process

such data in many important application scenarios, from

financial analysis, traffic management to network intrusion

detection.

∗Zhe Zhang and Yu Gu have contributed equally to this work.

In these systems, multiple stream processing jobs share a

cluster of machines connected with high speed networks. One

job may contain many processing elements and run on multiple

machines. A processing element (PE) is a software module that

takes certain data input, processes it and generates data output

for other PEs to consume. To maximize the system utilization,

a machine is often shared among different jobs and may host

partitions of different jobs concurrently [2], [7], [5], [21].

This sharing creates interdependencies among jobs: a job

that experiences a sudden increase of incoming data rate,

or encounters some data that requires intensive processing,

may consume significantly more resources than before. It

can “squeeze” the resources available to other jobs sharing

the same machine. Those other jobs can suffer significantly

increased processing delay, sometimes as if they have stopped

processing data. We call such phenomena transient unavail-

ability or transient failures. 1

Our measurements on a 100+ node environment (details

in Section II-B) show that such transient unavailability lasts

for short periods of time (e.g., around 10 s) but can happen

frequently (e.g., once every minute or tens of seconds). This

is very different from fail-stop events (e.g., machine crashes,

power outages) that happen much less frequently and do

not recover without explicit interventions. Nevertheless, such

transient unavailability can cause over 100% increase in the

average end-to-end processing delay, and 8 fold increase

during periods of unavailability (in Section V-B). For many

delay sensitive applications, such performance degradation

warrants a solution.

Techniques such as load shedding and traffic shaping [3],

[21] may alleviate load spikes by dropping some incoming

data or reducing the burstiness in data rate. However, they do

not completely solve the problem when applications are loss-

sensitive, or when it is the nature of data, not the volume, that

1In the following discussion we use transient failures and transient unavail-
ability interchangeably.



demands more resources for intensive processing. Scheduling

and load balancing techniques [22] can migrate jobs to less

loaded machines. However, they usually operate for resource

variations occurring at larger time scales, and are not agile

enough for short yet frequent transient unavailability.

Existing high availability (HA) mechanisms in stream pro-

cessing systems [4], [16], [20], [6] have largely focused on

fail-stop events and neglected transient failures. There are

generally two basic HA approaches, namely active standby

(AS) and passive standby (PS). In active standby, two or more

copies of a job run independently on different machines, and

the failure of one copy does not affect the other. In passive

standby, a primary copy periodically checkpoints its state to

another machine, and recovers from that machine once failures

happen.

While AS and PS have been widely used in many stream

processing systems, little is known about their effectiveness

and performance under transient failures caused by the afore-

mentioned interdependencies among jobs. AS should be able

to handle them as long as the primary and secondary machines

each has a diversified mixture of jobs such that load spikes do

not occur concurrently. However, AS doubles the processing

resources and can quadruple the traffic amount. While requir-

ing less processing resources and traffic amount, PS has much

higher detection delay and may not be fast enough to react to

transient failures; higher detection delay increases the overall

end-to-end application delay significantly.

In this paper, we propose a hybrid HA method that combines

the advantages of both active and passive standby approaches:

The system behaves like passive standby during normal con-

ditions and uses smaller amounts of computing and bandwidth

resources.2 When a transient failure is detected, it quickly

switches to the active standby mode by activating a pre-

deployed secondary copy that was in “suspension”. Once the

primary copy becomes responsive again (e.g., after a load spike

is over), the system rolls back to the passive standby mode.

Thus the system incurs small overhead most of the time, while

providing fast recovery during failures and unavailability.

We have implemented our hybrid HA method, and have

evaluated its performance through extensive experiments. Re-

sults show that the hybrid method can reduce recovery time to

about 1/3 of that for passive standby, while incurring at least

80% less message overhead than active standby. As such, our

hybrid method presents a favorable performance / cost tradeoff

for transient failures, suitable for agile reaction without paying

the high premium of active standby.

The hybrid approach utilizes a sweeping checkpointing

mechanism that we proposed in our earlier work [11]. The

focus of that work was to empirically analyze the performance

and cost tradeoffs of AS and PS under fail-stop events, and

to prove the correctness of sweeping checkpointing against

multiple, consecutive and concurrent PE failures. It did not

2For stream processing systems that we study, CPU cycles and network
bandwidth are more precious and affect the system performance more than
storage, which is relatively abundant. Our previous work [11] has compared
the message overhead of AS and PS.

address the transient unavailability problem that we target in

this work.

We have made three contributions in this work. First, to the

best of our knowledge, we are the first to identify transient

failures, study their impact on application performance and the

suitability of traditional AS and PS solutions in the context of

stream processing. Second, we have designed a novel hybrid

HA method that addresses both fail-stop and transient failures.

It provides fast failure recovery and small system overhead

that is particularly suitable for handling transient failures.

Third, we have evaluated the performance and cost of the

hybrid method using a real stream processing prototype, and

compared with those of traditional AS and PS.

The rest of the paper is organized as follows: Section

II presents the stream processing model, our measurements

on transient failures, and the goals of our investigation. In

Section III, we briefly summarize the sweeping checkpointing

mechanism and highlight its differences to other checkpointing

variants. Section IV presents the design of our hybrid HA

method. We provide a comprehensive evaluation of AS, PS

and Hybrid under transient failures, and compare different

detection methods for transient failures in Section V. We com-

pare with related work in Section VI and discuss future work

and lessons learned in Section VII. Section VIII concludes the

paper.

II. MODELS, MOTIVATIONS AND GOALS

A. Stream Processing Model

We briefly describe the system model we assume for this

work. The stream processing is done in a shared environment

where multiple users can submit jobs. A job consists of

multiple processing elements (PEs) which can be placed on

different machines. The subset of a job’s PEs running on the

same machine constitutes a subjob of that job. A PE takes input

data from possibly multiple input queues, processes them and

produces output data into possibly multiple output queues. In

addition to the data in input/output queues, a PE can maintain

internal processing states. For these stateful PEs, it is critical to

correctly restore the processing states during failure recovery.

The system typically has a scheduling component [22] in

the system that determines the placement of PEs on machines

based on their respective resource requirements and availabil-

ity. When the resource available on a machine or the resource

requirement of a running subjob changes significantly and

remains stable for an extended period of time, the scheduling

component may migrate subjobs across machines to maintain

the resource matching. However, the scheduler is not the right

place to handle short yet frequent transient failures. The cost of

frequent migration can be prohibitively high, and the durations

of transient failures may be much shorter than the time to

migrate subjobs.

B. Impact and Characteristics of Transient Failures

We have a stream processing environment consisting of

over 150 machines. More than 70 developers and researchers

routinely develop and test their applications in this shared

2



Fig. 1: Impact of transient failures on processing time. About 50%

increase in average processing time for machines affected by transient

failures.
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Fig. 2: CDF for transient failure frequency. About 75% machines

have transient failures happen more frequently than once every 60

seconds.

environment. Unless reserved, there is no constraint regarding

which machines one application can use.

Transient failures can greatly increase the processing time

in such a shared environment. We show the processing time

of a weather forecast application in Figure 1. It was measured

in an uncontrolled experiment where other applications may

use the same machines. The application is parallel and runs on

multiple machines concurrently. On machines 41-53, it takes

around 0.58 second to finish processing; on machines 55-61,

it takes about 0.9 second, a 50% increase. Later investigations

show that some other applications were using machine 55-

61 during the experiment, causing higher overall load, and

thus increasing the processing time. Although this 50% in-

crease may seem moderate, our evaluation with controlled

background load shows that the average processing time can

increase 100% for all data, and 8 fold for those data arriving

during transient unavailability (Section V-B). Such degradation

is a problem for many delay-sensitive applications.
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Fig. 3: CDF for transient failure duration. About 80% of them last

for less than 15 seconds.

We measured the frequency and length of transient unavail-

ability on 83 machines (excluding infrastructure and special

hardware machines). A sample of CPU load was taken every

0.25 s and the measurement continued for 24 hours. All 83

machines exhibited transient unavailability. Using a threshold

of 95% CPU utilization to delineate the start and end of

transient unavailability, Figure 2 shows the CDF of average

inter-failure time. It is clear that transient unavailability indeed

occurs frequently. For example, over 75% of machines have

transient failures that are more frequently than once every

60 s. Figure 3 shows the CDF of average duration of transient

failures on those 83 machines. We can see that they usually

last a few seconds (e.g., above 70% last shorter than 10 s);

some longer ones (about 20%) can last more than 20 s.

C. Goals and Scope

We have two goals in our investigation. The first one is

to understand the suitability of the two basic high avail-

ability approaches (AS and PS) to handle transient failures.

Using experiments on real testbeds, we seek to gain an

in-depth understanding of whether they provide appropriate

performance/cost tradeoff against transient failures. Secondly,

based on the insights learned, we want to design a new HA

method specifically tailored for transient failures, such that

applications can enjoy short recovery time without paying

excessive overhead. The method should work for both stateful

and stateless PEs, under transient failures and fail-stop events.

It should produce the same results for deterministic PEs, and

guarantee no loss of data (but possibly different results) for

non-deterministic PEs, under single or multiple consecutive

failures. We do not address disastrous scenarios such as the

power outage of the whole cluster.

III. A LOW-COST PASSIVE STANDBY METHOD

Earlier analytical comparisons [13] between active standby

and passive standby have shown that AS is always superior to

PS: PS has almost the same overhead as AS, while taking at

least 50% more time in recovery. Contrary to this earlier result,

we proposed a sweeping checkpointing mechanism [11] that

gives PS a magnitude lower overhead than that of AS. In our

hybrid design we adopt this low-cost passive standby method

as a building component. In this section, we first define the

3



operations of active standby and passive standby, then briefly

explain the main issues in checkpointing and summarize

the sweeping checkpointing. Details on its performance and

formal proof of correctness can be found in [11].

Active Standby In active standby, both the primary and sec-

ondary machines are running the same subjobs that receive the

same input, process them and send output data to downstream

machines. Downstream subjobs need to eliminate duplicates.

When one of the machines fails, the other is not affected.

Active standby has almost no recovery delay; the cost is the

duplicate messages and processing.

Passive Standby In passive standby, the primary machine

periodically checkpoints the states (such as input / output

queue data and internal states) of a subjob and sends the

checkpoint message to the secondary machine. When the

primary machine fails, a secondary copy of the subjob is

started using the last known checkpoint. It will reconnect

with the upstream and downstream subjobs, and resumes the

processing.

A. Main Issues in Checkpointing

The performance of passive standby depends heavily on

the checkpointing mechanism. There are three main issues in

checkpointing:

What data to include in checkpoint messages. A PE has

data in input/output queues, and internal states. To correctly

recover a PE, its internal states and/or input/output queues

may need to be persisted. In the earlier work [13] they are

all checkpointed. Note that the internal states are not the PE’s

memory image (which can be huge), but information that a PE

maintains for processing data. A simple example is a counter

value for a PE counting the number of received data elements.

These states affect the output and are usually much smaller

than the complete memory image.

When to trim (i.e., remove) data from output queues. A

PE produces data in output queues and sends them to the

input queues of downstream PEs. If an data element has been

received and successfully processed by those downstream PEs,

it is no longer needed and can be removed from the output

queue. However, one cannot remove data immediately after

they are received at downstream input queues. This is because

the downstream PEs may crash before finish processing all

data received in their input queues. Such data must be pre-

served and reprocessed after the downstream PEs recover from

failures.

When to checkpoint for multi-PE subjobs. Given multiple

PEs in the same subjob, the timing of checkpointing each

PE significantly affects the message size and overhead. The

simplest option is synchronous checkpointing, which uses a

timer for each subjob to periodically suspend all its PEs,

checkpoints their states and then resumes all of them. Be-

cause checkpointing happens after all PEs are suspended, this

method is usually relatively slow. Another option is individual

checkpointing, where each PE has its own timer to drive its

own checkpointing procedure.

B. A Brief Summary of Sweeping Checkpointing

In sweeping checkpointing, a checkpoint message includes

the internal states and output queues, but not input queues, of

a PE. We trim data from an output queue after an accumulative

acknowledgment, indicating those data have been successfully

received and processed, and the resulting states have been

checkpointed, at downstream PEs. For each PE, checkpoints

happen immediately after its output queue is trimmed.

Specifically, an output queue assigns an incremental se-

quence number to each newly produced data element. When a

downstream PE successfully receives certain data, processes

them and checkpoints the resulting states, it sends an ac-

knowledgment to each of the upstream output queues. The

acknowledgment includes the highest sequence number of

those data elements, indicating they are no longer needed.

If an output queue sends data to multiple downstream input

queues, it removes a data element only when all downstream

input queues indicate that data element is no longer needed.

Such a queue trimming method ensures that a data element

is either processed (and resulting states checkpointed), or

can be retrieved from upstream output queues if recovery is

needed. The immediate checkpointing after an output queue

trimming ensures that a checkpointing message contains as few

data elements in output queues as possible. Excluding input

queues from checkpoint messages also significantly reduces

the message overhead, because many PEs produce much less

analyzed, derived data than the raw data they consume.

In [11], we have formally proved that the sweeping check-

pointing method guarantees correct recovery for stateful PEs,

even when multiple, consecutive PEs fail concurrently in the

system. We have also shown through test-bed evaluation, that it

is 4X faster and incurs 10% message overhead than alternative

synchronous checkpoint and individual checkpoint methods.

IV. A HYBRID METHOD FOR TRANSIENT FAILURES

An effective solution to transient failures requires fast

failure detection. Otherwise the application will experience

long end-to-end delay because new data cannot be produced

before failures are detected and recovery actions are taken.

It also demands efficiency, and in particular, small message

overhead. We first investigate which failure detection methods

are effective, then we propose a hybrid method that combines

the advantages of both active and passive standby mechanisms.

A. Fast and Reliable Detection

Since transient failures are usually short, they must be

detected fast enough. Otherwise the failures could be over even

before any action is taken. The detection should be reliable in

the sense that all transient failures should be detected, with

minimum numbers of false alarms.

We explored different detection methods, including a con-

ventional heartbeat based method and several other more so-

phisticated ones, e.g., a “benchmarking” method. Interestingly,

we find that the convention wisdom stands out.

The conventional method detects failures through heartbeat

misses. The rationale is that when unavailability happens, a
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machine will be too busy to respond to heartbeat messages.

Usually one monitoring machine sends periodic ping messages

to another (e.g., the primary) machine. The latter sends back

a reply for each ping. When a threshold (usually 3) number

of consecutive replies are missed, a failure is declared.

Another intuitive idea one may have is to measure the

processing time or throughput of a PE for detecting transient

unavailability. The reason is that an overloaded PE tends to

process data more slowly, leading to longer processing time,

or lower throughput.

The more sophisticated methods follow the above reasoning.

In the “benchmarking” method, we measure the processing

delay to detect transient failures. The time for a PE to process a

standard set (e.g., 20 or so) of data elements are first measured

on an idle machine with the same hardware resources as the

deployment machines. That measurement is the benchmark.

At runtime, the PE is configured with the benchmark and

embedded with the standard set of data elements. On each

machine, a thread monitors the CPU load at fine granularities

(e.g., 50 ms) through system calls. When the CPU load ex-

ceeds a threshold Lth, the thread triggers the PE to process the

standard set, and compares the result against the benchmark.

If the result exceeds the benchmark by a threshold Pth, a

detection is declared.

However, when we compared these different ways of failure

detection, we had the interesting observation that the simple

heartbeating method can be as fast as, and more reliable than,

the sophisticated benchmarking one (details in Section V-C).

The detection through lower throughput or longer processing

is far from straightforward. First, the throughput has natural

ups and downs, because the data input rate depends on external

data feeds and may not be constant. Second, the throughput

depends on the nature of input data and the PE’s processing

logic. Even a constant input rate does not always lead to a

constant output rate. Similarly, the processing time for each

data element depends on what information is contained in

that data element. It is not constant either. Thus a change in

throughput or processing time is not necessarily caused by a

transient failure.

The benchmarking method ignores these factors. Given

the same resource availability, ideally the embedded data set

should have the same processing time. However, we find it to

be too sensitive to bursty traffic, which is common in stream

processing. This makes it prone to false alarms even under

medium CPU load.

With comparable detection delay but much less false alarms,

in our system we pair the conventional heartbeating approach

with our hybrid method. Nevertheless, the key of our hybrid

design is the speculative switching between AS and PS in face

of suspicious failures; it is compatible with different detection

mechanisms, such as the failure prediction mechanisms pro-

posed by Gu et al. [10] which monitor multiple resources. As

long as one can detect such transient unavailability quickly and

reliably, our hybrid HA method can readily take advantage of

it.

B. The Hybrid Approach

Our hybrid method can behave like either passive or active

standby depending on failure events. Under normal conditions

it operates like PS and incurs low overhead. When it detects

a failure, it immediately switches over to the active standby

mode. After a transient failure is over, it rolls back to the PS

mode. If permanent failures happen, a new secondary machine

will be activated. 3 It provides a middle ground between the

two approaches, recovering in 30% delay of that of PS while

costing about 10% of the overhead of AS.

Different from passive standby where a copy is deployed

on demand after a failure, we pre-deploy a secondary copy

on another machine when the primary subjob is deployed.

To avoid consuming CPU cycles, we suspend this job im-

mediately after its deployment. The PE’s processing loop is

stopped when a flag is set to indicate suspension. When we

switch over to active standby, we only need to reset the flag to

resume the processing loop. Experiments (Section V-B ) show

that this takes only 1/4 of the time compared with the option

of deploying a subjob on demand.

Instead of storing the checkpoint states on disk, we keep

them in memory. Whenever new states come we refresh the

PE memory directly. Our PE implementation has an interface

named storeJobState(jobState) to overwrite the old state with

the new one. By doing this we avoid the expensive disk I/O

operations for storing/retrieving states. Note again that the

state is not the complete memory image of a PE, but output

queue data and internal states included in the checkpointing

message.

To further reduce the delay of activating the secondary copy,

we apply early connection. We connect the output queues of

upstream subjobs to the input queues of pre-deployed subjobs

on the secondary machine, yet without actually sending data to

them. Such connections have an isActive field set to false. An

output queue does not send data to such inactive downstream

input queues, which avoids duplicate processing that consumes

CPU cycles. When switching happens, we just need to set

that field to true. Again, experiments (Section V-B ) show a

reduction of about 50% in latency compared to the option of

establishing connections on-demand.

After a transient failure passes, the primary copy resumes

and the system will rollback. The secondary copy is suspended

again, with upstream connection field set back to false. For

fail-stop failures, after a threshold time of unresponsiveness

from the primary machine, the secondary copy becomes a new

primary copy, and another secondary copy is instantiated.

During transient unavailability, the primary copy might be

processing data much more slowly than the secondary copy.

Under high data rates, the secondary copy may have already

processed a significant amount of data when the primary copy

comes back. It may take long time for the primary to finish

processing all backlogged data. To speed up the resumption

of processing, we apply Read State on Rollback: the job on

3In this paper we do not address the problem of selecting secondary
machines, which has been studied in [19].
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the primary machine will read states back from the suspended

secondary copy, including output queues and internal states.

Thus it can “jump” to the latest state directly.

Due to the lack of rollback capability, conventional passive

standby suffers from the high latency of disconnecting from

the primary copy and completely switching to the secondary

copy when there are frequent false alarms. It does not trigger

any action until it is very confident that failures have happened

(e.g., three heartbeat misses). We find this to be a main cause

for slow reaction under transient unavailability. In contrast,

our hybrid method can afford false alarms to certain extent,

because it can quickly roll back to the normal mode. To

minimize the recovery delay, we decide to trigger action after

the first heartbeat miss. The downside is unnecessary switching

and rollback upon false alarms, which we find acceptable with

the heartbeat based detection.

Experiments show that heartbeating is a reasonably reliable

method. For example, we find that with a heartbeat interval

of 110 ms, and the CPU usage around 60%, a false alarm

occurs once every 11 minutes on average. A detailed study

is presented in Section V-C. This ensures that false alarms

happen rarely, thus the cost of unnecessary switching and

rollback is small.

V. EVALUATION

A. Experimental Environment and Methodology

We have implemented a fully functional stream processing

system consisting of over 25k lines of code in Java. It reuses

some of the components in our previous CLASP [5] work.

It can support four different HA modes for each subjob: No

HA (NONE), where a single copy is deployed and no action

is taken when failures happen; Active Standby (AS), where

two copies are deployed and both process data and send output

downstream; Passive Standby (PS), where another machine

runs the secondary copy upon failures; and Hybrid, where

another machine has a pre-deployed but suspended secondary

copy. Each subjob in the same job can use a different HA

mode.

Each PE has three interfaces that collectively implement

the checkpointing operations. A Checkpoint Manager (CM)

is responsible for checkpointing the states of PEs. Driven by

a timer (synchronous or individual checkpointing) or output

queue trimming events (sweeping checkpointing), it calls a

PE’s pause(controller) method to suspend it, giving its own

interface controller as the callback parameter. When the PE

has suspended, it calls the ackPePause() method of the CM.

The controller will call the checkpoint() method of the PE to

obtain its internal state, variables that affect the output, but not

the complete memory image of the PE. After storing the state

on the secondary machine, the controller calls the resume()
method to resume the PE.

The experiments are performed on a cluster of Redhat En-

terprise Linux 4.4 workstations connected with 1 Gbps LAN.

Each workstation has a 3.07 GHz 4-core Xeon processor, 4.2

GB memory and 80 GB hard drive. The stream processing job

used in our experiments consists of 8 PEs connected in a chain

topology. The entire job is then further divided into 4 subjobs,

each consisting of 2 PEs. Each subjob is assigned to a separate

primary machine. Inside the processing loop of each PE, there

is code that performs some synthesized computation. The PE

selectivity is 1, meaning that it produces exactly one data ele-

ment for each input data element. Such a simple job topology

and computation avoid the impact of job division/scheduling

and application logics, so the difference in results can be

exclusively attributed to different HA approaches.

To generate transient failure load on a machine, we run

a computation-intensive program that can be parameterized

to take approximately a required share of CPU. By starting

and stopping the program at different times, we can impose

both regular and Poisson arrivals of such failures. The average

inter-arrival time and failure length are tunable. We generate

transient failures on all primary machines except the first one

in the chain, since it is also where stream input is generated

and transient failures can cause unstable input data rates.

Unless specified, each data point in the figures is the average

of 5 independent runs and each run lasts for 100 seconds.

B. Performance against Transient Failures
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Average End to End Delay To evaluate the benefits of the

Hybrid method against transient failures, we apply NONE,

PS, AS and Hybrid on one subjob, and generate independent

transient failure loads of the same severity and distribution on

the subjob’s primary and secondary machines. We measure

the average end-to-end delay of data elements. During each

transient failure, the overall CPU usage is increased from
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60% (used by the application) to 95% ∼ 100%. We set the

checkpoint interval at 500 ms, heartbeat interval at 100 ms, and

incoming data rate at 10K elements/s. To simulate different

degrees of severity of transient failures, we vary the fraction

of time when transient failures are present. A large fraction

leads to more performance degradation. We vary the fraction

between 30% ∼ 80%.

Figure 4 shows the average end-to-end delay of data ele-

ments as the average CPU utilization varies from 65% to 85%.

AS has the lowest delay (about 90ms) and remains relatively

stable; this is because the downstream subjobs receive data

from both copies and will use whichever arriving first. Since

the transient failures on the primary and secondary machines

are uncorrelated, usually one of them can process the same

data at normal speeds.

For both NONE and PS, the delay increases about linearly as

transient failures become more severe, with PS having higher

delays. For NONE, the increase is due to the increased severity

of transient failures on the primary machine. For PS, because

it does not roll back, the subjob experiences the same degree

of transient failures before (on the primary) and after (on the

secondary) the switching. The higher delay was caused by the

extra overhead in the slow detection and migration of subjobs

to the secondary machine.

Because the transient failures on the primary and secondary

machines are independent, Hybrid can switch to the secondary

machine when transient failures occur on the primary machine,

or switch back to the primary machine when they are gone.

Thus it can almost always use the machine without transient

failures. The fast switching also ensures the extra overhead is

minimum. Thus its delay remains flat and is smaller than that

of NONE and PS. It is higher than that of AS because the

switching still takes some time and happens more than once,

thus increasing the delay for some data elements.

As a final note for this experiment, we observe transient

failures indeed severely slow down the processing and increase

delay. For example, at CPU utilization of 85%, the E2E delay

during transient failure periods increase more than 8-fold on

average.

Multiplexing Gains One major advantage of our hybrid

method is to allow multiple primary machines to share one

secondary machine. As long as transient failures on these pri-

mary machines are not correlated (the scheduler can help avoid

deploying correlated subjobs on these primary machines), most

of the time the secondary needs to run one subjob.

To evaluate the benefits of such multiplexing, we let three

primary machines share one secondary machine, generate

failure load on the primary machines only and vary its severity.

Figure 5 shows how the E2E delay changes as the fraction of

time with transient failures increases from 5% to 30%. The

maximum fraction is 30% because that is when on average,

at least one of the three primary machines will experience

transient failures and have an active subjob running on the

shared secondary machine. The horizontal line is the E2E

delay when each machine has a dedicated secondary machine.

The hybrid method has very small increase in E2E delay as

transient failures become more frequent. The delay increases

less then 25% as transient failures become present for up to

20% of the time (on average for 60% of the time an active

subjob is running on the secondary machine). The increase

becomes significant (about 80%) only when transient failures

are present for 30% of the time for each primary machine. This

is because failures on different machines, even uncorrelated,

are likely to have some overlap when they become more

frequent. Thus the secondary may need to run more than one

subjob at some time, increasing the E2E delay.

Traffic Amount We compare the amount of traffic in the

number of elements transmitted under different HA policies.

This helps us understand the cost they pay to achieve the

previous performance. We vary the data rate from 1K to 25K

elements/s. For PS and Hybrid, we set the checkpoint interval

to 500 ms. 4 The PE’s internal state is set to have a size of

20 data elements.
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Fig. 6: Overhead vs. Data Rate

Figure 6 shows that the total traffic amount under AS is

around four times of that under NONE. This is because with

two copies for each subjob, both the primary and the secondary

send two copies of each message to the two downstream

subjobs, leading to a 4X increase of traffic. For both PS and

Hybrid, the increased traffic amount is only around 10% due to

the sweeping checkpointing. The results show that the Hybrid

method only incurs marginal overhead in terms of redundant

messages.

Recovery Time Comparison We then compare the failure

recovery time, defined as the time from the inception of a

transient failure to the producing of the first new output data

after the switch, for PS and Hybrid. The recovery delay for

PS consists of three parts: failure detection, job redeployment,

and data retransmission/reprocessing (reprocess data sent to

the primary subjob but whose results are not produced yet due

to failures). Since secondary jobs are pre-deployed in Hybrid,

it does not have the job redeployment stage, but instead a job

resume stage.

Figure 7 shows the impact of heartbeat interval on recovery

time. We fix the checkpoint interval to 500 ms, and change

the heartbeat interval from 100 ms to 500 ms. The failure

detection time of Hybrid is about 1/3 of that of PS, and both

4We tried larger intervals, but found they have similar results to that of
500 ms.
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increases about linearly respect to the heartbeat interval. This

is because the detection time dominates the total recovery,

and it is a multiple of heartbeat intervals (1 and 3 for Hybrid

and PS), thus increasing linearly. The subjob resume time for

Hybrid and deployment time for PS remain about the same,

simply because they do not depend on the heartbeat interval.

Figure 8 shows the impact of the checkpoint interval with

a fixed heartbeat interval of 100 ms. With larger checkpoint

intervals there are more data to retransmit and reprocess. Thus

we observe that the retransmission / reprocessing time tends to

increase when the checkpoint interval grows from 100 ms to

900 ms. However, the other two parts are greater and remain

about the same. Thus the total recovery delay does not change

much. The fluctuation of recovery delay is caused by the

randomness in the timing of the failure, which affects the

amount of data retransmission.

Gains of the Hybrid Optimization Techniques From Fig-

ure 7 and 8, we can see the gains of some hybrid optimization

techniques in Section IV-B. Due to the pre-deployment, we

reduce the average redeployment time from 464.61 ms in PS

to 112.82 ms in hybrid for resuming the suspended secondary

job, which is a 75% reduction. The early connection creation

reduces the retransmission/reprocessing time from 239.54 ms

in PS to 104.32 ms in hybrid. The speedup of state read back

depends on the duration of transient failures. If the primary is

almost stopped, the reduction is the time it takes to process all

the data arriving during the failure, which can be the failure

duration (e.g., ∼10s) when data rates are high.

Switching Overheads for Hybrid We study the time it takes

Hybrid to switch over and rollback, and accompany message

overhead, consisting of data sent to the primary machine

during a failure and the the size of states the primary needs to

read while rolling back. We vary the data rate, and overload

the primary machine to make it unavailable for periods of 5

seconds and 10 seconds.

In switch-over, most of the time is spent to resume the

pre-deployed copy and to activate the corresponding con-

nection. Figure 9 shows that overall time increases only

slightly. For example, for 5 sec unavailability duration, the

time increases about 20%, from data rate of 1000 elements/s

to 7000 elements/s. Of the two components, the switch-over

time is relative stable across various data rates for both

unavailability durations. The other component, rollback time,

mainly includes the time for the read-state action and becomes

larger with increasing data rate. Such increase is due to more

elements in the input/output queues of secondary jobs under

higher data rates, thus more time in reading back.

Figure 10 shows that the message overhead increases lin-

early with higher data rate for both unavailability durations;

it is roughly equal to data rate times unavailability duration.

This shows that the message overhead is dominated by the

data elements sent to the unresponsive primary machine. The

overhead for reading back state therefore is small. From these

two figures, we can see that the Hybrid switches and rolls

back very fast, and incurs small message overhead.
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We also study how the number of PEs on a machine affect

the total amount of message overhead in Hybrid. Figure 11

shows that the overhead increases about linearly as the number

of PEs on each machine increases. This is simply because each

additional PE adds its own, and relatively stable overhead in

checkpointing messages.

C. Transient Failure Detection

We compare the background load detection ratio and false

alarm ratio (Figure 12 and Figure 13) of benchmarking and

heartbeat based failure detection methods against transient

failures. During the experiment we set the heartbeat interval

to 110 ms and periodically generate over 200 transient load
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increases that gives a certain background machine load.5 The

experiment is repeated from 60% to 95% machine load.

Background load detection ratio is defined as the ratio

of the number of detected CPU load increases versus the

total number of generated background machine loads. This

metric indicates the sensitivity of a failure detection method.

Generally, for an ideal detection method, background load

detection ratio should be close to 0 when the machine load

is small and the normal operation of the application is not

affected. On the other hand, when the background load

consumes a significant amount of CPU cycles and affect

the normal operation of the application, this ratio should go

toward 1. From Figure 12, we can see that benchmarking is

overly sensitive to the background load. Even at relatively

low machine load of 60% (normal processing is not affected),

benchmarking still declares all generated machine loads. In

contrast, heartbeat exhibits a close to 1 detection ratio at high

background machine loads (≥ 90%) and much lower ratios

when background load is low.

The second metric we use to compare failure detection

methods is false alarm ratio, which is defined as the fraction

of incorrectly declared transient load spikes (no background

machine load) among all those declared. This metric denotes

the reliability of failure detection methods and this metric

should be close to 0 for a reliable detection method. From

5We tried heartbeat interval smaller than 100 ms but found they have higher
false alarm ratio.

Figure 13, we can see the false alarm ratio for benchmarking

is also fairly high, which exceeds 15% even at 90% machine

load. Heartbeat method, on the other hand, maintains very low

false alarm ratio at all background loads. Such low false alarm

ratios minimize unnecessary switch-over in Hybrid, allowing it

to maintain almost identical system overhead as that of passive

standby. At high background machine loads, the high detection

ratios for heartbeat allows Hybrid to reliably react to transient

failures.

Besides detection and false alarm ratios, we also studied the

average detection delay, defined as the time from a load spike

happening to a detection declared. Our measurement shows

that heartbeat has an average detection delay of 143.58 ms,

only slightly longer than that of benchmarking, 132.14 ms.

With comparable detection delay and rate, but much less false

alarms, we decide that heartbeat is a reasonable choice for

transient failure detection.

VI. RELATED WORK

High availability for stream processing systems has become

an active research topic in recent years. Representative work

includes those [4], [12], [16], [15] proposed in the context

of Borealis [1], one of the first stream processing systems.

Except [16], the other three are all based on active standby.

[4] achieves flexible trade-off between availability and con-

sistency by introducing tentative data concept; [12] has the

highest availability by paying the cost of having multiple

upstream copies sending data to multiple downstream copies;

9



[15] allows replicas to execute without coordination but still

produce consistent results; [16] studies the optimal checkpoint

scheduling and backup machine assignment when multiple

subjobs need checkpointing and many state storage machines

are available. They choose one of the two basic approaches

as basis; they do not study how to address the transient

unavailability problem, or the suitability of the two approaches

against such unavailability.

High availability has been studied in other stream processing

and data flow systems. [17], [19] are in the context of

System S [2], a stream processing system developed at IBM

Research. [17] studies how to provide high availability for

the system component of JMN by checkpointing related job

state information. It does not study high availability for jobs,

which have different requirements due to load spikes and

tight coupling of subjobs across machines. [19] studies how

to pick the most suitable recovery machine when many are

available to recover failed jobs, a related but different problem

compared to ours. Shah et al. [20] is one early work that adopts

active standby approach for parallel data flows. It coordinates

multiple replicas and focuses on ensuring consistency and

preventing deadlocks, important but different issues compared

to us.

Despite the prevalence of active and passive standby ap-

proaches in stream processing systems, there is not much

work to systematically compare their performance tradeoff,

especially different variants. As far as we are aware, Hwang et

al.’s work [13], [14] is the only exception where their results

show that active standby is always superior. Although they

classify basic high availability algorithms, their comparison

is mostly analytical and simulation-based, thus cannot fully

capture the complexities and delicacies in a real testbed. More

importantly, they do not investigate their suitability under

transient unavailability, which is the focus of this paper.

Checkpointing is a widely used technique for preserving

critical state information. [8] provides a comprehensive sum-

mary and comparison of different checkpointing techniques.

AQuA [18] achieves adaptive fault-tolerance through intel-

ligent object replication according to user specified level of

dependability. The sweeping checkpoint method we use in the

system bears certain similarities to the Efficient Coordinated

Operator Checkpointing (ECOC) proposed in [6]. However,

our scheme is simpler than the two-phase protocol used by

ECOC, and thus is more efficient and leads to the magnitude

of lower overhead compared to conventional checkpointing

variants.

The upstream backup method proposed in [13] also keeps

data elements in the output queue until confirmations from

downstream machines are received, indicating that the data

have been processed and resulting data received at further

downstream machines. Because this method does not check-

point PE’s internal states, any data that affect a PE’s internal

states must be stored in the upstream PE’s output queues

almost infinitely; otherwise the correct internal state cannot

be reproduced. This severely limits its applicability to stateful

PEs where most data do affect internal states: the recovery

delay under high data rates can be extremely long. In contrast,

we use sweeping checkpointing in the hybrid method such that

the internal PE states can be checkpointed and recovered.

Our hybrid approach uses a simple form of failure detection:

heartbeat messages. Other failure detection / prediction mech-

anisms have been proposed, mostly for fail-stop events. [23]

summarizes a number of different failure detection techniques;

Gu et al. [10] proposed online methods to predict failures for

stream processing systems. Our hybrid approach can also work

with these more advanced mechanisms, if they are shown to

be suitable for fast and reliable detection of transient failures.

VII. DISCUSSIONS

We discuss the limitation of our work and some lessons

we learned during the investigation. Transient unavailability

may happen due to squeeze of resources other than CPU,

such as memory or disk I/O. Our study has focused on CPU

because it is the most common phenomena we observe in

our cluster environment. This does not preclude the possibility

of other types of resource unavailability. Their characteristics

and impact remain to be studied. However, we believe the

basic idea of our approach, which is to adaptively switch

between aggressive and conservative high availability methods

in “suspicious” scenarios, is widely applicable.

The hybrid method refreshes the states of the secondary

subjob copy directly in memory. Although this leads to faster

checkpointing, the state can be lost when both the secondary

and primary machines fail. If handling the failure of both is a

goal, the state has to be persisted to a permanent storage, i.e.,

a disk. Some penalty in performance is expected.

We also require PEs to have certain interfaces to support

a number of operations, such as suspension/resuming, read-

ing/writing states. This is appropriate for new PEs that are

developed with such support. For legacy PEs that do not have

such interfaces, the hybrid method cannot be directly applied.

Due to the time constraint, our evaluation uses synthe-

sized PE processing and transient failure load instead of real

applications and failure load. Performance metrics such as

transmission overhead and processing delay can be affected

by application logic and real failure load. It would allow us

to better understand the impact of actual transient failures on

real applications. We would like to perform such evaluation in

the future. We also want to study more complex PE topologies

such as trees in addition to the chain structure studied in this

work. There are interesting issues like how to trim multiple

output queues around the same time to minimize checkpoint

overhead.

The sweeping checkpointing reduces overhead mainly be-

cause it reduces the amount of output queue data to check-

point. It does not reduce the internal state of PEs. Although

the internal states are variables that affect output data and is

not the complete PE memory image, they can be significant

depending on the application. The sweeping checkpointing

may not achieve as good results in those cases.

The reliability and speed of heartbeat detection comes as a

surprise. Initially it seems that by monitoring the processing
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time or instantaneous throughput at fine time granularities, we

can obtain better detection performance. However, experiments

show that it is far from that straightforward. A simpler

mechanism that relies on less assumptions usually applies

to a wider range of circumstances. Thus that “conventional

wisdom” indeed has a reason for its popularity. Nevertheless,

we do not expect we have exhausted the potential space of

detection mechanisms. We plan to study how suitable some

other proposals are for transient unavailability and apply them

for the hybrid method if appropriate.

VIII. CONCLUSION

High availability is essential for many stream process-

ing applications. Transient unavailability due to suddenly

increased data rates or processing intensity can cause signif-

icantly increased delay and reduced throughput on a shared

infrastructure. Most of the stream processing high availability

work deal with fail-stop. They do not provide fast reaction at

low overhead, as required by the characteristics of transient

unavailability.

We propose a hybrid method that achieves much faster

recovery than passive standby, at a fraction of the overhead

of active standby. It utilizes a sweeping checkpointing method

that reduces the checkpointing overhead by one order of

magnitude. Our hybrid method opens the door for many

applications that desire fast recovery but cannot afford the

premium of active standby.
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