
New Insights on Internet Streaming and IPTV

Zhen Xiao
Peking University

Beijing, China
xiaozhen@net.pku.edu.cn

Fan Ye
IBM T. J. Watson Research Center

Hawthorne, NY 10532, USA
fanye@us.ibm.com

ABSTRACT
The Internet witnessed its traffic evolved from text and images
based traditional Web content to more multimedia rich applications
in the past decade. As a result, multimedia and Internet stream-
ing technology have become an increasingly important building
block to many Internet applications, ranging from remote educa-
tion, digital radio, Internet Protocol TV (IPTV), etc. This paper
discusses the fundamental issues in Internet streaming delivery and
associated technical challenges. It emphasizes the architecture and
system differences between streaming applications and traditional
Web applications. It reviews our research experience and presents
lessons learned in this area as well as points out directions for fu-
ture work.

Categories and Subject Descriptors
A.1 [General Literature]: Introductory and Survey

; H.4.3 [Information Systems]: Information Systems
Applications—Communications Applications

General Terms
Measurement, Performance

Keywords
network measurements, multimedia, Internet streaming, IPTV, mo-
bile video, peer to peer, video on demand

1. INTRODUCTION
The past decade saw the evolution of Internet traffic from mostly

text and images to increasingly more multimedia objects such as
audio and video. Multimedia applications such as Internet Protocol
TV (IPTV) have become increasingly important. Those applica-
tions have brought a new set of technical challenges. Due to the
large size of media objects, multimedia delivery typically requires
significantly more bandwidth than traditional Web content and for
a much longer period of time. A streaming service provider can use
a Content Delivery Network (CDN) or a Media Delivery Network
(MDN) to assist its distribution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIVR’08, July 7–9, 2008, Niagara Falls, Ontario, Canada.
Copyright 2008 ACM 978-1-60558-070-8/08/07 ...$5.00.

Internet streaming technology also brings in more interesting ap-
plications. It can be used to transmit traditional TV content but in a
much more flexible manner. Due to cost considerations, traditional
TV networks typically offer channels only if there are sufficient
user bases. For example, a TV network may be willing to offer Chi-
nese programs in New York City where a large Chinese population
live, but not in many other parts of the country. In contrast, Internet
Protocol TV is more flexible and can be offered virtually anywhere
broadband Internet connection is available. It also makes it easier
for users to access unpopular video on demand content, such as a
legendary movie decades ago which is no longer available in any
major TV network. YouTube represents another type of applica-
tions for Internet streaming where the users are content providers
as well as content consumers [5]. Just like the Web transformed ev-
eryone into a potential information publisher on the Internet, IPTV
technology like YouTube transformed everyone into a potential me-
dia publisher – in the sense you can publish your own TV channel
on the Internet.

Internet streaming media delivery can require a significant amount
of resources. In fact, many streaming services today offer only
a small screen size and relatively low resolution in order to save
bandwidth. The quality of those streaming services is typically not
comparable to that in traditional TV networks. Resource manage-
ment is thus a key issue in Internet streaming deployment. To re-
lieve the load on streaming servers and the delivery networks, peer
to peer technology has been widely used where a user watching a
streaming media can contribute her own resources to the delivery.
The interaction between the peer to peer overlay network and the
underlying physical network can be quite complex, however. In
practice, not all P2P networks are efficient from a resource utiliza-
tion perspective.

With the deployment of 3G networks, mobile video has become
a reality in the past several years. A number of wireless service
providers have started video service, ranging from live TV pro-
grams, to video on demand or preprogrammed video, for mobile
devices such as cell phones. Verizon provides the V Cast video ser-
vice. With $15 per month the subscriber can view TV programs on
the cellphone. There are eight popular channels to choose from, in-
cluding Fox Mobile, NBC Mobile, ESPN, etc. At $15-25 a month,
Sprint has offered more than 50 channels of live TV programs, full-
length movies and live concerts in its Power Vision Networks. Its
coverage extends to more than 8700 cities and communities na-
tionwide, reaching one million customers in early 2007 [3]. Other
wireless service providers such as AT&T, British Telecom have all
rolled out similar plans for mobile video. Given the penetration and
popularity of cell phones, mobile video is expected to experience
tremendous growth in the near future.

The rest of the paper is organized as follows. Section 2 discusses

645

architecture considerations and resource provisioning strategies for
Internet streaming applications. It highlights their differences to
traditional Web applications. Section 3 examines the challenges
for peer to peer streaming in detail. Mobile video delivery is de-
scribed in Section 4. Section 5 gives a visionary view on future
IPTV environment unified with other communication services such
as phones, instant messaging, etc. Related work is discussed in
Section 6. Section 7 concludes the paper.

2. ARCHITECTURE AND RESOURCE
CONSIDERATIONS FOR INTERNET
STREAMING

In this section, we examine the architecture and resource consid-
erations for Internet streaming. We emphasize how those consider-
ations differ from that for traditional Web applications.

2.1 A Tiered Architecture of Internet Services
Internet services are typically organized in a tiered fashion. Fig-

ure 1(a) illustrates the commonly used three-tier architecture [8].
The first tier consists of Web gateways which are servers that in-
terface directly with the end users. They receive requests from
the users and pass them to the application servers in the second
tier for additional processing. Those application servers implement
core business logic specific to a particular application (e.g., finan-
cial transactions). They often need to query the database servers in
the third tier. The database servers themselves can be distributed
geographically and extensive work exists in database literature on
distributed database processing.

In practice, however, the division of the three tiers is not strict.
The processing of user requests and application logic is usually
combined into a common “Front End”, with the rest of the architec-
ture referred to as the “Back End” database as shown in Figure 1(b).
Although not shown in the figure, Web and application servers in
the front end do not have to be separate entities – the same server
can both communicate to the users and conduct application pro-
cessing. Additional discussion on the tiered architecture of Internet
services can be found in [8].

Internet media delivery, however, brings additional challenges.
As discussed earlier, streaming applications have much higher re-
source requirements than traditional Web applications. Streaming
sessions typically last several minutes or even hours and require a
high bandwidth pipe between the server and the client. Similar to
Web objects, the popularity of streaming objects can be difficult to
predict: a suddenly popular streaming object can draw a huge audi-
ence from all over the world. Since streaming servers need to keep
their connections for a long period of time, the surge in demand
or so called “flash crowd” event can make resource provisioning
challenging.

Large streaming sites like YouTube typically host a huge selec-
tion of streaming objects whose popularity may change from time
to time. Hence, static allocation of servers to streaming applica-
tions can be inefficient due to the difficulty to estimate their time-
varying popularity. Moreover, user demands tend to have a geo-
graphical preference due to time zone and other reasons. For ex-
ample, a streaming application that provides employee training for
a major corporation in New York is likely to experience its peak
load during business hours in the east coast, while a similar ap-
plication for a corporation in Europe will have a different peak
time. A streaming application that provides mostly entertainment
videos, on the other hand, is likely to experience the highest load
at evenings and weekends. 1 Previously, resource provisioning has
1This is not strictly true, though. Rumor has it that some video

been done manually by system administrators. By monitoring user
demand and server load, they can replicate popular applications to
the “hot” spots in the network. For example, if a streaming ap-
plication experiences a surge in user demand near the east coast,
an administrator can instruct the system to deploy more copies of
the application in a nearby server farm. This manual approach,
however, is labor-intensive and is feasible only when the scale of
the system is small. For large systems that contain thousands of
servers across a wide operating range, an automated approach for
application deployment is needed.

Determining the number and locations of servers for an appli-
cation has been previously studied in the context of the “content
placement” problem. It is a classical problem in distributed sys-
tems and has received attention from researchers in graph theory.
A classical approach is to model it as the facility location problem:
Let G = (F, C) be a bipartite graph, where F is a set of facilities,
and C is a set of cities. Building a facility at location i incurs a cost
of fi. Each city j must be connected to one facility i, which incurs
a cost of dj · cij , where dj denotes the demand from city j, and
cij denotes the distance between i and j. The distance function c

satisfy the triangle inequality (i.e. the metric version). The goal is
to find the number and location of facilities that should be opened,
and a function that assigns cities to open facilities in such a way
that the total cost is minimized.

There are several variants of this problem, such as the capacitated
version (i.e. each facility can serve no more than a certain number
of cities), the fault-tolerant version (i.e. each city must connect to
at least a specified number of facilities), etc. There is also a related
problem called the k-median problem. It is similar to the facility
location problem with two main differences: (1) There is no cost
for opening a facility; (2) An upper bound, k, is specified as the
maximum number of facilities that can be opened.

Both the facility location problem and the k-median problem
are NP-hard. Given their obvious implications on many practi-
cal situations (such as the optimal placement of edge servers in a
content delivery network), various approximation algorithms have
been proposed, such as recent work of [10, 16, 28] based on the
use of primal-dual schema and Lagrangian relaxation. Although
these solutions are theoretically interesting, they have limited ap-
plicability in practice due to several reasons. The first reason is that
they assume global knowledge of the demand from each node and
the network topology. In practice, such information is difficult to
gather in a large system. In addition, they assume the demand and
cost functions are fixed, while in a real network the demand for
resources as well as the cost for serving user requests can change
dynamically. More importantly, these theoretical models abstract
away many system details that need to be considered in practice.
For example, the content placement decision may need to consider
the mutual trust relationship between different servers or the busi-
ness agreement among peering ISPs, factors that are not considered
in those theoretical models.

Another related question is: What does proximity mean? In a
multi-tier architecture, servers at different tiers may well be de-
ployed at different locations. The back-end database, for example,
can often be found at a remote location from the application server.
Hence, proximity to one part of the system does not necessarily
mean proximity to the rest of the system. A good algorithm needs
to study the traffic characteristics of a given application and opti-
mizes the client-server proximity accordingly. Consider figure 2 as
an example. Two Internet Data Centers (IDC) share back-end re-
sources. The application in the first data center is front-end heavy:
the traffic between the client and the application server (indicated

news site receives its peak demand around lunch time.

646

End User Web Gateway

Application Server

Database Server

Tier 1 Tier 2 Tier 3

End User
Web Gateway

Application Server

Database Server

Front End
Back End

(a) Standard three-tier architecture (b) Merged into two-tiers in practice

Figure 1: Three-tier Architecture of Internet Services

IDC 1

ApplAppl

IDC 2

Back-end
Resources

ApplAppl

Figure 2: Client proximity

by the wide, heavy arrow) outweighs the traffic between the ap-
plication server and the back-end resources (indicated by the thin,
narrow arrow). Hence, clients accessing this application should be
directed to a data center close to the client as shown in the figure.
In contrast, the application in the second data center is back-end
heavy: the traffic between the application server and the back-end
resources outweighs the traffic between the client and the applica-
tion server. As a result, clients accessing this application should be
directed to a data center close to the back-end resources as shown
in the figure. In other words, proximity can be application specific
and measurement is often needed to understand the characteristic of
an application before an appropriate algorithm can be selected [8].

Streaming applications are often mixed with other applications
in Web site design. For example, many streaming applications de-
rive their revenue from online advertisements, which are typically
hosted in separate servers and have very different access patterns.
The resource decision for the extraneous traffic should be made
separately from that for the true streaming traffic due to their dra-
matically different characteristics.

2.2 Request Dispatching
After an appropriate application server is selected based on prox-

imity and other factors, a mechanism is needed to route client re-
quests to that server. One way to accomplish the task is to use the
service from the Domain Name System (DNS). DNS provides a
mapping from a human readable host name (e.g., www.buystock.com)
to a machine readable IP address. It can be configured to return
different IP addresses depending on the location of the user who is-

Policy
Engine

End User

Local DNS server

Auth. DNS

Internet Data Center
A

Internet Data Center
B

Load balancing
switch

Load balancing
switch

Appl. server

Appl. server

Request
Distribution
tablew
w

w
.b

uy
st

oc
k.

co
m

w

w
w

.b
uy

st
oc

k.
co

m

Req
ue

st
to

res
olv

e

www.bu
ys

toc
k.c

om

Req
ue

st
to

res
olv

e

www.bu
ys

toc
k.c

om

IP a
dd

r. O
f ID

C A

IP a
dd

r. O
f ID

C A

IP
 addr . O

f ID
C

 A

IP
 addr . O

f ID
C

 A

request to buy stocksrequest to buy stocks

Figure 3: An example of an Internet user buying stocks from
an online brokerage site.

sues the DNS query. DNS-based request dispatching is illustrated
in Figure 3.

Here we use the example of an end user who wants to buy stocks
from an online brokerage site www.buystock.com. Each data center
consists of a load balancing switch connected to a group of appli-
cation servers. Only the load balancing switch has an externally
visible IP address. The server selection in this case is made in two
steps: first at the granularity of data centers, and then at an applica-
tion server within that data center. For simplicity, we do not show
the back-end of the Internet services in the figure. The transaction
involves the following steps:

• The end user initiates a request to buy stocks. The computer
first sends a DNS query to the local DNS server to resolve
host name www.buystock.com.

• The local DNS server sends a request to the authoritative
DNS server to resolve www.buystock.com.

• As shown in the figure, the Web site is replicated across mul-
tiple data centers. The authoritative DNS server consults a
Request Distribution table and selects a data center based on
the input of a Policy Engine. Policy considerations include
the proximity, load, and other factors for each data center.

647

• The authoritative DNS server sends a response to the local
DNS server with a record containing the IP address of the
load balancing switch of the selected data center.

• The local DNS server forwards the response to the end user.
It also caches the response for a certain period of time so
that future requests can be resolved without contacting the
authoritative DNS server again.

• The end user sends the request to the server with the IP ad-
dress she received. The request arrives at the load balancing
switch of the data center.

• The load balancing switch forwards the request to an ap-
propriate application server based on load and other factors.
That application server will complete the transaction with the
user from now on (i.e., session stickiness).

Despite some pitfalls with DNS based request dispatching, this
architecture is widely used for Web services. It works because the
typical processing time for a Web transaction is short. Hence, re-
source allocation at request boundaries is sufficient.

One important issue is application migration or replication. Mov-
ing a live application from one server to another can involve a sig-
nificant amount of overhead, especially if the two servers are lo-
cated at different sites. If we allow the server migration to happen
at arbitrary time, then the amount of state that needs to be trans-
ferred can include (among others) the entire memory footprint of
the running application. For Web services, we and others proposed
a solution which restricts migration to happen only during request
boundaries when the amount of state that needs to be transferred is
small [33]. This is again based on the observation that Web transac-
tions are typically short. Hence, instead of migrating a live applica-
tion, we can simply deploy a new instance of the application at the
destination server and start redirecting new requests there. After the
effect of DNS caching wanes off, we can optionally decommission
the old application instance [7, 34].

However, this does not work well with streaming applications.
Streaming connections can last for a long time during which re-
source conditions at application servers can change substantially.
A server which is lightly loaded at the beginning of a two-hour
movie may become quite heavily loaded in the middle of the ses-
sion due to other processing. Moreover, due to their real time deliv-
ery requirement (a late frame is as bad as a lost frame), migrating
applications without causing noticeable disruption to user viewing
experience is challenging.

One solution for this problem is to utilize multiple servers con-
currently. Both system and encoding support exists for a user to
receive data from multiple sources simultaneously and then merge
the data into a single media stream before displaying it to the user.
In this case, we can deploy the streaming application in the new
server and have both of them feeding the data to the user initially.
Gradually, we shift the load from the old server to the new one
and eventually decommission the old server. It has been suggested
that having multiple servers in different geographical locations is
an advantage due to the path diversity it creates: if one part of the
network is congested for some reason, packets can still go through
via alternative paths.

3. PEER TO PEER STREAMING
Peer to peer technology is one way to address the resource prob-

lem with Internet streaming. Due to the large sizes of many mul-
timedia objects, it can be highly expensive to store them in a cen-
tralized data center. Even though the cost of storage per gigabyte

is getting cheaper with modern technology, the size of media ob-
jects is getting larger as high definition video content becomes more
common. In addition, the bandwidth requirement to stream video
content from centralized location to end users can be overwhelm-
ing. The real time delivery of a media stream with the quality of
a standard definition TV, for example, can require up to 2Mbps
bandwidth, while that for a high definition TV can be as high as
6Mbps [27] (The required delivery rate of DVDs or other stored
media is lower because it is compressed offline.) The demands on
the amount of processing power at streaming servers can also be
prohibitive.

The benefit of P2P is to use the otherwise idle resources in end
users’ computers (CPUs, bandwidths, disks, etc.) to offload the
central servers. It also has the potential of reducing the user per-
ceived latency by pushing the data and computation to a place
closer to the users. We use the P2P networks in the popular BitTor-
rent system as an example. Peers organize into an overlay network.
Each peer holds a portion of the file and exchanges file chunks with
other peers. Many studies have been done on P2P streaming. A
nice feature is the self-scaling property: peers join the network con-
tributing additional resources. Several popular P2P streaming sys-
tems report better viewing experience when there are more users
in the systems. The focus of this section is not to re-exam the
wide variety of P2P algorithms and systems, but to discuss sev-
eral commonly overlooked issues when going from a centralized
system into a P2P architecture. Sometimes the implications are un-
expected.

3.1 Encoding for heterogeneous receivers
The connection speed of Internet users ranges widely from slow

dial-up connection to broadband DSL and cable modem or even
high speed Ethernet (e.g., university users) or optical fiber. This
trend is expected to continue with the wide deployment of broad-
band Internet access (e.g., Verizon offers several different speeds
in its DSL plan with different pricing). It is undesirable to use a
fixed encoding rate to accommodate a heterogeneous set of stream-
ing clients. If a client does not have enough bandwidth, she may
experience frequent delays during the media playback as the media
player has to stop to buffer for the new data.

Various techniques have been proposed to address this issue.
Layered encoding is a technique that divides a media stream into
a base layer and an ordered set of enhancement layers. A client
receiving the base layer can decode the media stream with basic
quality. The more enhancement layers she receives, the better the
quality. There is a partial dependency among those layers in that
lower layers are needed for higher layers to be decoded. In con-
trast, Multiple Description Coding (MDC) divides the media into a
set of descriptions, each of which is individually decodable. The
more descriptions a receiver gets, the better the quality. Compared
to layered encoding, MDC is more flexible since there is no de-
pendence between descriptions. On the downside, it has a higher
overhead than layered encoding. In practice, however, neither of
them is used in any major Internet streaming system due to the en-
coding overhead and complexity.

Multiple-Bit-Rate (MBR) encoding is a technique that is actually
used in practice. It encodes the same media content multiple times
with different bit rates to accommodate the heterogeneous set of re-
ceivers. It also supports stream switch: when a network congestion
causes the available bandwidth between the client and the server
to drop below a certain threshold, the client and the server can co-
ordinate to switch to a low quality stream. MBR is supported by
both Windows Media [4] and Real Media [2]. It is called Intelligent
Streaming in Windows Media and SureStream in Real Media.

648

As we can see, MBR is similar to MDC in that each bit rate
stream in MBR is individually decodable. MBR is also simpler
than MDC because MBR encoding merely bundles several bit rate
streams together while its decoding just extracts one of them. The
price paid is the extra space needed to store all the streams: unlike
layered encoding or MDC where the space overhead is a fraction
of the original (full quality) media size, the size of the MBR is the
sum of the sizes of individual streams. In a client server environ-
ment, as long as the server has enough storage to accommodate the
extra space required, MBR can work well. When P2P is used, the
situation is very different.

In P2P streaming, each peer possesses certain file chunks and
swaps them with other peers. The exchange in almost all existing
P2P systems works in the time domain. When MDC is used, the
exchange can happen in the quality domain as well. Hence, MDC
extends naturally to a P2P environment. The situation with lay-
ered encoding is similar except that exchange in the quality domain
needs to observe the partial order in encoding (e.g., getting an en-
hancement layer without the base layer is not useful). When MBR
is used, however, peers receiving different bit rate streams cannot
exchange file chunks directly. Rather, they are partitioned into sub-
groups based on their bit rates. Unlike MDC or layered encoding,
there is no sharing across different groups. While seemingly obvi-
ous, we believe we are the first to point out this phenomenon ex-
plicitly. The impact of this to P2P performance is debatable. Some
people argue that with “tit-for-tat” incentive as in BitTorrent-like
systems peers will optimize their uploading destinations to peers
who can reciprocally upload the most to themselves. Hence, peers
will naturally form several subgroups based on their network band-
width even if they all receive the same bit rate stream.

3.2 Set top box vs. computers
We can divide IPTV services into two categories based on how a

user watches it: a user can watch it using a computer or using a TV
through a set top box. The content in the first category can be either
user generated (which is the case in YouTube [5]) or provided by
some content providers (such as the official Chinese TV channels in
PPlive [1]). Many early IPTV services fall into this category. The
content in the second category is almost always provided by content
providers. The IPTV services envisioned by telecommunication
companies like AT&T and Verizon fall into this category.

At a first glance, it should not matter from a system design point
of view whether a user watches the program using a computer
or a TV. In practice, however, we need to consider the difference
in computing resource between the TV and the computer system.
When IPTV delivery is made via set top boxes to the TVs, the al-
gorithm and implementation is limited by the available resource in
each set top box, which is typically much smaller than that in a
computer. For example, fast streaming is a technique from Win-
dows Media designed to smooth the jitter in streaming delivery due
to network bandwidth fluctuation in a stream session. It includes
several techniques: fast start, fast cache, fast recovery, and fast re-
connect. With fast start, the server will deliver the media object
to the client as fast as the underlying TCP allows until the play out
buffer in the media player is filled. After that, it enters the fast cache
phase where the server can deliver a media object at a rate up to five
times its encoding rate. The client maintains a buffer at its side for
the early arrived data. This is much more aggressive than the tradi-
tional streaming method where the media object is streamed at its
encoding rate. In fact, it is possible for the entire media object to
be delivered to the client side in the middle of a playback session.

Hence, a computer can cache the full movie in its local disk dur-
ing the middle of a streaming session and hence protect against

the possible bandwidth fluctuation during media playback. When
the same movie is re-played, the computer does not need to fetch
the data from the streaming server again. In contrast, the set top
boxes deployed by most existing companies are designed for pre-
fix caching where only the initial portion of the media is cached to
reduce start up latency, thus requiring a higher predictability on the
amount of streaming bandwidth available.

The limited resources in set top boxes has other important impli-
cations for P2P algorithm design. For computers, a peer that has the
full media object stored on its disk can share all chunks of the ob-
ject other peers. 2 Previous studies found that some altruistic peers
stay in the system long after its own downloading has completed
and keep their downloaded objects for a long time [15]. Incentive
mechanism has been proposed to encourage swapping file chunks
even across different media objects [21]. The situation can be dif-
ferent when set top boxes are used. Due to the limited amount of
storage space, the P2P algorithm has to be designed to facilitate
sharing of the current segment of the media object, since other seg-
ments are typically not available.

On the positive side, since a single company controls all set top
boxes, the deployment of software and hardware can be done ho-
mogeneously. Built-in P2P algorithms can be used to ensure all
peers help each other sharing their content and bandwidth in a fair
manner. (More complicated algorithms are investigated in [12].)
In contrast, free riding is a major problem in most computer based
P2P file sharing systems and various incentive mechanisms are pro-
posed to address that. The tit-for-tat incentive strategy in BitTor-
rent works well for single torrent file, but not across multiple tor-
rents [21].

The processing power of a modern PC is likely to supersede that
of a TV set top box, thus facilitating the implementation of com-
plicated algorithms. On the other hand, a set top box can have
hardware support for special encoding or decoding algorithms. 3

What is clear is that set top boxes need to have a much friendlier
user interface since all operations have to be done by remote con-
trols – the users do not have access to full fledged keyboard and
mouse input. Algorithm changes require remote upgrading of the
software on the set top boxes.

3.3 Digital rights management
Digital right management is important to protect the interest of

content providers. It can be accomplished by encrypting part of a
media object with a licensing key which is available only to au-
thorized users. Even when the data of a movie is fully cached in
the user’s disk, the content provider may require the user to re-
authenticate with a licensing server before the media can be re-
played.

Now the question is: how do peers exchange file chunks en-
crypted with different license keys? If they cannot decrypt the data
received from other peers, then the whole P2P scheme will break.
One possibility is to encrypt a small fraction of each media segment
with a key while leaving most data unencrypted. Hence, it can still
reap the benefit of P2P for delivering most of the data, but requires
the user to obtain the license key before decrypting any segment.

2Such aggressive caching is not without its own problems. Previ-
ous studies have found that in most media sessions the users only
watch the beginning portion of the media objects. If the content is
not interesting, a user will stop the playback. As a result, the early
arrived data for the rest of the media session is simply wasted. Our
early work has found that this can contribute to significant amount
of over-supplied data [24].
3The price for that is flexibility: updating the algorithm might re-
quire upgrading the hardware.

649

Figure 4: A FLO system consists of national and local Net-
work Operation Centers that receive content from providers
via the Internet or satellite. The FLO transmitter broadcasts
video content in FLO waveforms to FLO-enabled mobile de-
vices. The 3G network provides the network infrastructure and
reverse link for user feedback and control.

4. MOBILE VIDEO
Mobile video has become increasingly popular in the past years.

There exist a number of mobile video technologies and they are
mostly variants or derivatives of existing digital television broad-
cast formats. We will explain in detail one of them, MediaFLO
[32]. MediaFLO is a technology developed by Qualcomm and used
in Verizon’s V Cast. We will then briefly describe another tech-
nology, DVB-H [35], supported by an alliance, including handset
makers such as Motorola, Nokia and device manufacturers such as
Intel.

FLO and DVB-H share many similarities. They both use Or-
thogonal Frequency Division Multiplexing (OFDM) and transmit
video streams of up to 15 frames per second on a QVGA screen.
They both adopt Time Division Multiplexing techniques to con-
serve power at mobile devices. Technical wise, FLO has certain ad-
vantages over DVB-H, such as more efficient use of the spectrum,
thus fitting more streams into the same channel (e.g., 20 vs. 6),
faster switching time when choosing different video streams [18].
On the other hand, they take quite different market approaches.
FLO was designed from scratch, with the intention to be spun off
as a standalone technology and licensed to vendors. DVB-H was
supported by traditional GSM vendors from the start, aiming at cre-
ating a technology that may not be most technically advanced, but
can be supported by a wide base of carriers and device manufactur-
ers.

MediaFLO is capable of delivering a video size of 240×320 at
30 frames per second, together with stereo audio. It can provide
up to 19 live streaming video channels, including 14 national and
5 local ones; 50 nationwide pre-programmed and 15 local chan-
nels, each of which having 20 minutes of content per day. Non
real time content can be delivered concurrently, allowing access
to music, news or weather broadcast. FLO service provides view-
ing experience similar to that of TV. Users must have a V Cast
mobile TV handset that has a dedicated key to receive and view
the content. Users can quickly change between channels through a
program guide user interface. They can also select a package that
includes a group of programs and view the content at any time.

Figure 5: FLO supports three types of transport mechanisms
for encrypted data, video stream and IP datagram. Each mech-
anism is suitable for one type of content.

There are four major components in the system architecture of
FLO (see Figure 4): the Network Operation Center, FLO Trans-
mitters, 3G Networks and FLO-enabled mobile devices. The Net-
work Operation Center is responsible for the content distribution
and management of the network. It receives program from content
providers through the Internet or satellites, and delivers the content
throughout the network. Usually there is a Nation NOC that re-
ceives program from national content providers and sends the con-
tent to many Local NOCs. Local NOCs are responsible for further
distributing the content through FLO Transmitters, thus end users
can receive the content on their mobile devices. In addition, local
content providers such as local TV stations can also deliver region-
targeted programs to local NOCs. The reverse link in 3G networks
allows users to communicate with the National NOC for operations
such as subscriptions, access key distribution.

In FLO networks, a real time channel is usually streamed di-
rectly from content providers to Network Operation Centers. This
can be done through C-band satellite in MPEG2 format, which
is the most common format for most content providers. Due to
the higher resolution (e.g., 720×480 pixels), the content will go
through some transcoding to H.264 QVGA resolution to suit the
screen size of mobile devices. For pre-recorded programs, the NOC
usually receives them from the Internet. The program will be re-
formatted into FLO packet streams and redistributed by the FLO
Media Distribution System throughout the network, based on pre-
arranged schedules. The FLO transmitters will broadcast corre-
sponding FLO waveforms. The content from local providers will be
combined with nationwide content and broadcast simultaneously to
end users.

An FLO network can deliver multiple types of content, includ-
ing real time video, IP datagrams and encrypted files. Each type
utilizes a different transport mechanism that is most suitable for
its requirements (see Figure 5). For example, real time content
is fed to a media codec that minimizes the effects of lost packets
in streaming. Thus the occasional loss of data does not affect the
viewing experience too much. In contrast, IP datagrams are usually
for best effort data that can tolerate losses naturally.

After the data is properly coded or packaged, it is fed to the frame
layer. The physical signal of FLO is organized into the so called
“super frames”. Each frame consists of 4 frames of data, with TDM
pilot frame, Overhead Information Symbols (OIS) frame. For every

650

MHz of allocated bandwidth, a superframe has 200 OFDM sym-
bols. At 6 MHz, the total length of a superframe is 1200 OFDM
symbols and takes 1 second’s time for transmitting. The purpose of
TDM pilots is to allow receivers to quickly acquire the OIS frame,
which contains information about the location of the data in each of
the data frames. A data frame consists of both wide-area and local-
area data. Inside the data frame, every OFDM symbol consists of
7 interlaces of active subcarriers. These interlaces are assigned to
logical channels. Depending on the data rate of the channel, it may
receive more or less interlaces. A high data rate channel can utilize
more interlaces so as to reduce the power consumption at the mo-
bile device, while a low data rate channel will receive less interlaces
so as to improve the time diversity.

The logical channel carries real time stream data at variable rates.
One channel can have multiple codecs that produces data at variable
rates, reliability and quality of service. Depending on the applica-
tion or users’ requirement, different codecs are chosen. Another
reason to utilize multiple codecs is to support statistical multiplex-
ing gain. A codec of variable rates produces a data stream that
changes its rate temporally. When multiple such codecs are used
together, their data streams can use the unoccupied capacity from
each other, within the same channel. The mobile device can decode
a single logical channel it is interested in, it can also decode mul-
tiple channels such that video and audio can be carried in different
channels.

The modulation of streams takes a layered approach. A base
layer that can be decoded by all users provides 15 frames per sec-
ond video quality. It has wider coverage and can be received under
most Signal to Noise Ratios (SNR). An enhancement layer can be
received only under higher SNR levels. It provides additional in-
formation to the base layer to provide 30 frames per second video
quality. Such a layered approach allows the graceful degradation
of quality of service under varying reception conditions, when the
SNR can change due to the signal coverage or user mobility.

A big challenge for mobile video is the power management of
mobile device. Streaming video consumes one magnitude higher
bandwidth than a voice call, consequently the radio power on time
at the mobile device is much higher. One technique FLO employs
to reduce the power consumption is through Time Division Multi-
plexing (TDM). Each content stream uses a distinct time slot and
is transmitted at a specific interval within the time frame. A mobile
device can power up its radio to receive the stream it is interested in
at those specific time intervals, and power down the radio at other
times.

The DVB-H standard [31] is an extension of DVB-T specifica-
tion for terrestrial digital television broadcast. Its system archi-
tecture is similar to that of the FLO. It also consists of a program
production center and a distribution network. At the TV produc-
tion center, multiple program mixes are generated from national
and local channels. Each mix is intended for a specific region and
contains a few common national channels and several local chan-
nels for that region. The program mixes can be distributed to many
local towers in two ways. One is through a satellite. The mixes
will be transmitted to a satellite uplink earth station over a terres-
trial network. The earth station will transmit the program mixes to
a satellite, which in turn broadcasts the program to many local tow-
ers. Another way is using a content distribution network over the
Internet. In either case, the local towers can receive the program
mixes. A tower will then demodulate the program mix intended
for its local region. End users in that region can receive and select
among the channels within that program mix.

DVB-H also uses Time-Division Multiplexing to reduce the power
consumption for mobile devices. The channel is divided into mul-

tiple time slots and a data stream uses one specific slot. During
each time slot, up to two megabits of data can be transmitted. The
mobile device needs to power up its radio during only the specific
slots. Depending on how many streams are multiplexed over the
same channel, it can achieve power saving of up to 90%.

5. A UNIFIED IPTV SYSTEM
We envision that future IPTV will be offered not as a standalone

application, but rather as a unified service bundled with other appli-
cations such as Voice over IP (VoIP) and instant messaging (IM).
Remember the movie "Click"? While a scientific fiction, it does
illustrate the convenience of having a single point of control in life.
The past decade saw the convergence of voice, video, and data onto
a single communication network. Telecomm companies, for exam-
ple, began to offer high speed Internet access and IPTV services,
while cable companies fight back by offering VoIP and cable mo-
dem access. Unfortunately, different communication media still
rely on different sets of devices for control and we are far from
giving the users a unified control over their total life experiences.

As a concrete example, suppose the phone rings when a user is in
the middle of watching a TV show. Currently, the user has to pause
or mute the TV, goes to her phone and checks who is calling via
Caller-ID, and decides if she wants to answer. In other words, the
phone and the TV are offered as two independent services, despite
coming from the same cable network. In a unified IPTV and VoIP
environment, when the phone rings, a dialog box will pop up on the
TV screen to indicate who is calling. The user can then decide if
she wants to answer the call. If so, she should be able to just press a
button in the same TV remote control. Then the TV show will stop
and the phone call will be connected. When the call finishes, the
user just needs to press another button in the remote control to end
the call and the screen will switch back to the TV show and resume
from where it left.

Achieving a unified IPTV environment requires a unified com-
munication interface. In the above example, the phone interface
is unified into the TV interface: the TV screen will become a big
digital phone screen during the phone call showing the caller photo
(if available), name, phone number, call duration, etc. On the other
hand, if several people are watching the TV show at the same time
and the user does not want to disturb others’ viewing experience,
she might decide to pick up the traditional phone in the plain, old
fashion.

An implication of unified interface is unified presence. The avail-
ability of a user should be unified so that the appliance, rather than
humans, can find the appropriate method to locate the user. The
well-known application with presence information is instant mes-
saging: you can find the availability of your buddy in real time.
Integrated into an IPTV environment, a unified interface should be
able to indicate if and how the user can be reached. For example,
a user in the middle of watching a hot movie may want to set her
status to “Do not disturb”. When a user sees her friends is available
through the TV screen, she can initiate a video conference call with
them through digital cameras and TVs instead of through comput-
ers. In some sense, the TVs are becoming more like computers or
we can say the computers are becoming more like TVs.

6. RELATED WORK
Several measurement studies have been conducted on Internet

media delivery in the educational [6, 14] or enterprise environment
[13]. Characteristics such as object popularity distribution and evo-
lution, media session duration, sharing patterns, etc., were modeled
and analyzed. We and others characterized the media workload

651

collected from a large number of commercial Web sites hosted by
a major ISP and that collected from a large group of home users
connected to the Internet via a well-known cable company [22].
We found that the majority of media contents at that time were still
delivered via downloading from Web servers and that a substantial
percentage of media downloading connections were aborted before
completion due to the long waiting time. Interactive operations in
streaming sessions were studied in [6,17,25] as well as in our own
work [23]. We found that jumps and pauses were the most frequent
interactive operations initiated by clients and that jump operations
often experience significant delays. Most of the Internet stream-
ing media traffic today is delivered either through Windows media
services or RealNetworks media services. Measurement studies in
this area include analysis of RealNetwork audio [29] and video [36]
as well as Windows media workloads [30]. User contributed con-
tent in YouTube has been analyzed in [9] and the benefit of P2P
techniques is discussed.

Much work exists to measure and model P2P systems. Authors
in [20] discovered the “download at most once” phenomenon in
KaZaa traffic and believed it contributed to the fundamental differ-
ence in the observed traffic pattern to traditional Web traffic. Bit-
Torrent is a new generation of P2P system which has become very
popular. Most studies found that BitTorrent had good performance
during “flash crowd” events, such as during the initial release of
a popular software. All these studies, however, are based on the
peer behaviors in a single torrent, while our analysis found that
most peers participate in multiple torrents. We also revealed sev-
eral limitations of BitTorrent-like systems: even though the system
can handle flash crowd well, the duration of the flash crowd is actu-
ally quite short. After that there is an exponentially long tail during
which the number of peers and seeds both decrease rapidly. Hence,
if a peer joins a torrent late, it may have a hard time to locate and
download a file. (The downloading failure ratio in such systems
is non-trivial.) In addition, we found that the client performance
in such systems can fluctuate substantially with the torrent popula-
tion [24].

Related work has also been conducted in peer to peer streaming.
Work [26] has shown that peer assisted VoD can offload server and
reduce its bandwidth requirement significantly. It also explores the
so-called “ISP-friendly” P2P algorithm – an approach that aims to
minimize cross-ISP traffic if possible. Using the real network ar-
chitecture in the AT&T Light Speed project, we and others have
shown that P2P is not always beneficial and its benefit depends
greatly on where the bottleneck of the system is [12]. If the capac-
ity of the streaming servers is the bottleneck, then P2P can help.
On the other hand, if the capacity of the local cable head-end is the
bottleneck, then P2P can actually reduce system throughput. In our
follow up work, we explored the idea of striping the data of a media
object across multiple peers, essentially treating a P2P network as
a large RAID array and using erasure code to overcome transient
failures [11].

Internet resource provisioning was previously studied in the con-
text of grid computing [19]. Unlike grid computing which mainly
targets batch oriented scientific applications, our focus is on the
three-tier based Internet streaming applications described earlier in
the paper. Compared to traditional scientific applications, our ap-
plications are interactive in nature and must keep the response time
short. A video stream that has a long start up latency or excessive
jitters is unlikely to attract users. In addition, the computational
requirement for each request is typically small, but an application
may receive lots of simultaneous requests. An important metric
in streaming server performance is the number of concurrent con-
nections it can handle while satisfying a specific QoS requirement.

Finally, our applications can be expected to run continuously: a
popular streaming service receives requests from all over the world
24 by 7. Hence, any decision to replicate or migrate the application
or to re-allocate the resources must be done in a seamless manner
without disrupting the normal operation of the running application.
This is very different from batch oriented scientific applications
where a task is dispatched to a node and is expected to run there
until completion.

7. CONCLUSION
The rapid growth of streaming traffic on the Internet and mo-

bile networks brings a set of technical challenges. This paper has
investigated some of those challenges with a focus on resource
provisioning and utilization as well as the unique characteristics
of mobile devices. As we pointed out throughout the paper, the
requirements for streaming applications are significantly different
from those for traditional Web applications. We believe that peer
to peer technologies hold great promise to support novel applica-
tions like IPTV. In the future, we plan to develop and evaluate real
Internet streaming services.

8. REFERENCES
[1] PPLive. http://www.pplive.com/.
[2] Realnetworks. http://www.real.com/.
[3] Sprint Mobile Video Coverage. http://www2.sprint.

com/mr/news_dtl.do?id=14980.
[4] Windows Media home.

http://www.microsoft.com/windows/windowsmedia/default.aspx.
[5] YouTube. http://www.youtube.com/.
[6] J. M. Almeida, J. Krueger, D. L. Eager, and M. K. Vernon.

Analysis of educational media server workloads. In Proc. of
ACM Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV), June 2001.

[7] C. Canali, S. Fisher, M. Rabinovich, O. Spatscheck, and
Z. Xiao. Snap: A shared network-aware platform for internet
applications. Technical report, AT&T Research, 2005.

[8] C. Canali, M. Rabinovich, and Z. Xiao. Recent Advances on
Web Content Delivery, chapter Utility Computing for
Internet Applications. Springer-Verlag, Sept. 2005.

[9] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. Moon. I
tube, you tube, everybody tubes: Analyzing the world’s
largest user generated content video system. In Proc. of ACM
SIGCOMM Internet Measurement Conference, Oct. 2007.

[10] M. Charikar and S. Guha. Improved combinatorial
algorithms for the facility location and k-median problems.
In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, 1999.

[11] Y.-F. Chen, Y. Huang, R. Jana, H. Jiang, M. Rabinovich,
J. Rahe, B. Wei, and Z. Xiao. Towards capacity and profit
optimization of video-on-demand services in a peer-assisted
IPTV platform. To appear in the Multimedia Systems
Journal, 2008.

[12] Y.-F. Chen, Y. Huang, R. Jana, H. Jiang, M. Rabinovich,
B. Wei, and Z. Xiao. When is P2P technology beneficial to
iptv services? In Proc. of the 17th International workshop on
Network and Operating Systems Support for Digital Audio &
Video (NOSSDAV’07), June 2007.

[13] L. Cherkasova and M. Gupta. Characterizing locality,
evolution, and life span of accesses in enterprise media
server workloads. In Proc. of ACM Workshop on Network
and Operating System Support for Digital Audio and Video
(NOSSDAV), May 2002.

652

[14] M. Chesire, A. Wolman, G. Voelker, and H. Levy.
Measurement and analysis of a streaming media workload.
In Proc. of the 3rd USENIX Symposium on Internet
Technologies and Systems, March 2001.

[15] Y. Chu and H. Zhang. Considering altruism in peer-to-peer
Internet streaming broadcast. In Proceedings of ACM
NOSSDAV, June 2004.

[16] F. A. Chudak and D. B. Shmoys. Improved approximation
algorithms for capacitated facility location problem. In
Proceedings of the 10th ACM Symposium on Discrete
Algorithms, 1999.

[17] C. Costa, I. Cunha, A. Borges, C. Ramos, M. Rocha,
J. Almeida, and B. Ribeiro-Neto. Analyzing client
interactivity in streaming media. In Proc. of the International
World Wide Web Conference, May 2004.

[18] K. Fitchard. Tv wars go wireless.
http://telephonyonline.com/wireless/
technology/telecom_tv_wars_go/.

[19] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
Grid: Enabling scalable virtual organizations. International
J. Supercomputer Applications, 15(3), 2001.

[20] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.
Levy, and J. Zahorjan. Measurement, modeling, and analysis
of a peer-to-peer file-sharing workload. In Proc. of ACM
Symposium on Operating Systems Principles (SOSP),
October 2003.

[21] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang.
Measurements, analysis, and modeling of bittorrent systems.
In Proc. of ACM SIGCOMM Internet Measurement
Conference (IMC’05), Oct. 2005.

[22] L. Guo, S. Chen, Z. Xiao, and X. Zhang. Analysis of
multimedia workloads with implications for Internet
streaming. In Proc. of the 14th International World Wide Web
Conference (WWW’05), May 2005.

[23] L. Guo, S. Chen, Z. Xiao, and X. Zhang. DISC: Dynamic
interleaved segment caching for interactive streaming
accesses. In Proc. of the 25th International Conference on
Distributed Computing Systems (ICDCS’05), June 2005.

[24] L. Guo, E. Tan, S. Chen, Z. Xiao, O. Spatscheck, and
X. Zhang. Delving into internet streaming media delivery: A
quality and resource utilization perspective. In Proc. of ACM
SIGCOMM Internet Measurement Conference (IMC’06),
Oct. 2006.

[25] L. He, J. Grudin, and A. Gupta. Designing presentations for
on-demand viewing. In Proc. of ACM Conference on
Computer Supported Cooperative Work, December 2000.

[26] C. Huang, J. Li, and K. W. Ross. Can internet
video-on-demand be profitable. In Proceedings of the ACM
SIGCOMM, Aug. 2007.

[27] Y. Huang, Y.-F. Chen, R. Jana, H. Jiang, M. Rabinovich,
A. Reibman, B. Wei, and Z. Xiao. Capacity analysis of
mediagrid: a P2P iptv platform for fiber to the node (fttn)
networks. IEEE Journal on Selected Areas in
Communication (JSAC), Special Issue on Peer-to-Peer
Communications and Applications, 25(1), Jan. 2007.

[28] K. Jain and V. V. Vazirani. Approximation algorithms for
metric facility location and k-median problems using the
primal-dual schema and lagrangian relaxation. Journal of the
ACM, Mar. 2001.

[29] A. Mena and J. Heidemann. An empirical study of real audio
traffic. In Proc. of IEEE INFOCOM, March 2000.

[30] J. Nichols, M. Claypool, R. Kinicki, and M. Li.
Measurements of the congestion responsiveness of windows
streaming media. In Proc. of ACM Workshop on Network and
Operating System Support for Digital Audio and Video
(NOSSDAV), June 2004.

[31] R. Pieck. DVG-H Broadcast to Mobile Devices.
http://www.newtec.eu/index.php?id=485,
2005.

[32] Qualcomm. FLO Technology Overview.
http://www.qualcomm.com/common/
documents/brochures/tech_overview.pdf,
2007.

[33] M. Rabinovich, Z. Xiao, and A. Aggarwal. Computing on
the edge: A platform for replicating Internet applications. In
Proceedings of the Eighth International Workshop on Web
Content Caching and Distribution, Sept. 2003.

[34] M. Rabinovich, Z. Xiao, F. Douglis, and C. Kalmanek.
Moving edge-side includes to the real edge—the clients. In
Proceedings of the 4th USENIX Symposium on Internet
Technologies and Systems, Mar. 2003.

[35] G. Raria, J. Henriksson, E. Stare, and P. Talmola. DVB-H,
Digital Broadcast Services to Handheld Devices.
Proceedings of the IEEE, January 2006.

[36] Y. Wang, M. Claypool, and Z. Zuo. An empirical study of
realvideo performance across the internet. In Proc. of the
ACM SIGCOMM Internet Measurement Workshop (IMW),
November 2001.

653

