
Exploring the Accuracy vs Energy Efficiency Trade-offs in Error-Aware Low
Voltage DNN Accelerators

A Dissertation Presented

by

Mallika Rathore

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

August 2021

Stony Brook University

The Graduate School

Mallika Rathore

We the dissertation committee for the above candidate for the
Doctor of Philosophy degree,

hereby recommend acceptance of this dissertation.

Dr. Emre Salman - Advisor of Dissertation
Associate Professor, Department of Electrical and Computer Engineering

Dr. Milutin Stanaćević - Chairperson of Defense
Associate Professor, Department of Electrical and Computer Engineering

Dr. Peter Milder - Advisor of Dissertation
Associate Professor, Department of Electrical and Computer Engineering

Dr. Emre Tuncer - Defense Committee Member
Hardware Engineer, Google

This dissertation is accepted by the Graduate School

Eric Wertheimer
Dean of the Graduate School

ii

Abstract of the Dissertation

Exploring the Accuracy vs Energy Efficiency Trade-offs in Error-Aware Low
Voltage DNN Accelerators

by

Mallika Rathore

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2021

Energy efficiency is a critical design objective in deep learning hardware, partic-

ularly for real time machine learning applications where the processing takes place

on resource-constrained platforms. Deep neural networks (DNNs) have an inher-

ent fault tolerance which can potentially provide opportunities to design low power,

error-aware deep learning hardware. Due to this error resilience of the applications,

voltage scaling is an attractive method to enhance efficiency. The power savings

obtained at low voltage operation are at the expense of timing errors which can im-

pact the inference accuracy of the application (based on the error resilience). The

primary objective of this work is to exploit the inherent resilience of DNNs and im-

prove the energy efficiency by developing low-voltage, error-aware accelerators. To

achieve this objective, a methodology is proposed to quantify the inference accuracy

iii

and energy consumption as a function of operating voltage. The related trade-offs

and design overheads analyzed with this framework can be used to push the bound-

aries on low voltage operation and facilitate the implementation of efficient error

detection and correction techniques in accelerator structures.

The framework proposed in this work is implemented in three steps. First, an

analytical timing error probability model is developed to determine the per-bit tim-

ing error probability for the data paths in the systolic array, without relying on

time consuming hardware simulations. Second, the error resilience of a neural

network is determined to analyze the impact of bit-level datapath timing errors in

the compute-intensive convolutional and fully-connected layers in quantized neu-

ral networks, at per-layer and per-bit granularity. The results obtained during the

first two steps are used to explore the per-layer voltage scaling and efficient error

correction techniques for sensitive bits where the primary objective is to improve

the energy efficiency with negligible impact on inference accuracy. It is observed

that the network-level voltage scaling in a 128×128 systolic array implementing

EfficientNet-B4 DNN can provide 67% improvement in energy efficiency at 700

MHz operating clock frequency with minimal impact on inference accuracy. The

proposed analytical framework can further push the boundaries on low voltage op-

eration through per-layer voltage scaling and bit-level error correction techniques,

iv

while also providing an insight into the related accuracy-energy trade-offs and de-

sign overhead, therefore facilitating smarter energy optimization and error correc-

tions techniques in low voltage DNN accelerators.

v

This work is dedicated to my parents,

Devendra Singh Rathore and Nivedita Rathore, for their

never-ending support and love,

and my husband, Michael, for being my rock.

vi

Table of Contents

List of Figures xiv

List of Tables xvii

Acknowledgements xix

1 Introduction 1

2 Background 6
2.1 Energy Efficiency in Deep Neural Networks 6

2.1.1 Brief Introduction of DNN 7
2.1.2 Energy Efficiency in DNN hardware 9

2.2 Low Voltage Operation . 12
2.2.1 Voltage Scaling in FinFET Technology 12
2.2.2 Low Voltage TFET Technology 14

2.3 Accuracy and Energy Efficiency 18

3 Error Probability Modeling Methodology - Simple Sequential Path 22
3.1 Timing Probability Distribution . 23
3.2 Error Probability Computation . 24
3.3 Results . 28

3.3.1 Error Probability for Different Clock Periods 28
3.3.2 Error Probability at Same ClockPeriod-to-PathDelay Ratio . 29
3.3.3 Error Probability at Same Clock Frequency 32
3.3.4 Error Probability at Same Voltage 33

3.4 Discussion . 34

vii

4 Error Probability Modeling Methodology - Multiple Timing Paths and
Pipeline Stages 35
4.1 Error Probability for Multiple Timing Paths 36
4.2 Error Probability for Multiple Pipeline Stages 39
4.3 Results . 41

5 Case Study - 8-bit MAC 45
5.1 Circuit Description and Implementation 46
5.2 FinFET vs. TFET technologies . 49
5.3 Results . 52

5.3.1 Dependence on Timing Slack 52
5.3.2 Dependence on Supply Voltage 54
5.3.3 Error Probability vs. Power Consumption 57

5.4 Discussion . 57

6 DNN Error Resilience Analysis Framework 60
6.1 Related Work . 61
6.2 Error Resilience Analysis Framework 63

6.2.1 Inputs . 63
6.2.2 Model Setup . 65

6.3 Results . 66
6.3.1 Neural Networks . 68
6.3.2 Experimental Setup . 69
6.3.3 Error Resilience Analysis 71

6.3.3.1 Network-level error resilience analysis 72
6.3.3.2 Per-layer error resilience analysis 76
6.3.3.3 Per-bit error resilience analysis 79

6.4 Conclusion . 82

7 Quantifying Accuracy and Energy Efficiency Trade-offs in Systolic Ar-
rays 84
7.1 DNN to Systolic Array Hardware Mapping 86

7.1.1 Per-Layer Runtime Evaluation 88
7.1.2 Array Utilization Computation 92

7.2 Per-Layer Energy Modeling . 93
7.2.1 Per-Layer Energy Consumption 94
7.2.2 DNN Energy Consumption 95

7.3 Network-Level Voltage Scaling . 96

viii

7.3.1 Timing Error Probability for Systolic Array 96
7.3.2 Quantifying DNN accuracy with respect to supply voltage . 100

7.3.2.1 Quantifying DNN energy consumption with re-
spect to supply voltage 102

7.3.2.2 Accuracy-Energy trade-off 106
7.4 Per-Layer Voltage Scaling . 107
7.5 Discussion . 112

8 Error Detection and Correction in Systolic Arrays 114
8.1 Background . 115
8.2 Quantifying Accuracy with Bit-Level Error Correction 118
8.3 Bit-Level Error Detection and Correction using iRazor 119

8.3.1 DNN Accuracy with EDAC 124
8.3.2 Latency Overhead . 127

8.3.2.1 MSB error correction overhead 128
8.3.2.2 Multiple higher order bits error correction overhead129
8.3.2.3 Latency overhead results 130

8.3.3 Energy Overhead . 134
8.4 Limitations to supply voltage scaling with EDAC 141
8.5 Discussion . 144

9 Conclusion 152

Bibliography 157

ix

List of Figures

1.1 Primary steps of the proposed methodology to better understand the
interactions among voltage scaling, timing error probabilities, and
inference accuracy in deep neural networks. 2

2.1 Simple neural network example. 7
2.2 Basic CNN architecture. The input layer represents the RGB fea-

ture maps of an input image. 9
2.3 Schematic view and energy band diagram of (a) FinFET, and (b)

TFET depicting basic differences between carrier injection mecha-
nisms, thermionic emission and band to band tunneling, in the re-
spective technologies. 15

2.4 ON-state current improvement from homojuntion TFET to hetero-
junction TFET by reducing the tunnel barrier, Ebe f f 16

2.5 Comparison of ION vs ION/IOFF ratio for different operating points
on the ID−VG curve for 0.3V operating voltage. 17

2.6 ID−VG characteristics of 20 nm Heterojunction TFET and Si Fin-
FET at 0.3 V operating voltage. 18

2.7 CNN accuracy as a function of dynamic variations. 19

3.1 Simple sequential data path. 24
3.2 Voltage pdf and delay pdf of the sequential data path shown in

Fig. 3.1 at two σ values of 10% and 30%: (a) 20 nm FinFET tech-
nology, (b) 20 nm heterojunction TFET technology. 25

3.3 Illustration of timing error probability of a data path shown in Fig. 3.1
and designed in 20nm HetJ TFET technology. The error probability
is computed from (a) timing pdf by using (3.4) and (b) voltage pdf
by using (3.5). The shaded regions in both graphs are equivalent. . . 27

x

3.4 Dependence of error probability on clock period and power supply
noise for the circuit shown in Fig. 3.1: (a) 20nm FinFET technol-
ogy, (b) 20nm HetJ TFET technology. 30

3.5 Error probability as a function of noise at respective nominal supply
voltages (0.9V for FinFET and 0.3V for TFET). The ClockPeriod-
to-PathDelay ratio considered is 2. 31

3.6 Error probability as a function of noise at respective nominal sup-
ply voltages (0.9V for FinFET and 0.3V for TFET). The clock fre-
quency considered for both the technologies is 4GHz. 32

3.7 Error probability as a function of noise at 0.4V supply voltage and
2GHz clock frequency. 33

4.1 1-bit MAC unit to illustrate multiple paths within a pipeline stage
and sequentially adjacent pipeline stages. 36

4.2 Example to illustrate the timing error probability calculation of mul-
tiple timing paths within a sequential circuit: (a) Delay pdfs and (b)
voltage pdf of Path A and Path B in Fig. 4.1, designed using 20nm
HetJ TFET technology. The operating voltage and clock period are
0.3V (σ = 30%) and 400ps, respectively. 38

4.3 Timing error probability as a function of power supply noise, σvdd ,
for the output node of a 1-bit MAC unit in 20nm HetJ TFET tech-
nology with 0.3V operating voltage and 1.8GHz clock frequency. . . 40

4.4 Timing error probability as a function of number of sequentially
adjacent paths for different power supply noise at 0.3V operating
voltage for 20nm HetJ TFET technology. 41

4.5 Schematic of a 2-bit multiplier with input and output pipeline stages. 41
4.6 Timing error probabilities as a function of power supply noise, σV DD,

for the four inputs to the multiplier (Fig. 4.5) designed using (a)
20nm HP FinFET, and (b) 20nm HetJ TFET technologies. The re-
spective operating voltages considered are 0.9V and 0.3V, and the
clock frequency is 2.5GHz. 43

4.7 Timing error probabilities as a function of power supply noise, σV DD,
for MSB output of the multiplier (out3). 44

5.1 Block diagram of 8-bit MAC used in the case study to character-
ize the trade-offs among voltage, error probability, and power con-
sumption. 46

5.2 Detailed block diagram of (a) 4-bit multiplier, and (b) 8-bit multi-
plier circuits. 47

xi

5.3 Timing error probability of each output bit of 8-bit MAC unit as a
function of power supply noise, σvdd/µvdd: (a) 20nm HP FinFET
technology with 0.9V operating voltage and 3.06GHz clock fre-
quency and (b) 20nm HomJ TFET technology with 0.3V operating
voltage and 1.81GHz clock frequency. Note that clock frequencies
are chosen to ensure that ClockPeriod-to-PathDelay is the same for
both cases. 48

5.4 Dependence of delay on voltage of the highest-delay path in 8-bit
MAC unit for (a) 20nm HP FinFET, (b) 20nm LP FinFET, (c) 20nm
HomJ TFET, and (d) 20nm HetJ TFET technologies. 50

5.5 Voltage pdf and the error probability of the highest-delay path in
8-bit MAC unit for (a) 20nm FinFET and (b) 20nm HetJ TFET
technologies. The mean of the pdf corresponds to the nominal op-
erating voltage and the σ is 10%. 51

5.6 Dependence of timing error probability on ClockPeriod-to-PathDelay
ratio for the MSB of 8-bit MAC unit at 10% power supply noise at
nominal operating voltages: (a) 20nm FinFET and (b) 20nm TFET
technologies. Note that the clock frequencies corresponding to each
ClockPeriod-to-PathDelay ratio are listed in Table 5.1. 53

5.7 Timing error probability vs. power consumption tradeoff at 5%
power supply noise and a ClockPeriod-to-PathDelay ratio of 1.5:
(a) 20nm HP FinFET, (b) 20nm LP FinFET, (c) 20nm HetJ TFET,
and (d) 20nm HomJ TFET technology. 58

6.1 DNN error resilience analysis framework methodology. 64
6.2 Inference accuracy of different neural networks, considering Ima-

geNet dataset. 71
6.3 Distribution of Top-1 inference accuracy obtained over 100 runs

with random error injection at 0.001%. 73
6.4 Top-1 classification accuracy with respect to different error rates

for (a) ResNet-18, MobileNetV2, and (b) EfficientNet networks.
Note that EfficientNet-B0 and B2 networks are quantized to 12 bits,
while the other networks are quantized to 10 bits. 74

6.5 Err1% and Err0.5% of different quantized, pre-trained neural net-
works. 75

6.6 Per-bit error resilience analysis for EfficientNet-B0 and B4 net-
works. It should be noted that for no errors in MSBs, the remaining
bits have the same error rate. 81

xii

7.1 Methodology to quantify the trade-off between DNN accuracy and
energy consumption at different operating voltages. 85

7.2 Systolic array block diagram. 86
7.3 Steps to compute runtime for dataflows in systolic array based on. . 90
7.4 Basic block diagram of a processing element in a systolic array. . . 97
7.5 Top-1 classification accuracy of EfficientNet-B4 with respect to

supply voltage scaling for 700 MHz and 1 GHz clock frequency
(2.85 and 2 ClockPeriod-to-PathDelay ratio respectively). 101

7.6 Dynamic, leakage and total power and energy consumption of 256×256
systolic array implementing WS and OS dataflows at 700 MHz for
EfficientNet-B4 neural network. 102

7.7 Dynamic and Leakage power consumption of systolic arrays of size
256×256, 128×128, 64×64, and 16×16, while considering 700
MHz clock frequency. Both the WS and OS dataflows are compared. 104

7.8 Total energy consumption of systolic arrays of size 256×256, 128×128,
64×64, and 16×16. Both the WS and OS dataflows are compared. . 104

7.9 EfficientNet-B4 Top-1 classification accuracy and percentage de-
crease in total energy consumption for systolic array implementing
WS dataflow. The baseline Top-1 accuracy at 0.9V is 82.4%. 105

7.10 EfficientNet-B8 Top-1 classification accuracy and percentage de-
crease in total energy consumption for systolic array implementing
WS dataflow. The baseline Top-1 accuracy at 0.9V is 85.59%. . . . 106

7.11 MobileNetV2 Top-1 classification accuracy and percentage decrease
in total energy consumption of different systolic array sizes imple-
menting WS dataflow. 108

7.12 MobileNetV2 per-layer ranking metric. 109

8.1 Top-1 classification accuracy of EfficientNet-B4 with 1–3 higher
order bits error-free for 0.55V operating voltage and 700 MHz clock
frequency. Note that all the layers of the network are scaled to 0.55V. 118

8.2 Schematic of iRazor flip-flop. 120
8.3 Waveforms illustrating the iRazor flip-flop error detection function-

ality. 120
8.4 Basic schematic for error detection and correction based on. 122
8.5 Waveforms showing iRazor error detection and correction function-

ality. 122

xiii

8.6 EfficientNet-B4 and B8, and MobileNetV2 Top-1 classification ac-
curacy with bit-level EDAC implementation when considering 0.55V
and 0.65V for 700 MHz and 1 GHz clock frequencies, respectively. 125

8.7 EfficientNet-B4 inference accuracy improvement with per-bit error
correction at 0.5V and 0.6V for 700 MHz and 1 GHz, respectively.
Note that the highest MSB position for all the layers in this DNN is
35. 126

8.8 Energy consumption of MobileNetV2 DNN with and without error
detection for different systolic array sizes considering WS and OS
dataflow at 1 GHz clock frequency. 136

8.9 Energy consumption of EfficientNet-B4 DNN with and without er-
ror detection for different systolic array sizes considering WS and
OS dataflow at 1 GHz clock frequency. 137

8.10 Energy consumption of EfficientNet-B8 DNN with and without er-
ror detection for different systolic array sizes considering WS and
OS dataflow at 1 GHz clock frequency. 138

xiv

List of Tables

2.1 Noise Margin of 20nm TFET, FinFET and CMOS at Nominal and
Scaled Supply Voltages. 20

3.1 Operating clock frequencies for different power supply noise in
simple sequential path, designed using 20nm HP FinFET and 20nm
HetJ TFET technologies, to obtain error probability≈2%. Nominal
supply voltage is used for both the technologies. 29

3.2 Timing characteristics for error probability computation at respec-
tive nominal supply voltages for 20nm HP FinFET and 20nm HetJ
TFET technologies. The ClockPeriod-to-PathDelay ratio consid-
ered for both the technologies is 2. 31

5.1 Operating clock frequencies for FinFET and TFET technologies to
obtain different ClockPeriod-to-PathDelay ratios. Nominal supply
voltage is used for both technologies 54

5.2 Timing error probability for the MSB of 8-bit MAC unit designed in
20nm FinFET technology for different supply voltages and ClockPeriod-
to-PathDelay ratios. Power supply noise is constant at 5%. 56

5.3 Timing error probability for the MSB of 8-bit MAC unit designed in
20nm TFET technology for different supply voltages and ClockPeriod-
to-PathDelay ratios. Power supply noise is constant at 5%. 56

6.1 Impact of quantization on classification accuracy. 70
6.2 ResNet-18 per-layer error analysis 77
6.3 MobileNetV2 per-layer error analysis 78
6.4 Err1%(%) of different layers in EfficientNet networks. 80
6.5 Err0.5%(%) of different layers in EfficientNet networks. 80

xv

7.1 Spatial-Temporal allocation of DNN dimensions. Note that No f map

is the number of OFMAP (output feature map) pixels generated by
the filter, N f ilter is the number of convolution filters and Wconv is the
number of partial sums generated per output pixels. 89

7.2 Dynamic and leakage power consumption for a processing element
at different voltages for 700 MHz clock frequency. 94

7.3 ClockPeriod-to-PathDelay ratio of different accumulator sizes. . . . 98
7.4 Timing error probability of MSB for different adder bits across all

layers in EfficientNet-B8 with respect to different operating volt-
ages at 700 MHz clock frequency. 99

7.5 Timing error probability of MSB for different adder bits across all
layers in EfficientNet-B8 with respect to different operating volt-
ages at 1 GHz clock frequency. 100

7.6 Total cycle count and maximum utilization of EfficientNet-B4 for
different systolic array size. 103

7.7 Operating voltage scaling for six convolutional layers with the high-
est ranking metric in 5 different scenarios (S1–S5). 111

7.8 MobileNetV2 Top-1 classification accuracy and percentage decrease
in total energy consumption in different scenarios described in Ta-
ble 7.7. The percentage decrease in energy is with respect to the
energy consumption at 0.9V. 111

8.1 Comparison of the voltage at which the critical data path (of the
respective bit positions) fails timing for D flip-flop and iRazor latch. 123

8.2 Top-1 accuracy and maximum timing error probability (pmax) for
MobileNetV2, EfficientNet-B4 and B8 networks at different volt-
ages and frequencies. 126

8.3 Latency overhead (latover) for MobileNetV2 DNN comparing dif-
ferent systolic array sizes with EDAC implemented at 0.55V, 700
MHz and 0.65V, 1 GHz. 130

8.4 Latency overhead (latover) for EfficientNet-B4 DNN comparing dif-
ferent systolic array sizes with EDAC implemented at 0.55V, 700
MHz and 0.65V, 1 GHz. 131

8.5 Latency overhead (latover) for EfficientNet-B8 DNN comparing dif-
ferent systolic array sizes with EDAC implemented at 0.55V, 700
MHz and 0.65V, 1 GHz. 131

xvi

8.6 Latency overhead for EfficientNet-B4 at 0.5V, 700 MHz and 0.6V,
1 GHz. The accuracy obtained with this EDAC implementation is
81.7% which is within 1% of the baseline accuracy. 133

8.7 Energy consumption of MobileNetV2 at 0.65V and 1 GHz fre-
quency, with and without EDAC. 139

8.8 Energy consumption of EfficientNet-B4 at 0.65V and 0.6V, and 1
GHz frequency, with and without EDAC. 140

8.9 Energy consumption of EfficientNet-B8 at 0.65V and 1 GHz fre-
quency, with and without EDAC. 141

8.10 MobileNet-V2 latency results summary for different voltage, fre-
quency, systolic array sizes, and dataflows. 146

8.11 MobileNet-V2 energy results summary for different voltage, fre-
quency, systolic array sizes, and dataflows. 147

8.12 EfficientNet-B4 latency results summary for different voltage, fre-
quency, systolic array sizes, and dataflows. 148

8.13 EfficientNet-B4 energy results summary for different voltage, fre-
quency, systolic array sizes, and dataflows. 149

8.14 EfficientNet-B8 latency results summary for different voltage, fre-
quency, systolic array sizes, and dataflows. 150

8.15 EfficientNet-B8 energy results summary for different voltage, fre-
quency, systolic array sizes, and dataflows. 151

xvii

ACKNOWLEDGEMENTS

I would like to take this opporunity to thank everyone who have helped me

through this incredible journey as a PhD student in Stony Brook. First and foremost,

I express my sincere thanks and gratitude to my advisors, Dr. Emre Salman and Dr.

Peter Milder for their tremendous support and guidance throughout. They have

been extremely patient with me and provided incredible ideas and direction as I

stumbled through my research during the last five years. I am very grateful for all

their valuable advice and feedback which have shaped this research, and which will

eventually shape my career post graduation. I also thank Dr. Milutin Stanaćević

and Dr. Emre Tuncer for taking out the time to be a part of my defense committee

and for your valuable comments and feedback which gave an important direction to

this work.

Special thank you to my friends in NanoCAS laboratory: Manav, Ivan, and

Tutu, for being my sounding board when I had to offload ideas and for creating so

many fun and wonderful memories with me during the last five years. I am thankful

for your friendship, and wish you all great success in future.

I also want to thank my husband, Michael, for being there with me every step

of the way. This would not have been possible without his support. Last but not

xviii

the least, I extend my thanks to my parents for always believing in me and for their

selfless love and support. I dedicate this thesis to them.

Thank you.

xix

Chapter 1

Introduction

Deep learning hardware such as accelerators for deep neural networks (DNNs)

include tens of thousands of multipliers and adders, and can perform highly par-

allelized and high-performance computing. For instance, a specialized accelerator

hardware called tensor processing unit (TPU) is used to accelerate the inference of

DNNs and is deployed in Google’s datacenters for complex neural network applica-

tions [1]. However, due to increasing computational complexity, the recent research

works are focused on improving the energy efficiency without compromising on the

performance and robustness of the design. Therefore, energy efficiency has become

an important design consideration, particularly with escalating power and tempera-

ture/cooling issues in deeply scaled technologies.

Voltage scaling is an effective and well-known approach to enhance efficiency.

However, the increasing susceptibility to supply voltage variations at low voltages

has resulted in timing errors and degraded robustness. Moreover, higher leakage

power consumption in scaled technologies has limited the supply voltage scaling.

The recent works mitigate this limitation through novel design methodologies, and

1

Technology parameters

Input netlist

D Q D Q

Step 1: Modeling
timing probabilities
at scaled voltages

Timing path delays
at scaled voltages
for each output

Step 2: Calculating timing
error probabilities for

each MAC output
• Supply voltage
• Clock frequency
• Noise / uncertainty

Step 3: Characterizing timing
error probability and power

trade-offs

Step 4: Quantification of
energy efficiency vs.

inference quality
DNN application /datasets

Step 5: Analyzing accuracy
and design overhead

trade-offs of bit-level error
correction techniques

Figure 1.1: Primary steps of the proposed methodology to better understand the in-
teractions among voltage scaling, timing error probabilities, and inference accuracy
in deep neural networks.

other device and technology innovations. Deep learning applications have a unique

characteristic attributing to the inherent resilience to errors [2–5]. Therefore, de-

spite the strong trade-offs among accuracy, performance and power, the impact

of voltage scaling on these parameters is particularly worth investigating for deep

learning applications.

The primary objective of this work is to exploit the inherent resilience of DNNs

and improve the energy efficiency by developing low-voltage, error-aware acceler-

ators. This objective is achieved by the proposed framework, which quantifies the

inference accuracy and energy consumption as a function of operating voltage, and

2

also analyzes the related trade-offs and design overheads of implementing efficient

error detection and correction techniques in accelerator structures. The framework

is implemented by first modeling the timing probabilities at scaled voltages for a

given circuit netlist, technology parameters, operating frequency, and supply volt-

age (step 1 in Fig. 1.1). In step 2, timing error probabilities are calculated for each

output of the neural network layer at a certain level of noise/uncertainty. These

error probabilities enable us to quantify the trade-off between error probability and

power consumption for voltage-scaled systolic arrays (basic computational unit in

DNN accelerators) at given supply noise and operating frequency, as shown in step

3. These results are then used to quantify the trade-off between energy efficiency

(obtained via voltage scaling) and inference accuracy for specific deep learning ap-

plications (step 4). Finally, the results obtained during the previous steps are used

to explore the per-layer voltage scaling and efficient error correction techniques for

sensitive bits (step 5) where the primary objective is to improve the energy effi-

ciency with negligible impact on inference accuracy.

The proposed timing error modeling methodology, implemented in step 1, is

analyzed for an 8-bit multiply accumulate unit implemented with both advanced

FinFET and emerging tunneling field-effect transistor (TFET) technologies to eval-

uate the dependence of the results on technology [6]. Note that TFET devices have

been proposed for ultra low voltage operation (0.1 to 0.5 V), facilitated by lower

subthreshold swings where leakage current is significantly reduced as compared

to modern FinFET technologies [7]. Thus, TFETs can be an interesting alterna-

tive for building ultra low voltage and highly parallel deep learning hardware. For

DNN error resilience analysis, FinFET technology is used to analyze the per-bit

output probability in systolic arrays. A PyTorch-based framework is implemented

3

to evaluate the DNN error resilience with respect to error rates injected in a given

network. These bit-level errors can be injected (with per-layer and per-bit gran-

ularity) at a uniform error rate or the per-bit timing error rates obtained from the

proposed probability model can be used to understand the impact of these hardware

errors on the inference accuracy of the network. Existing error detection and cor-

rection techniques (such as iRazor [8]) are also explored to analyze the trade-offs

between accuracy improvements and additional design overhead of implementing

these techniques to correct bit-level errors for the sensitive bits in the network. Fur-

thermore, the results and observations presented in this thesis can be leveraged to

push the boundaries on low voltage operation and design energy efficient, error

aware DNN accelerators.

The rest of the dissertation is organized as follows. Chapter 2 provides a back-

ground on the recent works exploring the energy efficiency in deep neural network

hardware, low voltage operation in existing and emerging semiconductor device

technologies, and the impact of voltage scaling on the energy efficiency and robust-

ness of the hardware. Chapter 3 explains the formulation of the timing probability

distribution from voltage distribution, which further depends on the voltage-delay

characteristics. It also provides a proof-of-concept for the proposed error proba-

bility modeling methodology by considering the example of a simple timing path.

Chapter 4 describes an extension of the proposed methodology to determine the

timing error probability for circuits with multiple timing paths within one or mul-

tiple pipeline stages. Considering the example of three pipeline stage 8-bit MAC

circuit, a case study is presented in chapter 5 to quantify the timing error probabil-

ity results in different scenarios. Chapter 6 discusses the error resilience of DNNs

at network-level, per-layer and per-bit granularity, analyzed through a framework

4

by injecting bit-level errors at uniform error rate in a quantized neural network. In

chapter 7, the per-bit timing error probabilities obtained from the proposed error

probability model for a processing element in a systolic array are used to quantify

the DNN accuracy as a function of supply voltage. The trade-off between accuracy

and energy is also quantified and discussed in the chapter. The energy and la-

tency overhead of implementing bit-level error detection and correction techniques

and the corresponding improvement in DNN inference accuracy are quantified in

chapter 8. Finally, the work is concluded in chapter 9 with a discussion on future

directions facilitated by the results obtained in this research.

5

Chapter 2

Background

It is challenging to obtain significant power reduction while maintaining perfor-

mance, particularly in compute-intensive hardware blocks such as accelerators for

deep neural networks (DNNs). As the operating voltage approaches the near- and

sub-threshold regions, the susceptibility to noise increases, resulting in potential

timing errors which can lead to design failures. The modeling methodology pro-

posed in this work analyzes the power consumption and timing accuracy trade-offs

in low voltage operation. Researchers have focused on improving the energy effi-

ciency, especially in deep learning hardware, by exploring architectural, design, or

device and technology innovations. This chapter provides a background for energy

efficient neural network architectures, voltage scaling paradigm, and related issues.

2.1 Energy Efficiency in Deep Neural Networks

Deep neural networks (DNN) have revolutionized the artificial intelligence (AI)

implementations with significant breakthroughs in a number of applications such

6

Figure 2.1: Simple neural network example [9].

as image classification, speech recognition and natural language processing. The

massive parallelism and computational complexity of DNNs led to their hardware

implementation in GPU, FPGA and custom ASICs [1]. This section provides an

introduction to DNNs and discusses the recent works in improving the energy effi-

ciency and performance of deep learning hardware.

2.1.1 Brief Introduction of DNN

Neural network is a brain-inspired computing paradigm which involves imple-

mentation of a non-linear function to a weighted summation of the input values.

A computational neural network consists of an input and output layer, and a num-

ber of intermediate layers called “hidden layers”, which propagate the weighted

sums to the output layer, as shown in Fig. 2.1 [9]. DNNs are the neural networks

used in deep learning and can have tens of hidden layers. For example, DeepMind

7

AlphaGo [10], used as benchmark in [1], has 89 layers, and ResNet model, used

for image classification, can have a maximum of 152 layers [11]. This makes the

neural networks capable of learning more complex and abstract features, therefore,

improving the classification accuracy.

The four basic stages of pattern recognition include - acquisition, preprocess-

ing, feature extraction, and classification [12]. Acquisition generates raw inputs;

preprocessing reduces the noise and performs geometric corrections; feature ex-

traction identifies the attributes which differentiate between different classes of pat-

terns; and classification assigns the input to one of the predefined classes. Deep

convolutional neural networks (CNNs) automate the feature extraction by using a

large training database (training sets) to learn the input features. CNN architecture

consists of multiple layers of convolution and pooling, with or without an activation

function. Fully connected layers (FCNs) take the output of the CNN to map a set

of 2-D features into a class. The final output consists of prediction values for dif-

ferent objects (or classes) where the input image can be classified. Fig. 2.2 shows

the basic architecture of a CNN [13].

In conclusion, the fundamental computation strategy in a neural network com-

prises of training (learning) and inference (prediction). Training a DNN involves

using a large sample database to learn the features and determine the input weights,

which are later used during inference for accurate classification. The basic opera-

tion in each layer is multiplication and accumulation. Some CNN architectures can

have a large number of parameters which increases the complexity of the neural

networks. For instance, VGGNET [14] has 138 million parameters (most of which

are contributed by the fully connected layers), and GoogLeNet [15] (because of the

implementation of smaller convolutions) has 4 million parameters [16]. Therefore,

8

Figure 2.2: Basic CNN architecture [13]. The input layer represents the RGB fea-
ture maps of an input image.

the hardware implementation of DNNs consists of tens of thousands of multipliers

and adders [1]. However, high computational complexity of the hardware for deep

neural networks increases the power consumption, which is further exacerbated

in scaled technologies, resulting in performance and accuracy limitations. Recent

works in deep learning hardware have presented many optimization strategies to

overcome these limitations, as summarized in the following section.

2.1.2 Energy Efficiency in DNN hardware

Due to high computational complexity, energy efficiency is a primary concern

in the implementation of deep learning hardware. Prior work on improving the

energy efficiency in deep learning hardware focuses on optimization at the ar-

chitecture level, on the network structure, or of the numerical datatype used. At

the architecture level, researchers have designed programmable accelerators (e.g.

TPU [1], Eyeriss [17], DLAU [18]) and design/optimization tools (e.g. [19, 20]) to

produce computational structures that are efficient for classes of neural networks

9

or optimized for specific networks. For instance, Google’s custom ASIC, tensor

processing unit (TPU) [1], implements a deterministic model which provides better

match to the 99th-percentile response time requirement as compared to CPUs and

GPUs. The lack of various microarchitectural features, which are implemented in

CPUs and GPUs to improve the average throughput, results in comparatively lower

power consumption and faster response time in TPUs. Eyeriss accelerator proposed

in [17] provides an improvement in energy efficiency and throughput by using a pro-

posed processing dataflow, which minimizes the expensive data movement through

maximum data reuse (locally). An FPGA-based scalable deep learning accelera-

tor unit (DLAU) is proposed in [18] which implements three pipelines processing

units to improve throughput. Tile techniques, FIFO buffers, and pipelines are used

to reuse computing units and minimize memory transfer operations. FPGA-based

CNN acceleration is an interesting approach due to their programmable, parallel

and power-efficient computing design [20]. However, due to limited resources and

performance, various design frameworks are proposed to improve the performance

and efficiency of FPGA-based accelerators. For instance, DNNWEAVER, a frame-

work proposed in [19], automatically generates a synthesizable accelerator for a

given (DNN, FPGA) pair. The generated accelerators provide better efficiency and

performance as compared to multi-core CPUs and GPUs. Shen et al. propose a

novel CNN accelerator design in [20] which partitions the FPGA resources into

multiple processors, each of which operate on multiple images concurrently. This

increases the computational efficiency and improves the overall throughput.

On the network level, researchers aim to simplify networks using techniques

such as pruning [21], which can reduce the amount of weights and computation.

In this technique, the network is first trained to identify the important connections.

10

The unimportant connections are then pruned before the network is trained again to

fine tune the weights of the remaining connections. This results in a drastic reduc-

tion in the number of parameters (9× for AlexNet [22] and 13× for VGG-16 [14])

without any accuracy loss. The reduced number of parameters leads to smaller

memory capacity and bandwidth requirements, making it suitable for implementa-

tion in mobile systems.

Lastly, simplifications to the numerical datatype by deeply quantizing learned

parameters (e.g., [23, 24]) can be exploited in the hardware via simplified arith-

metic and reduced data movement, thereby improving energy efficiency and per-

formance. For instance, it is observed in [23] that fixed-point instructions provide

a 3× improvement over an optimized floating-point baseline. Binarized neural net-

works (BNNs), introduced in [24], are DNNs with binary weights and activations at

run-time and when computing the parameter gradients at train-time. BNNs replace

the arithmetic operations with bit-wise operations, resulting in improved power-

efficiency and reduced memory size.

Other approaches focus on data-sparsity in weights [25] or activations [26], or to

compress the entire network to reduce cost [21]. Network quantization and weight

sharing in [25] compresses the network by reducing the number of bits required

to represent each weight. Through Cnvlutin [26], the computation is simplified by

eliminating the ineffectual operations (e.g. multiplication with zero). This improves

the performance and energy over the state-of-the-art accelerators with no accuracy

loss.

11

2.2 Low Voltage Operation

Increasing power density on chip has made energy efficiency a key design ob-

jective, particularly in compute-intensive hardware. Voltage scaling is an effective

approach to reduce the power consumption due to quadratic dependence of dynamic

power on operating voltage. However, scaling supply voltage requires threshold

voltage scaling to maintain sufficient on-current and performance. Threshold volt-

age scaling has posed additional challenges due to an exponential increase in off-

current and therefore, the leakage power consumption [27]. With increasing de-

mand for energy efficient designs during the past decade, researchers have focused

on overcoming the voltage scaling limitations through novel design methodologies

and devices.

2.2.1 Voltage Scaling in FinFET Technology

When the planar technology reached the limitations of gate length scaling due

to increasing short channel effects, devices with enhanced gate control such as Fin-

FETs mitigated this issue while providing an improvement in device performance

as the technology continued to scale down to sub-32nm nodes [28]. Despite the su-

periority of FinFETs in suppressing the short channel effects, the fundamental limit

on subthreshold swing limits the scaling of threshold and nominal supply voltages.

Some of the recent works on low voltage design include novel design methodolo-

gies and topologies to enable low voltage operation, and near-threshold voltage

scalability. Sitik et al. propose a design methodology for clock distribution net-

works with low-swing clocks, novel flip-flop topology, and clock buffers designed

using 20 nm FinFET technology, demonstrating significant power savings as com-

12

pared to the full-swing implementation [29–31]. However, as the technology scales

down to near- and sub-threshold operating regions, the significant power savings

achieved are at the cost of highly degraded performance and robustness. Recent

works in heterogenous architectures, near-threshold-voltage designs [32–34] and

approximate computing [3, 35, 36] have facilitated ultra-low voltage operations for

deeply scaled FinFET technologies.

Approximate computing is a promising approach to satisfy rising performance

requirements while improving the energy efficiency by permitting certain amount

of error in the results. This is achieved by selective approximation of computation

based on the inherent resilience of applications. Operating at scaled supply volt-

ages is one approach to approximate computing. In [36], Chippa et al. obtain 10×

energy-delay improvements at the cost of 5% loss in accuracy as compared to the

conventional, fully accurate design. Despite the significant improvement, approx-

imate computing approach requires careful design and approximation strategy to

avoid unacceptable loss of accuracy [35]. Moreover, it is important to address the

challenges and improve the scope of the programming frameworks for this approach

before it can be integrated with the existing hardware design infrastructure.

Near-threshold computing relies on the operating region where the supply volt-

age is scaled close to the threshold voltage of the transistor (V DD∼Vth). FinFET

performance at near-threshold voltages is discussed in [33, 34]. It was observed

that even though the performance is limited by increased latency, FinFETs exhibit

better energy gains compared to planar technologies at such low voltages. Cui et al.

analyze the impacts of gate-length biasing on circuit speed and leakage power con-

sumption for 7 nm deeply-scaled FinFET devices through a device-circuit frame-

work [37]. A 70% reduction in leakage power is observed at the cost of reduced

13

speed and increased dynamic energy consumption in near-Vth regimes.

Therefore, FinFETs can operate at near-threshold voltage and provide signifi-

cant improvement in short channel effects and power savings in sub-20nm technol-

ogy nodes as compared to the more conventional CMOS technologies. It is, how-

ever, important to consider the correlation between Vth and subthreshold slope to

minimize the impact of process variations on energy efficiency and performance [38].

2.2.2 Low Voltage TFET Technology

In an effort to resolve the increasing leakage power due to the fundamental

subthreshold slope limitation in FinFETs, various novel devices and materials, such

as carbon nanotube FETs, nanowire FETs, III-V channel replacement devices, and

tunnel field-effect transistors, are being explored and have shown promising results

in near- and sub-Vth operation [39–41].

Tunnel field effect transistor (TFET) is designed as a reverse-biased p-i-n diode

with asymmetrical source/drain doping. These devices use band-to-band tunnel-

ing (at the source-channel junction) as a carrier injection mechanism as opposed to

thermal carrier injection in FinFETs. Fig. 2.3 [42,43] shows the difference between

FinFET and TFET technologies with an energy-band diagram exhibiting the differ-

ent carrier injection mechanisms. As shown in this figure, the carriers are injected

thermionically over the barrier in FinFETs. Alternatively, for TFET technology, the

alignment of the conduction band of the channel and the valence band of source

enables the tunneling of carries at the source-channel interface. This characteristic

enables the sub-60 mV/decade switching slope at room temperature, permitting ag-

gressive voltage scaling (as low as 100 mV) [44]. However, due to the tunneling

barrier at the source-channel interface, the tunneling probability is limited which

14

(a) FinFET (b) TFET

Figure 2.3: Schematic view and energy band diagram of (a) FinFET, and (b) TFET
depicting basic differences between carrier injection mechanisms, thermionic emis-
sion and band to band tunneling, in the respective technologies.

15

Figure 2.4: ON-state current improvement from homojuntion TFET to heterojunc-
tion TFET by reducing the tunnel barrier, Ebe f f [44].

limits the drive current when the device is on, particularly for large band-gap tran-

sistors.

Various semiconductor devices with lower band-gap have been explored and

fabricated to improve the energy efficiency and performance of TFET-based de-

signs, making it comparable to FinFETs at high frequency operation [7, 45–49].

For instance, III-V semiconductors enable hetero- band-gap alignment which im-

proves the tunneling probability at low voltages. The improvement in the tunneling

current in heterojunction TFET (as compared to homojunction TFET) is illustrated

in Fig. 2.4 [44]. Saripalli et al. [50] compare the Ion vs Ion/Io f f characteristics of

22 nm homojunction and heterojunction TFET at 0.3 V (Fig. 2.5), exhibiting an

improved drive current and Ion/Io f f due to sub-60 mV/dec subthreshold slope for

the latter.

Comparing the Ids−Vgs characteristics of 20 nm heterojunction TFET and Si

FinFET at 0.3 V (Fig. 2.6) [44], it was observed that TFET provides a steeper sub-

16

I O
N
 (

µ
A

/µ
m

)

ION/IOFF

1E+00

1E+01

1E+02

1E+03

1E+04

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

22nm Planar NMOS

22nm Heterojunction TFET

22nm Homojunction TFET

Figure 2.5: Comparison of ION vs ION/IOFF ratio for different operating points on
the ID−VG curve for 0.3V operating voltage [50].

threshold slope and 7 times improvement in the drive current compared to FinFET,

making it preferable for ultra-low voltage operation.

Taking into account the sub-60 mV/dec subthreshold slope and improved en-

ergy efficiency at low voltages obtained with III-V heterojunction TFETs, extensive

voltage scaling can be achieved with significant power savings at ultra-low voltages

while maintaining performance. Therefore, TFET technology is a promising can-

didate for highly parallelized applications where throughput can be maintained due

to massive parallelism and power consumption can be reduced due to highly scaled

voltages [51].

17

D
ra

in
 C

u
rr

en
t

I D
S

[A
/µ

m
]

Gate Voltage VGS [V]

10-8

10-7

10-6

10-5

10-4

10-3

10-9

0 0.2 0.4 0.6

HTFET

Si FinFET

Lg=20nm
VDD=0.3V

7 timesSS=30mV/dec

Figure 2.6: ID−VG characteristics of 20 nm Heterojunction TFET and Si FinFET
at 0.3 V operating voltage [44].

2.3 Accuracy and Energy Efficiency

Taking advantage of the inherent error resilience of deep learning applications

[2–5], a number of timing error based methodologies have been explored recently

to analyze the impact of voltage scaling on the inference accuracy. Timing specula-

tion and voltage underscaling are related approaches [52, 53] which aim at running

the chip at a lower voltage, therefore obtaining significant power savings at the cost

of increased delay and timing errors in the design. These errors are then allowed

to propagate or are corrected based on the error resilience of the application. For

example, in [52], Zhang et al. propose a framework that enables aggressive voltage

underscaling of DNN accelerators, demonstrating significant reduction in power

consumption at no performance cost and less than 1% accuracy cost. A new timing

error recovery technique is proposed which deals with the timing errors in MAC

18

Figure 2.7: CNN accuracy as a function of dynamic variations [54].

units without re-executing erroneous MAC operations. Dynamic per-layer voltage

underscaling is also proposed due to variations in timing error rate across layers

in DNNs. Through these techniques, significant energy savings (34%− 57%) are

achieved on state-of-the-art speech and image recognition benchmarks. In [53], the

authors address the time-consuming gate-level timing simulations of large DNNs

performed for exploration of timing speculation by proposing FATE. This method-

ology implements two complementary ideas: (a) DNN based acceleration of timing

simulations to estimate the delay of a MAC unit as a function of its inputs, and

(b) sampling based timing error estimation where timing simulations are sampled

and performed on a subset of MAC units, and timing errors are probabilistically in-

jected in the remaining MAC units at the same rate. With this methodology, 8−58×

speed-up in timing simulations is achieved with less than 2% error in classification

accuracy.

Finally, in [54], authors propose a cross-layer approach to assess the accuracy

of hardware neural networks (HNNs) to dynamic voltage and temperature varia-

19

Technology Operating Voltage (V) Noise Margin (mV)

20nm III-V TFET
0.3 (Nom) 92.90
0.2 66.24
0.1 34.02

20nm HP FinFET
0.9 (Nom) 249
0.5 186.35

20nm HP CMOS 0.8 (Nom) 236.10

Table 2.1: Noise Margin of 20nm TFET, FinFET and CMOS at Nominal and Scaled
Supply Voltages.

tions. In this approach, the timing errors are measured from hardware layer using

gate-level simulations of a post layout circuit and injected back into neural net-

work inference process to evaluate the accuracy at different operating conditions.

As observed in Fig. 2.7, this approach shows significant reduction in classification

accuracy of CNNs as the voltage is scaled. These recent works exploring the ef-

fect of voltage underscaling [52, 53] and dynamic variations [54] in deep learning

hardware, have further highlighted the importance of understanding the effect of

variations in operating voltage on the classification accuracy, particularly at scaled

supply voltage in sub-20 nm technology nodes.

Operating at low voltages also increases the susceptibility to voltage variations

due to reduced noise margins, as listed in Table 2.1. However, due to inherent error

resilience of deep learning applications, researchers are exploring the accuracy and

power trade-offs to explore the impact of voltage scaling in these applications. Most

of these methodologies rely on time extensive hardware simulations. A timing error

probability model is proposed in this work which can be used to determine the

error probability at the output for a given operating voltage, clock frequency and

percentage noise, without any time consuming simulations.

20

The proposed timing error methodology is demonstrated using both modern

FinFET [55] and emerging TFET [56] technologies in 20 nm technology node.

These technologies exhibit different error vs. energy characteristics at scaled volt-

ages, as investigated in this work. Through this model, the error probability at the

output of a given design can be evaluated for a certain supply voltage, and other pa-

rameters such as operating clock frequency, and the supply voltage variations. The

impact of different operating conditions is discussed and analyzed through multiple

scenarios for FinFET and TFET technology. The proposed error probability models

are also used to analyze the bit-level error resilience of neural networks and quan-

tify the inference accuracy as a function of supply voltage. This provides a new

dimension for optimization and enable better understanding of the impact of volt-

age scaling on energy efficiency and accuracy trade-offs in neural networks, which

can further be leveraged to enable the implementation of efficient error correction

techniques and design low-power DNN accelerators.

21

Chapter 3

Error Probability Modeling

Methodology - Simple Sequential

Path

The modeling methodology proposed in this work uses a timing or voltage

distribution (determined based on the operating supply voltage and power supply

noise) to mathematically compute the timing error probability at the output of a

given circuit (Step 2 in Fig. 1.1) [51]. Considering a simple sequential timing path

(Fig. 3.1) as an example, this chapter presents the proof of concept for the com-

putation of timing error probability. The rest of the chapter is organized as fol-

lows. Section 3.1 describes the computation of timing probability distribution from

a given voltage distribution at certain operating voltage and power supply noise.

The methodology for the computation of timing error probability from the given

distribution for a simple sequential path is explained in section 3.2. The imple-

22

mentation results of the methodology for a simple timing path is analyzed in sec-

tion 3.3 while considering different scenarios based on the operating voltage, clock

frequency and power supply noise. Finally, the results are discussed in section 3.4.

3.1 Timing Probability Distribution

In highly parallel synchronous circuits, simultaneous switching of a large num-

ber of registers produce a significant current drawn from the power networks, there-

fore, causing voltage fluctuations [27, 57]. The fluctuations in the power supply

voltage can be modeled as a random variable with a Gaussian distribution. The stan-

dard deviation (σ) and mean (µ) of the distribution is represented by the power sup-

ply noise and the operating voltage, respectively [51, 58]. Considering the unique

voltage-delay characteristic of the technology, the timing probability distribution

can be modeled as a function of the given voltage distribution. The probability

density function (pdf) obatined is used in the proposed modeling methodology to

determine the timing error probability.

The timing probability distribution is determined from the voltage distribution

by applying the change of variable technique [59]. According to this technique, if

X is a continuous random variable with the probability density function (pdf) fX ,

then the probability density function of the random variable Y , defined as Y = g(X),

is given by,

fY (y) = fX [g−1(y)]
∣∣∣∣ d
dy

g−1(y)
∣∣∣∣. (3.1)

For a simple sequential circuit with a single input (Fig. 3.1), the overall delay of

the timing path can be determined for different voltages and can be used to model

23

Figure 3.1: Simple sequential data path.

the voltage-delay relationship for the path. Given the voltage pdf fV (v), with the

voltage random variable represented as a function of the timing random variable

v(t), the timing pdf fT (t) can be determined from (3.1) as,

fT (t) = fV [v(t)]
∣∣∣∣ d
dt

v(t)
∣∣∣∣. (3.2)

As an example, the voltage and timing pdf of the sequential data path shown

in Fig. 3.1 are illustrated in Fig. 3.2(a) for 20nm high performance (HP) FinFET

technology and in Fig. 3.2(b) for 20nm heterojunction (HetJ) TFET technology.

The mean (µ) of the voltage distributions are the respective nominal voltages, 0.9V

for FinFET and 0.3V for TFET, and the standard deviations (σ) considered are 10%

and 30%. The timing pdf shown in these figures is obtained from (3.2). The skewed

end in timing pdf is due to the nonlinear voltage-delay relationship, especially at

lower supply voltages where an exponential increase in delay is observed.

3.2 Error Probability Computation

In a synchronous digital circuit, a data path fails timing if the summation of the

overall delay through the combinational logic (tG) and the setup time (tS) is greater

than the clock period (Tclk),

tG + tS > Tclk. (3.3)

24

0 1 2
Voltage pdf

0

0.5

1

1.5

2

2.5

3

3.5

4
V
 = 10%

V
 = 30%

2 4 6 8
Delay pdf

0

0.5

1

1.5

2

2.5

V
 = 10%

V
 = 30%

(a) 20nm HP FinFET

-1 0 1
Voltage pdf

0

0.5

1

1.5

2

2.5

3

3.5

4
V
 = 10%

V
 = 30%

0 10 20 30
Delay pdf

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
V
 = 10%

V
 = 30%

(b) 20nm III-V HetJ TFET

Figure 3.2: Voltage pdf and delay pdf of the sequential data path shown in Fig. 3.1
at two σ values of 10% and 30%: (a) 20 nm FinFET technology, (b) 20 nm hetero-
junction TFET technology.

25

Therefore, the timing error probability can be computed by the integration of the

timing pdf, obtained from (3.2) for a simple datapath, where the lower integration

limit is defined by the operating clock period. Thus, the timing error probability

can be formulated as,

Error Probability, P =
∫

∞

Tclk

p(δ)dδ , (3.4)

where Tclk is the clock period and p(δ) is the timing pdf. Due to the voltage-delay

relationship, the timing probability can also be computed from the voltage pdf by

determining the voltage at which the delay of the timing path exceeds the operating

clock period. The voltage at which the delay of the timing path is equal to the clock

period can be determined by using the function, v(t) (3.2). Therefore, the timing

error probability can be computed as,

Error Probability, P =
∫ Vmax

−∞

p(V)dV, (3.5)

where the upper integration limit Vmax is the maximum operating voltage at which

the path with the largest delay fails timing and p(V) is the voltage pdf.

As an example, both (3.4) and (3.5) are illustrated in Fig. 3.3 where the circuit

shown in Fig. 3.1 is implemented with 20nm HetJ TFET technology. The clock

period is 500 ps and the operating voltage below which the path delay exceeds 500

ps is 0.178 V. The shaded regions in both graphs are equivalent and represent the

error probability of approximately 11%. The proposed formulation of timing error

probability is verified through Monte Carlo simulations. Specifically, the sequential

data path shown in Fig. 3.1 is designed in 20nm FinFET technology and Monte

26

500 ps
0

0.1

0.2

0.3

0.4

0.5

0.6 Error Probability

(a) Timing pdf

0.176 V
0

1

2

3

4
Error Probability

(b) Voltage pdf

Figure 3.3: Illustration of timing error probability of a data path shown in Fig. 3.1
and designed in 20nm HetJ TFET technology. The error probability is computed
from (a) timing pdf by using (3.4) and (b) voltage pdf by using (3.5). The shaded
regions in both graphs are equivalent.

27

Carlo simulations are performed at 0.9V nominal supply voltage with 10% σ . The

clock frequency is in the range of 3 to 4 GHz. The difference between the timing

error probability obtained via Monte Carlo simulations and obtained via (3.5) is

negligible where the average error is approximately 0.12%.

3.3 Results

The simple datapath (Fig. 3.1), designed using 20nm HP FinFET [55] and 20nm

HetJ TFET [56] technologies, is simulated in HSPICE to obtain voltage-dependent

delay values. The proposed methodology can then be used to evaluate the depen-

dency on the clock period and power supply noise (σ in voltage pdf). For this

analysis, the power supply noise is varied from 1–30% while the mean of the volt-

age pdf is the operating supply voltage. The timing error probability results are

analyzed while considering different scenarios, as described in the following sub-

sections.

3.3.1 Error Probability for Different Clock Periods

The timing error probability is computed for different clock periods and power

supply noise, as shown in Fig. 3.4, for the two technologies. Respective nominal

voltages, 0.9V for FinFET and 0.3V for TFET, are considered as the operating sup-

ply voltage for this analysis. As illustrated in the figure, an increase in the clock

period improves the timing error probability at the output, but it also depends on

the uncertainty in the supply voltage. For instance, it is observed in Fig. 3.4(a) that

for 1% supply noise, a 1.2% increase in the clock period reduces the error proba-

bility drastically (≈ 96%). However, when considering 20% supply noise, a 75.4%

28

Technology
fclk (GHz) for different σV DD

1% 5% 10%

HP FinFET 3.86 3.65 3.30

HetJ TFET 2.63 1.56 0.66

Table 3.1: Operating clock frequencies for different power supply noise in simple
sequential path, designed using 20nm HP FinFET and 20nm HetJ TFET technolo-
gies, to obtain error probability ≈2%. Nominal supply voltage is used for both the
technologies.

increase in the clock period is required for a similar reduction in error. TFET tech-

nology demonstrates a much higher error probability compared to FinFET technol-

ogy, particularly at higher supply noise (>10%). This observation further implies

that the circuit can operate at a higher frequency at nominal voltage for FinFET

technology as compared to TFET technology, as listed in Table 3.1. It is also evi-

dent that the operating clock frequency required to obtain certain error probability,

decreases with increasing power supply noise. For example, considering the circuit

designed using TFET technology and operating at 0.3V, the maximum clock fre-

quency to achieve ≈2% error probability is 2.6GHz at 1% supply noise as opposed

to 655MHz at 10% supply noise.

3.3.2 Error Probability at Same ClockPeriod-to-PathDelay Ratio

In this scenario, 20nm HP FinFET and 20nm HetJ TFET technologies are com-

pared while considering different frequencies for each technology in order to obtain

same ClockPeriod-to-PathDelay ratio of 2. The power supply voltage considered

for this analysis are the respective nominal voltages for the two technologies, i.e.

0.9V for FinFET and 0.3V for TFET. The operating clock frequency, path delay,

29

200 400 600
Clock period (ps)

0

0.2

0.4

0.6

T
im

in
g

er
ro

r
pr

ob
ab

ili
ty

1%
5%
10%
20%
30%

Voltage

(a) 20nm HP FinFET

0 1000 2000 3000
Clock period (ps)

0

0.2

0.4

0.6

T
im

in
g

er
ro

r
pr

ob
ab

ili
ty

1%
5%
10%
20%
30%

Voltage

(b) 20nm III-V HetJ TFET

Figure 3.4: Dependence of error probability on clock period and power supply noise
for the circuit shown in Fig. 3.1: (a) 20nm FinFET technology, (b) 20nm HetJ TFET
technology.

30

Technology Voltage (V) Delay (ps) fclk (GHz) P10%

HP FinFET 0.9 129.4 3.86 ≈0

HetJ TFET 0.3 219 2.28 14.11%

Table 3.2: Timing characteristics for error probability computation at respective
nominal supply voltages for 20nm HP FinFET and 20nm HetJ TFET technologies.
The ClockPeriod-to-PathDelay ratio considered for both the technologies is 2.

0 0.1 0.2 0.3
Power supply noise,

VDD

0

0.1

0.2

0.3

0.4

E
rr

or
 p

ro
ba

bi
lit

y

TFET
FinFET

Figure 3.5: Error probability as a function of noise at respective nominal supply
voltages (0.9V for FinFET and 0.3V for TFET). The ClockPeriod-to-PathDelay
ratio considered is 2.

and the timing error probability at 10% noise are listed in Table 3.2 for the two

technologies. The error probabilities of the two technologies are plotted in Fig. 3.5

as a function of power supply noise.

Even though FinFET circuit operates at a higher frequency compared to the

TFET circuit, the latter exhibits a significantly higher error probability. This can

be attributed to higher sensitivity to voltage fluctuations at the nominal voltage in

31

0 0.1 0.2 0.3
Power supply noise,

VDD

0

0.1

0.2

0.3

0.4

0.5

E
rr

or
 p

ro
ba

bi
lit

y

TFET
FinFET

Figure 3.6: Error probability as a function of noise at respective nominal supply
voltages (0.9V for FinFET and 0.3V for TFET). The clock frequency considered
for both the technologies is 4GHz.

TFET, as compared to FinFET (discussed in detail in section 5.2). Therefore, even

though TFET has higher available timing slack compared to FinFET, a drastic in-

crease in the timing error probability is observed in TFET technology for power

supply noise >5%.

3.3.3 Error Probability at Same Clock Frequency

The two technologies are compared at 4GHz operating clock frequency while

considering nominal operating voltages. The ClockPeriod-to-PathDelay ratio for

the two technologies at 4GHz clock frequency is 1.94 and 1.14 for FinFET and

TFET technologies, respectively. TFET has a much higher delay as compared to

FinFET at the nominal voltages due to which the timing error probability is signifi-

cantly higher, as shown in Fig. 3.6.

32

0 0.1 0.2 0.3
Power supply noise,

VDD

0

0.1

0.2

0.3

0.4

0.5

E
rr

or
 p

ro
ba

bi
lit

y

TFET
FinFET

Figure 3.7: Error probability as a function of noise at 0.4V supply voltage and
2GHz clock frequency.

3.3.4 Error Probability at Same Voltage

The operating voltage and frequency considered in this analysis for both the

technologies is 0.4V and 2GHz. The delay of the timing path at such low voltage

is much lower in TFET as compared to FinFET. Therefore, the ClockPeriod-to-

PathDelay ratio for FinFET and TFET technologies is 1.3 and 3.1, respectively.

The higher ratio results is more available timing slack, due to which TFET exhibits

a much lower timing error probability in this scenario as compared to FinFET. The

respective error probabilities are shown in Fig. 3.7.

33

3.4 Discussion

From these preliminary results, it is observed that the timing accuracy of the

datapath depends on the operating clock frequency and power supply noise, and

can be improved by increasing the clock period and controlling the supply voltage

uncertainties within certain range (based on the technology in consideration). Com-

paring the two technologies and considering same clock frequency, it is evident that

if TFET and FinFET circuits operate at a sufficiently low voltage, TFET exhibits a

much lower error probability since it outperforms FinFET at low voltages. How-

ever, at the respective nominal voltages, TFET has a much higher error probability

due to comparatively higher delays.

Therefore, TFET technology is a promising approach to achieve lower sub-

threshold slope as compared to FinFET technologies, therefore enabling aggressive

voltage scaling and energy efficient designs. However, due to lower noise margins

at low voltages and higher sensitivity of delay to voltage variations, it is critical

to analyze the accuracy of the circuit. Irrespective of the technology in considera-

tion, the timing error probability computation using the proposed methodology can

be used to further evaluate the timing accuracy, energy efficiency and performance

trade-offs (discussed in detail later).

34

Chapter 4

Error Probability Modeling

Methodology - Multiple Timing

Paths and Pipeline Stages

Computation of the timing error probability for a simple single-input timing

path is discussed in the previous chapter, providing a proof of concept of applying

the proposed modeling methodology to analyze the effect of operating clock period

and supply voltage fluctuations on the timing accuracy of the path. The modeling

methodology is further extended in this chapter to incorporate the circuits with mul-

tiple inputs driving an output, and with multiple pipeline stages [6]. The rest of the

chapter is organized as follows. Section 4.1 describes the error probability com-

putation in circuits with multiple timing paths driving an output within the same

pipeline stage. In section 4.2, the methodology is extended to circuits with multiple

pipeline stages for determining the error probability at the output driven by sequen-

35

Figure 4.1: 1-bit MAC unit to illustrate multiple paths within a pipeline stage and
sequentially adjacent pipeline stages.

tially adjacent paths. The proposed methodology is summarized in 4.3 through the

results obtained when considering the example of a 2-bit multiplier circuit with

input and output pipeline stages.

4.1 Error Probability for Multiple Timing Paths

This section discusses the error probability modeling methodology for multiple

timing paths within the same pipeline stage, such as the error probability at node

out1 in Fig. 4.1. Here, the average supply voltage of the gates within the same

pipeline stage is assumed to be the same. This assumption follows the observation

that there is very high spatial correlation in the average supply voltage of the adja-

cent nodes [58]. It has also been demonstrated by [60] that the delay impact of the

power supply noise is determined by the average supply voltage rather than peak

voltage. Thus, the timing error probability of an output driven by multiple paths is

determined by the integration of the voltage pdf where the upper integration limit is

determined by the maximum voltage at which at least one of the timing paths fails.

This path corresponds to the critical path.

36

As an example, consider the timing paths Path A and Path B of the same pipeline

stage in Fig. 4.1, where 20nm HetJ TFET technology is used. For 0.3V supply volt-

age with 30% σ , and 400ps clock period, the voltage pdf and delay pdf correspond-

ing to these two timing paths are shown in Fig. 4.2. It is evident from Fig. 4.2(a)

that the error probability for Path B is greater, since the delay of Path B is higher

than the delay of Path A. Therefore, from the delay pdf s of Path A and Path B, the

overall error probability can be determined by the summation of the individual er-

ror probabilities minus the probability that both paths fail (intersection probability).

Equivalently, the overall error probability can be determined from the voltage pdf

by identifying the voltage at which the delay of one of the timing paths is equal

to the clock period (0.26V in this example). Since the delay of Path B is greater,

Path B fails first as voltage is reduced. Thus, it is computationally more feasible

to determine the overall error probability by integrating the voltage pdf with the

appropriate upper limit.

Based on the above discussion, the formulation of the appropriate upper limit

can be generalized for n paths driving an output as follows,

V1,V2, . . . ,Vn = v1(tclk),v2(tclk), . . . ,vn(tclk), (4.1)

where tclk is the clock period, and V1,V2, . . . ,Vn are the supply voltages at which
the corresponding timing path reaches the maximum delay to satisfy the timing

requirement at a specific frequency. These voltages depend upon the data path depth

as well as the specific gates used along the path. The maximum supply voltage,

Vmax, at which one of the timing paths fail can be determined from (4.1) as,

Vmax = max(V1,V2, . . . ,Vn). (4.2)

37

400 ps
0

0.05

0.1

0.15

Path A Delay pdf

Path B Delay pdf

Path A error probability

Path B error probability

(a) Timing pdf

 0.26 V
0

0.2

0.4

0.6

0.8

1

1.2
Path A error probability

Path B error probability

(b) Voltage pdf

Figure 4.2: Example to illustrate the timing error probability calculation of multiple
timing paths within a sequential circuit: (a) Delay pdfs and (b) voltage pdf of Path A
and Path B in Fig. 4.1, designed using 20nm HetJ TFET technology. The operating
voltage and clock period are 0.3V (σ = 30%) and 400ps, respectively.

38

Using (3.5), the overall output error probability can be determined by the integra-
tion of the voltage pdf where the upper integration limit is equal to (4.2).

4.2 Error Probability for Multiple Pipeline Stages

The previous section discusses the error probability computation within the

same pipeline stage. In this section, the methodology is extended to determine

the timing error probability between sequentially adjacent paths or timing paths

between multiple pipeline stages.

Unlike previous section where timing paths within the same pipeline stage are

assumed to have the same average supply voltage (due to spatial proximity), the

supply voltage of different pipeline stages is assumed to be independent. This as-

sumption is based on the observations in [58, 60], where an average supply voltage

is considered for each switching interval to account for temporal and spatial corre-

lation in the voltage of adjacent nodes. Therefore, referring to Fig. 4.1, the timing

error probability of each pipeline stage can be independently determined from (3.5)

and (4.2). The error probability at the final output node out can then be determined

as the union of the error probabilities of each pipeline stage, as the error at the out-

put can be caused by the failure of either stage or the failure of both stages at the

same time. Thus, the error at node out is given by

Pout = Pout1∪Pout2 = Pout1 +Pout2−Pout1×Pout2. (4.3)

The output probability, Pout , is plotted in Fig. 4.3 as a function of power supply

noise at 0.3V operating voltage and 1.8GHz clock frequency.

This approach can be generalized for a circuit with n pipeline stages as follows,

39

0 0.1 0.2 0.3
Power supply noise,

VDD

0

0.2

0.4

0.6

0.8

E
rr

or
 P

ro
ba

bi
lit

y,
 P

m
ul P

mul

P
add

P
out

Figure 4.3: Timing error probability as a function of power supply noise, σvdd , for
the output node of a 1-bit MAC unit in 20nm HetJ TFET technology with 0.3V
operating voltage and 1.8GHz clock frequency.

Pout = Pout1∪Pout2 . . .∪Poutn, (4.4)

where Pout1,Pout2, . . . ,Poutn are the error probabilities at the output of each pipeline
stage and Pout is the error probability for the final output. Furthermore, (4.4) can be

applied when computing the timing error probability after n accumulations. For in-

stance, if the feedback path D (Fig. 4.1) is simulated through multiple iterations, it

is observed in Fig. 4.4, that the timing error probability approaches 1 after 40 itera-

tions for 5% power supply noise when TFET technology is used. This is equivalent

to the timing error probability at the output of 40 sequentially adjacent paths with

the same delay as the feedback path D. The number of sequentially adjacent paths

reduce to 18 for 10% power supply noise exhibiting a strong trade-off between the

timing error probability and number of accumulations in the MAC.

40

0 20 40 60
No. of sequentially adjacent paths

0

0.2

0.4

0.6

0.8

1

E
rr

or
 P

ro
ba

bi
lit

y

Noise = 5%
Noise = 10%
Noise = 15%
Noise = 20%
Noise = 25%
Noise = 30%

Figure 4.4: Timing error probability as a function of number of sequentially adja-
cent paths for different power supply noise at 0.3V operating voltage for 20nm HetJ
TFET technology.

Figure 4.5: Schematic of a 2-bit multiplier with input and output pipeline stages.

4.3 Results

The proposed methodology to determine the error probability is summarized

through a 2-bit multiplier as illustrated in Fig. 4.5. The most significant bit (MSB)

out3 is used to clarify the methodology. Both FinFET (20nm HP) and TFET (20nm

HetJ) technologies are considered. The clock frequency is 2.5GHz and the supply

voltages are 0.9V and 0.3V (nominal voltages), respectively, for FinFET and TFET

technologies. As observed in the figure, the four inputs to the multiplier are the

41

output of the first pipeline stage (B0, A0, A1, and B1) and therefore, they each have

a corresponding timing error probability, as determined by (3.5) and (4.2). The

timing error probabilities for the four inputs are shown in Fig. 4.6.

The timing error at node out3 can be due to timing failure within the first

pipeline stage (e.g., at least one of the four outputs B0, A0, A1, and B1 fails) or

due to timing error along the critical path within the second pipeline stage (e.g.

node P3 fails). Note that when multiple inputs from the first pipeline stage drive

the output within the second pipeline stage, the input with the highest timing error

probability is considered as this input represents the highest voltage (Vmax) at which

one of the inputs fails. Thus, Eqn. (4.4) can be applied to determine the timing

error probability at node out3 as,

Pout3 = PP3 ∪ max(PA0,PB0,PA1,PB1), (4.5)

where PP3 is the timing error probability at the multiplier output P3 (second pipeline
stage) and PA0,PB0,PA1,PB1 are the timing error probabilities from the first pipeline

stage. The timing error probability at out3 is illustrated in Fig. 4.7.

This example illustrates the several scenarios described previously:

• Timing error probability of a single pipeline stage with one timing path,

see (3.5).

• Timing error probability when there are more than one timing paths that drive

an output within a single pipeline stage, see (4.1) and (4.2).

• Timing error probability when there are multiple pipeline stages between pri-

mary inputs and primary outputs, resulting in multiple sequentially adjacent

timing paths, see (4.4).

42

0 0.1 0.2 0.3
Power Supply Noise,

VDD

0

0.005

0.01

0.015

0.02

E
rr

or
 P

ro
ba

bi
lit

y
P

A0

P
A1

P
B0

P
B1

(a) 20nm HP FinFET

0 0.1 0.2 0.3
Power Supply Noise,

VDD

0

0.05

0.1

0.15

0.2

E
rr

or
 P

ro
ba

bi
lit

y

P
A0

P
A1

P
B0

P
B1

(b) 20nm HetJ TFET

Figure 4.6: Timing error probabilities as a function of power supply noise, σV DD,
for the four inputs to the multiplier (Fig. 4.5) designed using (a) 20nm HP FinFET,
and (b) 20nm HetJ TFET technologies. The respective operating voltages consid-
ered are 0.9V and 0.3V, and the clock frequency is 2.5GHz.

43

0 0.1 0.2 0.3
Power Supply Noise,

VDD

0

0.01

0.02

0.03

0.04

0.05
E

rr
or

 P
ro

ba
bi

lit
y

P
A1

P
P3

P
out3

(a) 20nm HP FinFET

0 0.1 0.2 0.3
Power Supply Noise,

VDD

0

0.1

0.2

0.3

0.4

E
rr

or
 P

ro
ba

bi
lit

y

P
B1

P
P3

P
out3

(b) 20nm HetJ TFET

Figure 4.7: Timing error probabilities as a function of power supply noise, σV DD,
for MSB output of the multiplier (out3).

44

Chapter 5

Case Study - 8-bit MAC

A multiply-accumulate unit is the basic computation block in deep learning

hardware. In the case study discussed in this chapter, the proposed error probability

modeling methodology [6] is applied to an 8-bit MAC circuit designed using 20nm

FinFET [55] and 20nm TFET [56] technologies. In FinFET, both high performance

(HP) and low power (LP) technologies are considered, and for TFET, homojunction

(HomJ) and heterojunction (HetJ) technologies are considered when evaluating the

timing error probabilities. The rest of the chapter is organized as follows. Sec-

tion 5.1 provides a brief description of the 8-bit MAC circuit. A comparative analy-

sis of the timing error probability in TFET- and FinFET-based circuits is described

in section 5.2. In section 5.3, the proposed methodology is implemented with dif-

ferent operating conditions to quantify the dependency of timing error probability

on clock frequency (and therefore, available timing slack), and supply voltage. The

trade-off between error probability and power consumption is also evaluated. Fi-

nally, the chapter is concluded with a brief discussion of the results obtained for

8-bit MAC in section 5.4.

45

Four 4x4

Multipliers

Input

DFFs

A7-0

B7-0

Partial

Products

output

DFFs

Partial

Product

Computation

16-bit Adder

8x8

Multiplier

Output

DFFs

Output

DFFs

8-bit

MAC

output

Figure 5.1: Block diagram of 8-bit MAC used in the case study to characterize the
trade-offs among voltage, error probability, and power consumption.

5.1 Circuit Description and Implementation

The 8-bit MAC circuit, considered in this case study, consists of three pipeline

stages - 4-bit multiplier, partial product computation circuit, and 16-bit adder (as

shown in Fig. 5.1). The first stage consists of four 4× 4 multipliers. Each 4-

bit multiplier (Fig. 5.2(a)) has 16 bitwise AND operations and three 4-bit adders.

The partial products are computed within the second pipeline stage through 16 full

adders and three half adders (Fig. 5.2(b)). The last stage consists of a 16-bit carry

look-ahead adder for accumulation.

Since each pipeline stage consists of multiple timing paths, (3.5) and (4.2) are

used to determine the path that results in the highest timing error probability, which

corresponds to the critical path. Once the error probabilities at the outputs of each

pipeline stage are determined, the error probabilities at the 16 primary outputs of

the MAC unit are determined from (4.4). Note that this calculation assumes a single

iteration of accumulation stage where the input of the 16-bit adder (that represents

the feedback) has zero error probability. Eqn. (4.4) can be recursively applied to

determine the error rate after any number of iterations, similar to the 1-bit MAC

example illustrated in Fig. 4.4.

The timing error probability at each output of the 8-bit MAC unit is determined.

For FinFET technology, the nominal supply voltage is 0.9V whereas for TFET tech-

46

A0A1A2A3

A0A1A2A3

Y0Y1Y2Y3 X0X1X2X3

0

0 Cin

A0A1A2A3

S0
S1S2S3Cout

Y0Y1Y2Y3 X0X1X2X3
0 Cin S0

S1S2S3Cout

A0A1A2A3

Y0Y1Y2Y3 X0X1X2X3
0 Cin

S0S1S2S3Cout

P0P1P2P3P4P5P6P7

B0

B1

B2

B3

4-bit Full Adder

4-bit Full Adder

4-bit Full Adder

(a) 4-bit multiplier

4x4

Multiplier

4x4

Multiplier

4x4

Multiplier

4x4

Multiplier

Full-

Adder

Full-

Adder

Full-

Adder

Full-

Adder

Full-

Adder

Full-

Adder

Full-

Adder

Full-

Adder

Full-

Adder

Full-

Adder

Full-

Adder

Full-

Adder

Full-

Adder

Full-

Adder

Full-

Adder

Full-

Adder

Half-

Adder

Half-

Adder

Half-

Adder

P
P

0
4

P
P

0
5

P
P

0
6

P
P

0
7

P
P

1
0

P
P

1
1

P
P

1
2

P
P

1
3

P
P

2
0

P
P

2
1

P
P

2
2

P
P

2
3

P
P

1
4

P
P

1
5

P
P

1
6

P
P

1
7

P
P

2
4

P
P

2
5

P
P

2
6

P
P

2
7

P
P

3
0

P
P

3
1

P
P

3
2

P
P

3
3

P
P

3
4

P
P

3
5

P
P

3
6

P
P

3
7

P
P

0
0

P
P

0
1

P
P

0
2

P
P

0
3

PP3 PP1 PP0

A3-0B3-0A7-4B3-0A3-0B7-4A7-4B7-4

PP2

P0P1P2P3P4P5P6P7P8P9P10P11P12P13P14P15

0

(b) 8-bit multiplier

Figure 5.2: Detailed block diagram of (a) 4-bit multiplier, and (b) 8-bit multiplier
circuits.

47

0 0.05 0.1 0.15 0.2
Power supply noise,

VDD

0

0.05

0.1

0.15

E
rr

or
 P

ro
ba

bi
lit

y,
 P

ou
t

1
2
3
4
5
6

7
8
9
10
11
12

13
14
15
16

Output bits

(a) 20nm HP FinFET

0 0.05 0.1 0.15 0.2
Power supply noise,

VDD

0

0.2

0.4

0.6

0.8

E
rr

or
 P

ro
ba

bi
lit

y,
 P

ou
t

(b) 20nm III-V HetJ TFET

Figure 5.3: Timing error probability of each output bit of 8-bit MAC unit as a
function of power supply noise, σvdd/µvdd: (a) 20nm HP FinFET technology with
0.9V operating voltage and 3.06GHz clock frequency and (b) 20nm HomJ TFET
technology with 0.3V operating voltage and 1.81GHz clock frequency. Note that
clock frequencies are chosen to ensure that ClockPeriod-to-PathDelay is the same
for both cases.

48

nology, the voltage is 0.3V. The clock frequency for each technology is set to ensure

that the ratio of the clock period to longest data path delay at nominal voltage, i.e.

ClockPeriod-to-PathDelay ratio, is equal to 1.5 for both technologies. To satisfy

this ratio, the clock frequency for FinFET-based MAC and TFET-based MAC are,

respectively, 3.06GHz and 1.81GHz. The results are illustrated in Fig. 5.3 and are

similar to the error probability vs. power supply noise results for a simple sequential

path (Fig. 3.5).

5.2 FinFET vs. TFET technologies

It was observed in Fig. 3.4, Fig. 3.5, and Fig. 5.3, that for the same power sup-

ply noise, TFET technology has a much higher timing error probability compared

to FinFET. The effect of power supply noise on the error probability in the two tech-

nologies is discussed in detail in this section. The voltage-delay characteristic of the

highest delay path in 8-bit MAC is shown in Fig. 5.4 for FinFET and TFET technol-

ogy. Comparing HP FinFET (Fig. 5.4(a)) and HetJ TFET (Fig. 5.4(c)) technologies,

it is evident that the sensitivity of delay to voltage scaling below the nominal voltage

is higher for TFET technology. For FinFET technology, this sensitivity increases

only when the voltage is reduced to approximately the threshold voltage. Thus, the

effect of the 10% σ (RMS supply noise) for the voltage pdf has a more significant

impact on error probability for the TFET-based MAC unit. The voltage pdf for the

highest-delay path within the 8-bit MAC unit is plotted in Fig. 5.5, where the maxi-

mum voltage at which this path fails is illustrated for both technologies (0.56 V for

FinFET and 0.2 V for TFET). Since the shaded area gives the error probability, as

determined by (3.5), TFET technology exhibits a greater error. This susceptibility

49

Vdd (V)

D
el

ay
 (

ns
)

(a) 20nm HP FinFET

Vdd (V)

D
el

ay
 (

ns
)

(b) 20nm LP FinFET

Vdd (V)

D
el

ay
 (

ns
)

(c) 20nm III-V HetJ TFET

Vdd (V)

D
el

ay
 (

ns
)

(d) 20nm III-V HomJ TFET

Figure 5.4: Dependence of delay on voltage of the highest-delay path in 8-bit MAC
unit for (a) 20nm HP FinFET, (b) 20nm LP FinFET, (c) 20nm HomJ TFET, and (d)
20nm HetJ TFET technologies.

50

0.56 0.9
Voltage (V)

0

1

2

3

4

(a) 20nm HP FinFET

0.2 0.3
Voltage (V)

0

1

2

3

4

(b) 20nm III-V HetJ TFET

Figure 5.5: Voltage pdf and the error probability of the highest-delay path in 8-bit
MAC unit for (a) 20nm FinFET and (b) 20nm HetJ TFET technologies. The mean
of the pdf corresponds to the nominal operating voltage and the σ is 10%.

51

can be significantly reduced only when the noise is controlled within 2–3% of the

supply voltage.

Similarly, comparing the LP FinFET technology (Fig. 5.4(b)) with HP FinFET

and HomJ TFET technology (Fig. 5.4(d)) with HetJ TFET, the former technologies

have comparatively higher sensitivity to voltage scaling (and higher delay), which

would result in higher timing error probabilities, as observed in the results analyzed

in the next section.

5.3 Results

To evaluate the dependence of timing error probability on the operating clock

frequency, and supply voltage, the most significant bit (MSB) output of the 8-bit

MAC is considered. The trade-off between the timing error probability and power

consumption is also evaluated. Both FinFET and TFET technologies at 20nm node

are considered in this analysis. For FinFET, high performance (HP) and low power

(LP) technologies are considered. For TFET, homojunction (HomJ) and heterojunc-

tion (HetJ) technologies are considered. The timing error probability computed by

the implementation of the proposed methodology is analyzed as follows.

5.3.1 Dependence on Timing Slack

The operating voltage considered for the technologies are the respective nomi-

nal voltages, 0.9V for FinFET and 0.3V for TFET. Due to different voltage-delay

characteristics of the technologies, the operating clock frequency is varied to obtain

ClockPeriod-to-PathDelay ratio in the range of 1 to 2. The different clock frequen-

cies are listed in Table 5.1. The corresponding timing error probabilities are shown

in Fig. 5.6 for 10% power supply noise.

52

1 1.2 1.4 1.6 1.8 2
ClockPeriod-to-PathDelay ratio

0

0.2

0.4

0.6

0.8
E

rr
or

 P
ro

ba
bi

lit
y,

 P
ou

t HP FinFET
LP FinFET

(a) 20nm FinFET

1 1.2 1.4 1.6 1.8 2
ClockPeriod-to-PathDelay ratio

0

0.2

0.4

0.6

0.8

1

E
rr

or
 P

ro
ba

bi
lit

y,
 P

ou
t HetJ TFET

HomJ TFET

(b) 20nm III-V TFET

Figure 5.6: Dependence of timing error probability on ClockPeriod-to-PathDelay
ratio for the MSB of 8-bit MAC unit at 10% power supply noise at nominal oper-
ating voltages: (a) 20nm FinFET and (b) 20nm TFET technologies. Note that the
clock frequencies corresponding to each ClockPeriod-to-PathDelay ratio are listed
in Table 5.1.

53

Technology
fclk (GHz) for different Tclk/dpath

1 1.2 1.5 1.75 2

HP FinFET 4.49 3.82 3.06 2.62 2.29

LP FinFET 3.08 2.57 2.05 1.76 1.54

HetJ TFET 2.72 2.27 1.81 1.55 1.36

HomJ TFET 0.36 0.29 0.23 0.20 0.17

Table 5.1: Operating clock frequencies for FinFET and TFET technologies to obtain
different ClockPeriod-to-PathDelay ratios. Nominal supply voltage is used for both
technologies

As shown in this figure, for FinFET technologies, the error probability can be

significantly reduced when sufficient timing slack is provided. For instance, at 10%

supply noise, if the ClockPeriod-to-PathDelay ratio is greater than 1.5, the error

probability is negligible for HP FinFET technology. Alternatively, for TFET tech-

nology, there is considerable error probability even when the clock period is twice

the largest path delay. As described before, this behavior is due to the significantly

higher sensitivity of delay to supply voltage for TFET technology. Comparing HP

FinFET and LP FinFET, the timing error probability for the latter becomes negli-

gible when the ClockPeriod-to-PathDelay ratio is approximately 2 as opposed to

1.5 for HP FinFET. This is also because of higher sensitivity of delay to voltage

variation, as shown in Fig. 5.4(b).

5.3.2 Dependence on Supply Voltage

In this analysis, the operating voltage is scaled below the nominal voltage for

both the technologies. For FinFET, the voltage is scaled from 0.9V to 0.55V while

for TFET, the voltage is scaled from 0.3V to 0.175V. The power supply noise con-

54

sidered is 5%. For each supply voltage, the clock frequency is determined to en-

sure that the ClockPeriod-to-PathDelay ratio remains the same at nominal voltage.

Thus, the MAC units operating at scaled voltages run at lower frequency (Table 5.1).

ClockPeriod-to-PathDelay ratios of 1.2, 1.5, and 2 are considered in this analysis.

The error probability results are listed in Tables 5.2 and 5.3 for, respectively, Fin-

FET and TFET technologies. According to these tables, HP FinFET technology

exhibits enhanced voltage scaling capability as the impact on error probability is

relatively weaker compared to LP FinFET and TFET technologies. For example, at

a ClockPeriod-to-PathDelay ratio of 1.5, supply voltage can be scaled down to 0.7V

with an error probability of less than 2% for HP FinFET technology. Alternatively,

for TFET technology, the error probabilities quickly increase as the supply voltage

is reduced. To achieve similar error probabilities as FinFET technology, the power

supply noise needs to be ≈ 3% or less in TFET-based MAC units.

55

V
D

D
(V

)
L

P
Fi

nF
E

T
H

P
Fi

nF
E

T
T c

lk
d p

at
h
=

1.
2

T c
lk

d p
at

h
=

1.
5

T c
lk

d p
at

h
=

2
T c

lk
d p

at
h
=

1.
2

T c
lk

d p
at

h
=

1.
5

T c
lk

d p
at

h
=

2

0.
90

3.
65

%
0.

01
%

≈
0%

0.
01

%
≈

0%
≈

0%
0.

85
27

.2
1%

0.
37

%
≈

0%
0.

49
%

≈
0%

≈
0%

0.
80

76
.4

0%
5.

97
%

0.
05

%
7.

18
%

≈
0%

≈
0%

0.
75

98
.5

2%
37

.0
1%

1.
42

%
40

.6
4%

0.
05

%
≈

0%
0.

70
10

0%
84

.9
4%

15
.3

3%
86

.9
7%

1.
34

%
≈

0%
0.

65
10

0%
99

.4
1%

60
.8

5%
99

.5
4%

14
.0

7%
0.

07
%

0.
60

10
0%

10
0%

95
.5

9%
10

0%
57

.4
4%

1.
55

%
0.

55
10

0%
10

0%
99

.9
4%

10
0%

94
.4

3%
15

.2
6%

Ta
bl

e
5.

2:
Ti

m
in

g
er

ro
r

pr
ob

ab
ili

ty
fo

r
th

e
M

SB
of

8-
bi

tM
A

C
un

it
de

si
gn

ed
in

20
nm

Fi
nF

E
T

te
ch

no
lo

gy
fo

r
di

ff
er

en
t

su
pp

ly
vo

lta
ge

s
an

d
C

lo
ck

Pe
ri

od
-t

o-
Pa

th
D

el
ay

ra
tio

s.
Po

w
er

su
pp

ly
no

is
e

is
co

ns
ta

nt
at

5%
.

V
D

D
(V

)
H

om
J

T
FE

T
H

et
J

T
FE

T
T c

lk
d p

at
h
=

1.
2

T c
lk

d p
at

h
=

1.
5

T c
lk

d p
at

h
=

2
T c

lk
d p

at
h
=

1.
2

T c
lk

d p
at

h
=

1.
5

T c
lk

d p
at

h
=

2

0.
30

0
59

.6
3%

28
.1

4%
9.

21
%

41
.3

6%
12

.4
1%

2.
53

%
0.

27
5

82
.7

6%
53

.2
6%

23
.9

9%
67

.7
2%

29
.9

0%
8.

53
%

0.
25

0
95

.3
0%

78
.1

2%
47

.9
5%

87
.9

1%
55

.3
5%

22
.4

9%
0.

22
5

99
.2

4%
93

.3
3%

73
.8

1%
97

.1
9%

79
.6

7%
45

.7
3%

0.
20

0
99

.9
3%

98
.7

8%
91

.2
7%

99
.6

2%
94

.0
1%

71
.9

6%
0.

17
5

10
0%

99
.8

7%
98

.2
3%

99
.9

7%
98

.9
5%

90
.1

6%

Ta
bl

e
5.

3:
Ti

m
in

g
er

ro
r

pr
ob

ab
ili

ty
fo

r
th

e
M

SB
of

8-
bi

t
M

A
C

un
it

de
si

gn
ed

in
20

nm
T

FE
T

te
ch

no
lo

gy
fo

r
di

ff
er

en
t

su
pp

ly
vo

lta
ge

s
an

d
C

lo
ck

Pe
ri

od
-t

o-
Pa

th
D

el
ay

ra
tio

s.
Po

w
er

su
pp

ly
no

is
e

is
co

ns
ta

nt
at

5%
.

56

5.3.3 Error Probability vs. Power Consumption

Considering 5% power supply noise and 1.5 ClockPeriod-to-PathDelay ratio,

the trade-off between timing error probability and power savings (due to voltage

scaling) is quantified for FinFET and TFET technology. The results are illustrated

in Fig. 5.7. In HP FinFET technology, voltage scaling from 0.9 V to 0.7 V re-

duces the power consumption by 47.09% with negligible increase in error probabil-

ity. The power consumption is much lower in LP FinFET technology, even though

the voltage scaling capability is limited compared to HP technology. TFET-based

MAC units consume significantly lower power, but the error probabilities are also

much higher. For HetJ TFET technology, even a small reduction in supply volt-

age increases the error probability beyond 20% while achieving a marginal reduc-

tion in power consumption. Therefore, the significantly lower power consumption

of TFET-based MAC unit over FinFET-based MAC (9.94µW for HetJ TFET vs

658.3µW for HP FinFET) is achieved at the expense of more susceptibility to tim-

ing errors.

5.4 Discussion

Several important design considerations are discussed in this section based on

the timing error probability results presented in the previous section. An impor-

tant conclusion is that in TFET-based MAC circuits, primary emphasis should be

placed on achieving low noise. Due to the fundamentally different charge transfer

mechanism between TFET and FinFET technologies (tunneling vs. diffusion), in

FinFET-based circuits, there is relatively weaker dependence of delay to voltage at

and around nominal supply voltage compared to TFET-based circuits. This depen-

57

0.3 0.4 0.5 0.6 0.7 0.8
VDD (V)

0

200

400

600

800

P
ow

er
 (

W
)

0

0.2

0.4

0.6

0.8

1

E
rr

or
 p

ro
ba

bi
lit

y
(P

5%
)

(a) 20nm HP FinFET

0.6 0.7 0.8 0.9
VDD (V)

50

100

150

200

250

300

350

P
ow

er
 (

W
)

0

0.2

0.4

0.6

0.8

1

E
rr

or
 p

ro
ba

bi
lit

y
(P

5%
)

(b) 20nm LP FinFET

0.18 0.2 0.22 0.24 0.26 0.28
VDD (V)

2

4

6

8

10

P
ow

er
 (

W
)

0

0.2

0.4

0.6

0.8

1

E
rr

or
 p

ro
ba

bi
lit

y
(P

5%
)

(c) 20nm III-V HetJ TFET

0.18 0.2 0.22 0.24 0.26 0.28
VDD (V)

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ow

er
 (

W
)

0.2

0.4

0.6

0.8

1

E
rr

or
 p

ro
ba

bi
lit

y
(P

5%
)

(d) 20nm III-V HomJ TFET

Figure 5.7: Timing error probability vs. power consumption tradeoff at 5% power
supply noise and a ClockPeriod-to-PathDelay ratio of 1.5: (a) 20nm HP FinFET,
(b) 20nm LP FinFET, (c) 20nm HetJ TFET, and (d) 20nm HomJ TFET technology.

58

dence starts to be much stronger once the supply voltage is reduced to the levels of

threshold voltage (due to exponential dependence of current on voltage). In TFET-

based circuits, however, delay is more sensitive to voltage, even at nominal supply

voltages. This characteristic makes voltage scaling highly challenging for TFET-

based MAC units as the error rates rapidly rise. These relatively high timing errors

can be partially mitigated by constraining the supply noise within 3% of the supply

voltage (referring to Fig. 5.3). This requirement would make the power distribution

design process more challenging. Also, referring to Fig. 5.6, at the same power

supply noise, increasing clock period can be a highly effective method to reduce

error rates in FinFET technologies. In TFET technology, however, a more drastic

increase in clock period is required to achieve the same reduction in error rates.

Based on the observations, it can be concluded that the proposed model can

be used to investigate the effect of power supply noise, clock frequency and sup-

ply voltage on the error rates, without relying on time consuming hardware-level

simulations. Furthermore, these models can facilitate the quantification of quality-

of-results vs. error rates at the application level, providing useful guidelines for

several future directions such as error correction in MAC units.

59

Chapter 6

DNN Error Resilience Analysis

Framework

The error probability methodology implemented on a 8-bit MAC in the previ-

ous chapter indicates that the timing error rate (due to reduced supply voltage) can

significantly vary based on the bit position. Therefore, to understand the bit-level

datapath errors in DNNs, it is important to evaluate the error resilience of a neural

network at per-bit granularity with varying error rates (unlike prior works that fo-

cus on memory errors, which assume uniform error rates across all bits [61, 62]).

In this chapter, a DNN error resilience analysis framework is developed to quantify

DNN error resilience by inserting bit-level errors in the compute-intensive layers of

the network (convolutional and fully-connected layers). This framework is imple-

mented in PyTorch and applied to state-of-the-art neural networks such as ResNet-

18 [63], MobileNetV2 [64], and EfficientNet [65]. These DNNs have complex

network structures developed to improve the classification accuracy through the

60

implementation of either residual learning with shortcut connections [63], inverted

residual structures with linear bottlenecks [64], or a compound scaling method-

ology [65]. Different networks considered in this analysis are pre-trained on the

ImageNet dataset [66] and are quantized to a given fixed-point bit precision (as

determined by the user) prior to error insertion. The rest of the chapter is orga-

nized as follows. Section 6.1 gives a brief overview of deep learning hardware and

summarizes prior works which focus on the inherent fault tolerance of DNN hard-

ware. Section 6.2 describes the methodology implemented to quantify the accuracy

with respect to error rates. The results of the error resilience analysis of different

neural networks are discussed at network-level, per-layer and per-bit granularity in

section 6.3. Finally, section 6.4 concludes the chapter.

6.1 Related Work

Several prior works characterize the impact of errors in DNNs through fault

injection, proposing error mitigation [2] or power optimization [67] techniques in

DNN hardware. Li et al. [2] characterize the propagation of soft errors in DNN

accelerators and propose techniques to mitigate these errors. The fault injection

framework implemented in [2] considers single-event upsets in each datapath latch

and buffer component to identify silent data corruption in the network, but they do

not analyze the impact on DNN inference accuracy due to different bit-level error

rates in the neural network. In [67], the authors analyze the filter/weight sensitivi-

ties (due to bit errors), obtain the robustness map of MAC units (by determining the

timing error rates), and map the sensitive weights to robust MAC units in order to

improve the error resilience of DNN hardware. However, they lack a comprehensive

61

study of DNN resilience to bit-level datapath errors (in the computational block) at

per-layer and per-bit granularity. In addition, multiple research works focus on an-

alyzing the impact on inference accuracy due to memory errors instead of datapath

errors. For instance, the Ares framework [68] quantifies the inference accuracy with

respect to static memory faults (in weights and activation) at the network-level and

per-layer granularity. The per-layer error resilience differences of on-chip memory

buffers are exploited in [61], where the error resilience is evaluated during design

time to determine the buffer voltage for each layer.

The closest related work focusing on datapath faults is [69], where the authors

leverage the results of bit-error resilience analysis to propose a novel error mitiga-

tion technique which reduces the impact of bit-errors before the execution of each

layer. Even though the error injection methodology implemented in [69] investi-

gates the impact of bit errors in network weights and activations on the accuracy,

it does not quantify the DNN error resilience due to different error rates in differ-

ent layers and bits in the network. Furthermore, the relationship between accuracy

and different network and layer parameters (such as number of operations and the

computation cost) is not evaluated in previous works. Investigating this relationship

is important to enable systematic methods for designing efficient error-aware DNN

accelerators.

Notably, the comprehensive analysis of the impact of bit-level datapath errors

on inference accuracy, as presented in this work, can be leveraged to improve pre-

viously proposed error mitigation and energy optimization techniques. For exam-

ple, the dynamic voltage scaling methodology proposed in [61] can be enhanced

by considering per-layer error resilience due to timing errors in the computational

blocks of neural networks. Additionally, our analysis of the high error sensitivity

62

of the higher order bits and the impact on inference accuracy observed through per-

bit error resilience analysis can be considered when applying error detection and

recovery techniques, such as TE-Drop in [52], and median feature selection in [69].

6.2 Error Resilience Analysis Framework

This section describes the error resilience analysis framework used to quan-

tify the inference accuracy with respect to bit-level datapath errors in the compute-

intensive convolutional and fully-connected layers. The framework, implemented

in PyTorch, takes as inputs a pre-trained neural network model and the parameters

which define the quantization and error rates applied to different layers (per-layer

analysis) and bits (per-bit analysis) of the neural network. Based on the inputs, the

neural network is quantized and the inference accuracy is evaluated by injecting the

bit-level errors. With this analysis, the DNN accuracy can be evaluated with respect

to different error rates and locations to determine the per-layer and per-bit error sen-

sitivity of the network. The framework is summarized in Fig. 6.1 and discussed in

detail in the following subsections.

6.2.1 Inputs

The following classes of inputs can be specified to configure the error resilience

analysis framework and define different data precision and error rates considered in

the analysis:

• Quantization - The framework allows the user to evaluate the inference ac-

curacy by quantizing the weights and forward activations for each layer to

different bit precisions, which are defined as an input to the framework.

63

DNN Error Resilience Analysis Framework

DNN accuracy quantified w.r.t errors

Quantization
Factors

Error
Rates

Error
Locations

Pre-trained
DNN model

Pre-processing

Weight
Quantization

Model Setup

Evaluation
Activation

Quantization and
Error Injection

Accuracy
Evalutation

Figure 6.1: DNN error resilience analysis framework methodology.

• Error rates - The bit-wise errors injected in the convolutional and fully-

connected layers of the network are based on the error rate specified as an

input to the framework. Different error rates can be defined for different error

locations, as described below.

• Error locations - The user can specify error location sites at per-layer or per-

bit granularity. When performing per-layer error analysis, users can flag spe-

cific layers in the network to inject errors, or they can provide a set of layer

64

characteristics (such as input and output feature size, or group size) to inject

errors in all matching layers. When performing per-bit error analysis, the user

can define different error rates for each individual data bit.

6.2.2 Model Setup

Prior to error resilience evaluation, the PyTorch model of the DNN is setup for

quantization and error injection. Our framework performs linear quantization in Py-

Torch based on [70], which quantizes the weights and activations (layer outputs) to

the given bit precision. First, a preprocessing step quantizes the DNN’s pre-trained

weights and stores them in the desired fixed-point format. However, quantizing ac-

tivations is more complex because the values to be quantized are only known during

inference, so they cannot be similarly preprocessed. To allow flexible modeling of

the quantization of forward activations during inference, the framework first com-

putes the activations in floating point format using unmodified PyTorch operators,

and then quantizes them to reduced precision fixed-point format. This is accom-

plished by adding a new layer type called LinearQuant after each convolutional and

fully-connected layer. The LinearQuant layer takes as input floating point activa-

tion values, and it outputs these values quantized to the desired fixed-point format.

In this way, the layer models bit-accurate fixed-point computation.

After quantization, the model is configured for error injection to allow the ad-

dition of errors at the desired rate in the specified locations. To model the errors in

forward activations during inference evaluation, code must be added to the output of

each layer to probabilistically inject errors (at per-bit granularity) to the quantized

activations at the output of the convolutional and fully-connected layers. This is

implemented in our work by replacing the LinearQuant layer described above with

65

a QuantAndError layer, which implements linear quantization (as before) followed

by the injection of errors. Probabilistic error injection is realized by randomly flip-

ping the original data bits based on the error rate provided by the user. To improve

runtime, the error injection can be performed on an entire tensor of activation fea-

ture maps instead of one value at a time. For a given error rate, an error tensor is

generated to identify the bit positions of the activations which will become error

sites. The error tensor has the same dimensions as the tensor of the layer’s output

activations, but it is populated with 1s and 0s. For example, if a layer has a uniform

error rate of 0.1, then 10% of the error tensor’s values will be ‘1’. The respective

bit positions in the original data tensor are then flipped to get the faulty data tensor.

Once the inputs are defined and the neural network is setup to implement quanti-

zation and error injection, the accuracy can be evaluated through inference. The

following section details the experiments that evaluate the effect of bit-level errors

on different networks, applied at different granularities with different error rates.

6.3 Results

The methodology described in the previous section is used to quantify the clas-

sification accuracy with respect to errors for different DNNs (ResNet18 [63], Mo-

bileNetV2 [64], EfficientNet-B0, B2, B4, B6 and B8 [65]). As described previously,

the classification accuracy of the neural networks is evaluated at reduced precision

with random error injection in the convolutional and fully-connected layers. The

key observations of this analysis are summarized below:

• For different networks, DNN error sensitivity does not depend on the number

of parameters. For instance, MobileNetV2 has lower accuracy and approx-

66

imately 3–5× fewer parameters compared to EfficientNet-B2 and B4 net-

works, but the three networks show similar loss in accuracy with increasing

error rates. However, when comparing MobileNetV2 and baseline Efficient-

Net (B0), the former is 1.62× more error tolerant, even though the classifi-

cation accuracy of EfficientNet-B0 is approximately 3% better and has 1.5×

more number of parameters. On the other hand, for EfficientNet networks,

as the number of parameters and network size increase with scaling, the error

resilience of the network improves along with the inference accuracy.

• The error resilience of the convolutional layers in a neural network can vary

by orders of magnitude. The last convolutional layer is typically the most

error resilient. For example, for EfficientNet-B6, the last convolutional layer

is approximately 86×more error resilient compared to the first convolutional

layer.

• Evaluating the error resilience of neural network layers and analyzing it with

respect to the layer characteristics, such as the number of arithmetic op-

erations (additions and multiplications) required to compute a layer output

(MOps) and number of operations per output point (Ops/output), we observe

that there is a lack of correlation between the computational cost and error

sensitivity of a layer. Some layers with higher MOps are also more error

tolerant. For instance, the first and last convolutional layer in ResNet-18

have the same MOps but the latter is 50× more error resilient. Through this

analysis, the error sensitivity of the layers can be quantified with respect to

MOps and can be used to identify the layers which are error-resilient as well

as compute-intensive. These robust layers can be leveraged to design low-

power DNN hardware.

67

• For all the networks evaluated in the per-layer error resilience analysis exper-

iments, the fully connected layer is more error sensitive compared to the con-

volutional layers. For instance, the first convolutional layer in MobileNetV2

can tolerate 5.2× higher error rate as compared to the fully-connected layer.

• The framework is used to evaluate a subset of the networks at per-bit granu-

larity to understand the improvement in the inference accuracy if some of the

higher significant bits have no errors. For MobileNetV2 network, the error

resilience of the network drastically improves 2–244× when 1–5 higher sig-

nificant bits are error free and the same error rate is applied to the remaining

bits. This framework can therefore be helpful to understand the trade-offs

among error detection and correction, inference accuracy improvements, and

energy efficiency.

The neural networks used in this work are summarized in section 6.3.1. These

networks are setup and configured for error resilience analysis experiments, as

described in section 6.3.2. The error resilience of the networks due to errors at

network-level, per-layer and per-bit granularity are analyzed in section 6.3.3.

6.3.1 Neural Networks

The DNNs considered in this analysis have varying sizes and characteristics.

The number of model parameters and the respective inference accuracies are sum-

marized in Table 6.1. These networks are chosen because they employ a variety of

architectural techniques to improve efficiency and accuracy. For instance, ResNet

models [63] implement a shortcut connection to convert a plain network to the

residual counterpart to improve the classification accuracy. In [64], Sandler, et

68

al. introduced MobileNetV2, which is based on an inverted residual structure with

linear bottlenecks. In this network, the layer modules take a low-dimensional com-

pressed input, which is first expanded to high dimension before applying depthwise

convolutions. The features are then compressed back to low-dimensional represen-

tation with linear convolution. This network decreased the number of operations

and memory needed, which improved the performance of the mobile models sig-

nificantly. In [65], a compound scaling methodology was proposed, which provided

a drastic improvement in accuracy over the existing convolutional neural networks.

In this methodology, the depth, width and resolution of the network are scaled uni-

formly using an effective compound coefficient. Through this methodology, the

authors propose a new baseline network which is scaled up to a family of models

called EfficientNets. The EfficientNet architecture is similar to the MNASNet [71]

and MobileNetV2 [64], where the features are expanded before applying depthwise

convolutions and compressed back to low-dimensions in the bottleneck modules.

Analyzing these different networks using the error resilience analysis framework

provides better understanding of the impact of errors on the inference accuracy and

also enables better convergence of the key observations through error resilience

analysis experiments.

6.3.2 Experimental Setup

This section describes the network configuration and setup performed prior to

error resilience analysis. First, the baseline accuracy is first determined for a given

neural network, pre-trained on the ImageNet dataset [66]. The network is then

quantized to a given fixed-point bit precision, such that the classification accuracy

of the network is within ∼1% of the baseline accuracy. The baseline accuracy

69

DNN Parameters
Baseline

Top-1 acc.
Quantized network

Bits Top-1 acc.

ResNet-18 11.5M 69.25% 10 69.23%

MobileNetV2 3.5M 72.59% 10 71.73%

EfficientNet-B0 5.3M 75.61% 12 75.60%

EfficientNet-B2 9.2M 80.12% 12 80.04%

EfficientNet-B4 19M 82.67% 10 82.15%

EfficientNet-B6 43M 84.64% 10 84.14%

EfficientNet-B8 81M 85.65% 10 85.51%

Table 6.1: Impact of quantization on classification accuracy.

of the original pre-trained networks and the quantized networks is summarized in

Table 6.1.

Evaluating the DNN accuracy with quantization adds a small runtime1 over-

head of 1.08–1.97×. However, this runtime increases by an average of 37.28×

when evaluating the inference accuracy with quantization and error injection. For a

large network, such as EfficientNet-B4 (19M parameters), the runtime can increase

from 2.4 hours (for evaluating the baseline accuracy) to 4.5 days (for evaluating

the accuracy with respect to one error rate) when considering the entire validation

dataset. To achieve manageable runtimes while measuring many error rates, the

accuracy is evaluated for a random selection of 5000 samples (10%) from the val-

idation dataset. The same random 5000 images are used for each evaluation to

ensure consistency across experiments. To confirm that the subset of images yields

representative results, Fig. 6.2 evaluates the difference between the inference accu-

1All runtimes described here are performed by measuring the time required for inference using
the ImageNet validation dataset on a server with an Intel Xeon E5-2683v3 CPU with 28 cores, 2
GHz base operating frequency, and 128 GB DDR4 memory (133.25 GB/s bandwidth).

70

ResN
et-

18

Mob
ileN

etV
2

Eff
icie

ntN
et-

B0

Eff
icie

ntN
et-

B2

Eff
icie

ntN
et-

B4

Eff
icie

ntN
et-

B6

Eff
icie

ntN
et-

B8
60

65

70

75

80

85

90

To
p-

1
Cl

as
sif

ica
tio

n
ac

cu
ra

cy
 (%

)

Top-1 (50k images)
Top-1 (5k images)

Figure 6.2: Inference accuracy of different neural networks, considering ImageNet
dataset.

racy using the entire validation dataset and the selected random sample. The mean

difference in the Top-1 inference accuracy is 0.32%, but evaluating the accuracy

with the reduced dataset improves the runtime significantly: for EfficientNet-B4,

using 10% of the dataset reduces the runtime without quantization and error injec-

tion from 2.4 hours to 15.6 minutes, and with quantization and error injection, the

runtime decreases from 4.5 days to 11.6 hours.

6.3.3 Error Resilience Analysis

The following three scenarios are considered to evaluate the DNN error re-

silience:

• Network-level error analysis, where the same error rate is applied to all bits

in all convolutional and fully-connected layers.

• Per-layer error analysis, where the same error rate is applied to select layers

in the network.

71

• Per-bit error analysis, where some of the higher significant bits are error-free

while the same error rate is applied to the remaining bits in all the convolu-

tional and fully-connected layers.

This analysis uses two metrics to quantify network behavior in the presence of

errors: Top-1 classification accuracy and error resilience. First, the Top-1 classifica-

tion accuracy shows the overall accuracy of a network with the given error rate(s).

Although this captures the application-level correctness of the algorithm, it does

not allow a direct comparison of the resilience of different networks (or portions of

networks) in the presence of errors. For example, one may observe that some layers

can tolerate higher levels of errors than others while yielding the same overall ac-

curacy. Second, error resilience can be quantified using the metric ErrT , where T

is the loss in application level accuracy. ErrT represents the error rate at which the

Top-1 inference accuracy drops by T . For instance, T = 1% indicates that the DNN

inference accuracy is one percentage point lower than the accuracy of an error-free

quantized network, and Err1% gives the error rate that yields this accuracy. Thus,

a higher ErrT implies a more error tolerant network or layer. The results presented

below quantify the DNN error resilience using T = 1% and T = 0.5%, but other

values of T could be chosen to match other desired accuracy requirements.

6.3.3.1 Network-level error resilience analysis

Fig. 6.4 illustrates the Top-1 classification accuracy of the quantized, pre-trained

networks with respect to different error rates. The same error rate (shown on the

x-axis) is applied to all the layers of the network in this analysis. The neural net-

works exhibit a relatively weaker dependence on error until a certain error rate (≤

0.001%), beyond which the accuracy degrades drastically. For EfficientNet net-

72

0.650 0.655 0.6600

50

100

150
 = 65.55 %, = 0.2577 %

Figure 6.3: Distribution of Top-1 inference accuracy obtained over 100 runs with
random error injection at 0.001%.

works, the accuracy with respect to errors improves as the network scales from B0

to B8 such that EfficientNet-B8 has higher inference accuracy at a given error rate

compared to other DNNs considered in this analysis.

Variability in accuracy: Due to random injection of errors in this analysis, there

is a variation in the inference accuracy if the same error rate is applied to the entire

network in multiple runs. This randomness is evaluated in ResNet-18 network,

by determining the accuracy at 0.001% error rate over 100 runs. The distribution

of Top-1 accuracy obtained has a standard deviation of 0.2577% which is small

compared to the mean inference accuracy of 65.55% (Fig. 6.3). The accuracy of

ResNet-18 at 0.001% error rate in Fig. 6.4(a) is 64.84% which lies at –2.63σ in

the distribution. Note that the variation reduces at lower error rates such that σ for

0.0001% and 0.00001% error rates is 0.2115% and 0.096% respectively.

Further evaluating the error resilience of the networks, we observe that even

though a subset of the networks have comparable error resilience, one network

can have better inference accuracy or lower number of parameters compared to the

other. This trade-off between the network characteristics and error resilience is fur-

ther investigated. For example, the error resilience of the networks, quantified as

73

10 6 10 5 10 4

Error rate

0

20

40

60

To
p-

1
Cl

as
sif

ica
tio

n
ac

cu
ra

cy
 (%

)

ResNet-18
MobileNetV2

(a) ResNet-18 and MobileNetV2

10 6 10 5 10 4

Error rate
0

20

40

60

80

To
p-

1
Cl

as
sif

ica
tio

n
ac

cu
ra

cy
 (%

)

B0
B2
B4
B6
B8

(b) EfficientNet architectures B0, B2, B4, B6, and B8

Figure 6.4: Top-1 classification accuracy with respect to different error rates for (a)
ResNet-18, MobileNetV2, and (b) EfficientNet networks. Note that EfficientNet-
B0 and B2 networks are quantized to 12 bits, while the other networks are quantized
to 10 bits.

74

0.0000 0.0002 0.0004
Err1%(%)

ResNet-18

MobileNetV2

EfficientNet-B0

EfficientNet-B2

EfficientNet-B4

EfficientNet-B6

EfficientNet-B8

3.0e-04

1.2e-04

7.4e-05

1.1e-04

1.3e-04

2.5e-04

3.5e-04

0.0000 0.0001 0.0002 0.0003
Err0.5%(%)

2.2e-04

7.0e-05

3.7e-05

6.0e-05

8.8e-05

1.5e-04

2.1e-04

Figure 6.5: Err1% and Err0.5% of different quantized, pre-trained neural networks.

Err1% and Err0.5%, is compared in Fig. 6.5. Overall, ResNet-18 and EfficientNet-

B8 networks exhibit higher error resilience as compared to other networks, while

EfficientNet-B0 has the lowest error resilience. ResNet-18 and EfficientNet-B8

show comparable Err0.5%, which is 5.7–1.47× higher than other networks. Com-

paring Err1%, ResNet-18 has 1.2× lower error tolerance compared to EfficientNet-

B8, while it is 1.2–4.05× more error tolerant compared to other networks. Even

though ResNet-18 has better error resilience, it has lower inference accuracy and

1.25–3.3× more parameters compared to MobileNetV2 and EfficientNet-B0 and

B2 networks (Table 6.1). We observe that smaller EfficientNets (such as B0 and

B2) are relatively more sensitive to errors, but the error resilience of the Efficient-

Net networks considerably improves with scaling, such that the Err1% of B6 and

B8 networks is 1.85–3.1× higher compared to B2 and B4 networks. MobileNetV2

and the EfficientNet-B2 and B4 networks have comparable Err1% (≈ 0.0001%),

even though the EfficientNet networks have almost 2.6–5.4× more parameters and

7.5–10% better inference accuracy. These observations highlight the trade-offs be-

tween inference accuracy, network characteristics and error resilience, which are

75

complex and difficult to predict, and therefore, are important to analyze through

these experiments.

6.3.3.2 Per-layer error resilience analysis

To understand the impact on classification accuracy due to errors in select layers

of the neural network, the error resilience of individual layers is also evaluated

in this work. Different layers in a neural network exhibit different computational

complexity, which depends on the number of parameters and output feature size.

This computational complexity of a network layer is represented as MOps (total

number of arithmetic operations), while the computation complexity of an output

point is represented as Ops/output (number of operations per output point). The

following experiment highlights two key observations. First, there is a high degree

of variability in the error resilience of different layers in a network. Second, there

is no correlation between a layer’s error resilience and computation cost of the

network layer. Through this analysis, a network’s layers that are most error resilient

and compute-intensive can be identified; this observation can then be leveraged

toward efficient low-power DNN hardware design. The per-layer error resilience

analysis experiments for different networks are discussed below.

• ResNet-18 - The ResNet-18 model uses four basic building blocks, with four

convolutional layers in each block. The four convolutional layers in a given

block x are represented as Convx 1 to Convx 4. Table 6.2 gives the error re-

silience of three representative convolutional layers and the fully-connected

layer from ResNet-18. The three convolutional layers are chosen from dif-

ferent building blocks, and each represents a different layer depth and sig-

nificantly different computation cost and complexity. Comparing the Err1%

76

Layer MOps Ops/output Err1%(%) Err0.5%(%)

conv1 1 231.21 1152 0.0073 0.0052

conv3 1 115.61 2304 0.0528 0.0225

conv4 4 231.21 9216 0.4216 0.2155

Fully-
connected 1.02 1024 0.0014 0.0008

Table 6.2: ResNet-18 per-layer error analysis

metric, the last convolutional layer (conv4 4) is 57.7× and 8× more error

resilient as compared to the conv1 1 and conv3 1 layers, respectively. In ad-

dition, this layer is also highly compute-intensive, with 8× more Ops/output

compared to conv1 1 layer and 2× more MOps compared to conv3 1 layer.

Additionally, we observe that the fully-connected layer is much more sensi-

tive to errors as compared to the convolutional layers. The Err1% and Err0.5%

of the fully-connected layer are only 0.0014% and 0.0008%, which is 5.2×

and 6.5× lower than the respective error resilience of the conv1 1 layer.

• MobileNetV2 - For MobileNetV2, six convolutional layers with different char-

acteristics are evaluated out of the 52 convolutional layers in the network. The

layer depth, output shape and convolutional type (pointwise or depthwise) are

described in the first column of Table 6.3. Note that convolutional layers 11,

25, 35 and 45 are part of the linear bottleneck modules in the network. Layer

25 is the expanding convolutional layer in the respective bottleneck while

layer 45 is the layer where features are compressed back to low-dimensional

representation. These layers represent varied characteristics of the convo-

lutional layers and show variability in the error resilience across different

layers in the neural network. For instance, layer 25 is more error resilient

77

Layer Description MOps Ops/output Err1%(%) Err0.5%(%)

Layer 1
112×112×32 21.68 54 0.0091 0.0021

Layer 11
28×28×144
Depthwise Conv

2.03 18 0.0146 0.0058

Layer 25 (Pointwise Conv)
14×14×384 9.63 128 0.1679 0.0583

Layer 35 (Depthwise Conv)
14×14×576 2.03 18 0.0153 0.0097

Layer 45 (Pointwise Conv)
7×7×160 15.06 1921 0.0067 0.0027

Layer 52 (Pointwise Conv)
7×7×1280 40.14 640 3 0.9182

Fully-connected 2.56 2561 0.0014 0.0008

Table 6.3: MobileNetV2 per-layer error analysis

compared to layer 11 (11.5× for Err1% and 10× for Err0.5%) and is also

more compute intensive with 4.7× more MOps and 7.1× more Ops/output.

Similar to ResNet-18, the last convolutional layer has significantly higher er-

ror resilience (17.8–448.5×), and is also more compute intensive with higher

number of operations (2–20×) compared to the other convolutional layers

in the network. The fully-connected layer has the same error resilience as

ResNet-18 and is more sensitive to errors compared to the convolutional lay-

ers. The Err1% of the fully-connected layer is 4.8–2142.86× lower than the

convolutional layers.

• EfficientNet - The error resilience of different layer structures is compared in

Table 6.4 (Err1%) and Table 6.5 (Err0.5%) for EfficientNet networks B0, B2,

78

B4, B6, and B8. Note that when computing the error resilience of pointwise

(or depthwise) convolutional layers, the same error rate is applied to all the

pointwise (or depthwise) convolutional layers.

Similar to MobileNetV2 and ResNet-18, the last convolutional layer of Ef-

ficientNet is significantly more error resilient and computationally intensive

than the other layers in the network. Compared to the first convolutional

layer, the MOps and Ops/output of the last convolutional layer is 1.85–3.98×

and 11.85–26.07× higher, respectively. Similar behavior is observed when

comparing the pointwise and depthwise convolutional layers. The point-

wise convolutional layers have higher MOps (9.86–25.74×) and Ops/output

(3.92–10.75×) as compared to all the depthwise convolutional layers in the

network, and are also 1.5–4× more error resilient.

Lastly, we evaluate how the error resilience of the EfficientNet networks

changes as the networks scale up (from the smallest B0 to the largest B8).

Comparing the Err1% and Err0.5% of these networks, the error resilience of

the convolutional layers improves from B0 to B8. The fully-connected layer

however has approximately the same error resilience across all EfficientNet

networks i.e. the Err1% is ≈ 0.002% and Err0.5% is ≈ 0.001%. Relative to

the first convolutional layer, the fully-connected layer has approximately the

same error resilience for B0–B4 networks, while it is more sensitive to errors

for B6 and B8.

6.3.3.3 Per-bit error resilience analysis

The per-bit error resilience of three DNNs is analyzed to better understand the

error sensitivity of the higher order bits. In this analysis, a given error rate is applied

to the lower order bits while a number of the higher order bits are held error-free

79

Layer B0 B2 B4 B6 B8

First Conv layer 0.0018 0.0026 0.0023 0.0124 0.0068

Last Conv layer 0.1746 0.1908 1.09 1.067 1.1623

All Pointwise Conv layers 0.0003 0.0006 0.0005 0.0011 0.0012

All Depthwise Conv layers 0.0001 0.0002 0.0002 0.0003 0.0009

Fully-connected layer 0.0018 0.002 0.002 0.0022 0.0019

Table 6.4: Err1%(%) of different layers in EfficientNet networks.

Layer B0 B2 B4 B6 B8

First Conv layer 0.0012 0.0009 0.0008 0.006 0.0032

Last Conv layer 0.0466 0.0804 0.3113 0.898 0.9314

All Pointwise Conv layers 0.0002 0.0005 0.0002 0.0002 0.001

All Depthwise Conv layers 0.0001 0.0001 0.0001 0.0002 0.0002

Fully-connected layer 0.001 0.0009 0.0008 0.0013 0.001

Table 6.5: Err0.5%(%) of different layers in EfficientNet networks.

across all layers. This experiment is conducted to investigate the potential benefit

of using error correction mechanisms on select higher order bits. Fig. 6.6 illustrates

the accuracy versus error rate and Err1% for MobileNetV2, EfficientNet-B0, and

EfficientNet-B4, when 0 to 5 most significant bits are error-free. For example, as

shown in Fig. 6.6(a), MobileNetV2 (quantized to 10-bits) exhibits 2.14× higher

error tolerance when a single bit is error-free, and 51.43× higher when four bits are

error-free (with respect to Err1%). Beyond this point, the improvement in accuracy

relatively saturates.

The per-bit analysis results for EfficientNet networks B0 and B4 are also il-

lustrated in Fig. 6.6(b) and Fig. 6.6(c), respectively. The error resilience of both

80

10 6 10 5 10 4

Error rate
0

10

20

30

40

50

60

70

To
p-

1
Cl

as
sif

ica
tio

n
ac

cu
ra

cy
 (%

)

Baseline (0)
1 MSB error-free (1)
2 MSBs error-free (2)
3 MSBs error-free (3)
4 MSBs error-free (4)
5 MSBs error-free (5)

10 5 10 4 10 3

Err1%

(0)

(1)

(2)

(3)

(4)

(5)

1.4e-06

3.0e-06

5.6e-06

1.5e-05

7.2e-05

3.0e-04

(a) MobileNetV2 (10 bit quantization)

10 6 10 5 10 4

Error rate
0

10

20

30

40

50

60

70

To
p-

1
Cl

as
sif

ica
tio

n
ac

cu
ra

cy
 (%

)

Baseline (0)
1 MSB error-free (1)
2 MSBs error-free (2)
3 MSBs error-free (3)
4 MSBs error-free (4)
5 MSBs error-free (5)

10 6 10 5 10 4

Err1%

(0)

(1)

(2)

(3)

(4)

(5)

5.7e-07

2.5e-06

5.9e-06

1.4e-05

3.1e-05

7.8e-05

(b) EfficientNet-B0 (12 bit quantization)

10 6 10 5 10 4

Error rate
0

10

20

30

40

50

60

70

80

To
p-

1
Cl

as
sif

ica
tio

n
ac

cu
ra

cy
 (%

)

Baseline (0)
1 MSB error-free (1)
2 MSBs error-free (2)
3 MSBs error-free (3)
4 MSBs error-free (4)
5 MSBs error-free (5)

10 5 10 4

Err1%

(0)

(1)

(2)

(3)

(4)

(5)

1.4e-06

3.6e-06

8.6e-06

2.0e-05

4.7e-05

1.3e-04

(c) EfficientNet-B4 (10 bit quantization)

Figure 6.6: Per-bit error resilience analysis for EfficientNet-B0 and B4 networks. It
should be noted that for no errors in MSBs, the remaining bits have the same error
rate.

81

networks improves faster than MobileNetV2 when 1 to 3 higher significant bits are

error-free. For instance, the Err1% increases by 2.1× for MobileNetV2, and by

4.4× and 2.6× for EfficientNet B0 and B4, respectively, when the most significant

bit has no error. According to the accuracy vs. error rate graph, the improvement

in the accuracy of EfficientNet B4 network saturates relatively faster. When five

higher order bits are made error-free, the improvement in the error sensitivity of

MobileNetV2 is the highest. For instance, Err1% of MobileNetV2 increases by

214.3×, while the error resilience of EfficientNet B0 and B4 increase by 136.8×

and 92.8×, respectively. Overall, with the per-bit error resilience experiments, we

observe that correcting the errors in 3 to 5 higher order bits (out of a total of 10 to 12

bits) improves the inference accuracy of the neural network, making it comparable

to the baseline accuracy with no errors, particularly at low error rates.

6.4 Conclusion

Neural networks have an inherent tolerance to errors which can be exploited

to develop efficient, low-power DNN accelerators. It is however important to un-

derstand the error resilience of the neural network at different levels of granularity,

such as per-layer and per-bit error resilience analysis. This work develops a frame-

work to quantify the inference accuracy of DNNs with respect to bit-wise datapath

errors. The per-layer error resilience analysis demonstrates some layers (e.g. the

fully connected layer) are very error sensitive, but that other layers (e.g. the last

convolutional layer) tends to be more error resilient while also requiring a high

number of MOps. The identification of convolutional layers that are both compute

intensive and robust can enable smarter energy optimization methods, such as per-

82

layer voltage scaling that is more aware of each layer’s error tolerance. Similarly,

per-bit error resilience analysis can be helpful in (1) determining the number of

most significant bits that need to be corrected to ensure the desired accuracy, and

(2) understanding the trade-offs among error correction overhead, accuracy, and

efficiency. These observations can be leveraged to develop efficient error-aware,

low-power DNN hardware accelerators.

83

Chapter 7

Quantifying Accuracy and Energy

Efficiency Trade-offs in Systolic

Arrays

The DNN error resilience analysis, discussed in the previous chapter, highlights

the varying degree of error sensitivity within a neural network. It is observed that

some layers in the network are more error resilient and have high computation cost

(higher MOps) as compared to other layers. These error resilient and compute in-

tensive layers can be the key to implement efficient energy optimization techniques

in deep learning hardware. The objective of this chapter is to quantify the trade-offs

between inference accuracy of the neural network and energy consumption at dif-

ferent operating voltages. The methodology implemented to achieve this objective

is summarized in Fig. 7.1. As shown in the figure, the inference accuracy with re-

spect to different voltages is computed in two steps. First, the per-bit timing error

rates of a processing element are computed for different operating voltages using

84

DNN layer descriptionTechnology parameters

Input netlist

• Supply voltage
• Clock frequency
• Noise / uncertainty
• DNN error locations

Error Probability Modeling Methodology

• Quantization factors
• Pre-trained DNN Model

Error Resilience Analysis Framework

Error rates w.r.t error
locations

Hardware Mapping (using SCALE-Sim[6])

• Systolic array size
• Clock frequency
• Supply voltage

• Compute cycles
• Array utilization

Energy Model

K

1
2

• Systolic array size
• Dataflow (OS/WS)
• SRAM size for input,

filter and output

Quantify the trade-off between inference accuracy and energy
efficiency at different voltages

Figure 7.1: Methodology to quantify the trade-off between DNN accuracy and en-
ergy consumption at different operating voltages.

the methodology proposed in chapter 4. These error rates are then injected in a

given neural network using the error resilience framework described in chapter 6

to evaluate the inference accuracy as a function of supply voltage. Concurrently,

the per-layer energy consumption of the neural network is determined by first map-

ping the network onto a systolic array (using SCALE-Sim [72]) to determine the

compute cycles and hardware utilization when computing the activations in the

convolutional and fully-connected layers. This utilization is then used to evaluate

per-layer energy cost at different operating voltages. Finally, the inference accuracy

and energy consumption determined at different voltages are used to quantify the

respective trade-offs.

The rest of the chapter is organized as follows. Section 7.1 describes the map-

ping of a neural network onto a systolic array to determine the per-layer array uti-

85

PE11 PE12 PE13 PE1N

PE21 PE22 PE23 PE2N

PE31 PE32 PE33 PE3N

PEN1 PEN2 PEN3 PENN

...

...

...

...

...

input1

input2

input3

inputN

weight1 weight2 weight3 weightN

...

...

activation1 activation2 activation3 activationN...

Weight

Adder

A
c
ti
v
a
ti
o

n

Partial Sum

PE output

Systolic Array

Processing

Element

Figure 7.2: Systolic array block diagram.

lization and compute cycles using SCALE-Sim. The utilization percentage and

runtime is used to compute the per-layer energy and power consumption by us-

ing an energy model, as described in section 7.2. The trade-off between infer-

ence accuracy and energy consumption at different operating voltages is evaluated

through network-level voltage scaling (section 7.3) and per-layer voltage scaling

(section 7.4). Finally, the results are discussed in section 7.5.

7.1 DNN to Systolic Array Hardware Mapping

A systolic array comprises of a number of multiply-add units (also called pro-

cessing elements or PEs) which perform the multiplications and accumulations to

compute the activations at the output of a neural network layer. A basic block

86

diagram of the layout of the systolic array and basic architecture of the PE is illus-

trated in Fig. 7.2. As shown in the figure, the inputs and weights traverse through

the systolic array while the PEs compute the activations. There are a number of

ways these computations can be mapped onto a systolic array, as described in [17].

These different mappings, called dataflows, can be categorized into weight station-

ary, output stationary and input stationary, depending on the data reuse patterns.

These dataflows, as described below, determine the order in which input feature

maps and weights are fed in the array, and the intermediate partial sums are stored

and reused:

• Output stationary (OS) dataflow refers to a mapping where each process-

ing element computes each pixel of the output feature map. Each input and

weight required to compute an output pixel are streamed per cycle and ac-

cumulated in place in the respective PE. Once an activation is generated, the

result is transferred to the memory and the respective PE starts computing the

next output pixel.

• Weight stationary (WS) dataflow represents a mapping in which weights are

mapped onto a systolic array and held in place while the inputs are fed into

the array in every cycle to be multiplied with the respective weights. The

partial sums are accumulated across multiple processing elements in a given

systolic array column over multiple cycles. Once all the computations for

a given set of weights are done, the mapping is repeated for the next set of

weights and so on.

• Input stationary (IS) dataflow is similar to the WS dataflow except the in-

put feature map is mapped onto a systolic array and kept in place while the

weights are streamed into the systolic array.

87

Samajdar et al. [72] developed a cycle-accurate, systolic array based CNN accel-

erator simulator called SCALE-Sim (Systolic CNN Accelerator Simulator) which

maps a neural network onto a systolic array based on the dataflow and array size

specified by the user. The authors also validated SCALE-Sim by comparing the

number of cycles obtained from the tool with RTL implementation of the systolic

array with OS dataflow. The hardware mapping of a neural network layer onto

systolic array is important to determine the number of compute cycles and array

utilization for every layer in the DNN, which is later used in this work to estimate

the energy consumption of systolic array. This analytical tool is used in this work

to map a given neural network and determine the array utilization for both WS and

OS dataflows. IS dataflow is not implemented in this work since it is similar to WS

dataflow (input is held in place instead of weights) and it is observed that the OS

and WS dataflows are more common in DNN accelerator structures [1, 17, 73–75].

Moreover, it is observed in [76] that the energy savings of IS dataflow are small

compared to OS and WS dataflows. The methodology implemented to evaluate the

compute cycles and utilization is described in the following sections.

7.1.1 Per-Layer Runtime Evaluation

When computing the convolution of two matrices in a systolic array, SCALE-

Sim distributes the original operand matrices through spatial and temporal alloca-

tions, based on the dataflow specified by the user. For instance, the original operand

matrices of size M×K and K×N are mapped to SR×T and T × SC respectively,

where SR and SC are the spatial rows and columns along which computation is

mapped and T denotes the temporal dimension. The tool then determines the num-

ber of cycles required to compute the output feature map (OFMAP) by considering

88

Spatial rows (SR) Spatial columns (SC) Temporal (T)

OS No f map N f ilter Wconv

WS Wconv N f ilter No f map

Table 7.1: Spatial-Temporal allocation of DNN dimensions [72]. Note that No f map
is the number of OFMAP (output feature map) pixels generated by the filter, N f ilter
is the number of convolution filters and Wconv is the number of partial sums gener-
ated per output pixels.

the two input operand matrices of size SR×T and T × SC (after spatial and tem-

poral mapping). These spatial-temporal dimensions for output stationary (OS) and

weight stationary (WS) dataflows are summarized in Table 7.1. Fig. 7.3 provides

an overview of the runtime computation for the OS and WS dataflows. The input

feature map (IFMAP) matrix and the filter matrix are fed from the left and top edge

of the array, respectively, and the values propagate through the systolic array in a

store and forward manner.

• In Output stationary (OS) (Fig. 7.3(a)) dataflow, each multiply-add unit in

the systolic array is responsible for all multiplications and accumulations for

a given OFMAP pixel. As observed in the figure, the last PE in the array (bot-

tom right corner) receives first two operands in SR + SC− 2 cycles. It takes

additional T cycles (same as the number of elements in a convolution win-

dow) to accumulate all the partial sums and compute the respective OFMAP

pixel. After all the OFMAP pixels are computed, the array is drained from

the bottom edge in SR cycles.

• In Weight stationary (WS) (Fig. 7.3(b)) dataflow, filters are loaded in the

array and kept in place while the IFMAP matrix is fed from the left edge of

the array. It takes SR cycles to load the filters in the array. Each PE multiplies

89

IFMAP

OFMAP

Filter

SR = Nofmap

T
=

W
co

nv

1

2

3
4

SC – 1 cycles : First weight in last column.
SR – 1 cycles : First activation in last element.
T cycles : Number of in-place accumulations.
SR cycles : Drain the systolic array after

 OFMAP computation.

1

2

3

4

SC = Nfilter

(a) Output stationary (OS) dataflow

IFMAP

OFMAP

Filter

2

34

1

SR cycles : Load all weights in the array.
SC – 1 cycles : First activation in last column.
SR – 1 cycles : Partial sum accumulation for last column.
T cycles : Number of OFMAP pixels computed.

1

2

3

4

SR = Wconv

T = Nofmap

SC = Nfilter

(b) Weight stationary (WS) dataflow

Figure 7.3: Steps to compute runtime for dataflows in systolic array based on [72].

90

the IFMAP operand before forwarding the partial sum to the neighboring row

for accumulation, while the IFMAP operand is forwarded to the neighboring

column to compute the next OFMAP pixel. The first IFMAP operand arrives

in the last column of the array in SC− 1 cycles after which it takes SR− 1

cycles to accumulate the partial sums. Each column of the array computes

one OFMAP pixel and receives total of T operands.

Therefore, the total runtime for each layer for both OS and WS dataflow is com-

puted as

2SR +SC +T −2. (7.1)

To validate the number of compute cycles obtained from SCALE-Sim and further

understand the implementation, a processing element is designed in Verilog and

implemented in a simple 4× 4 systolic array. The array is simulated for both the

weight stationary and output stationary dataflows to compute the convolution of a

4× 4 IFMAP and 2× 2 filter. The number of cycles to get the convolution output

obtained from SCALE-Sim and Verilog simulation is observed to be the same.

The runtime computation described above [using (7.1)] considers the scenario

when the array size can accomodate the maximum array size, SR× SC. However,

practically the array size is limited (e.g. 256×256 in [1]) and when mapping the

computation for large neural network layers, the input operand matrices are divided

into multiple folds by slicing along the SR and SC dimensions. In the scenario

when SR > R, where SR is the number of OFMAP pixels (for OS dataflow) or the

number of partial sums in the convolution window (for WS dataflow) and R is the

number of rows in the systolic array, the OFMAP pixels are computed in multiple

horizontal folds. In WS dataflow, each horizontal fold computes the partial sums

91

which are accumulated in an accumulator outside the systolic array to generate the

corresponding OFMAP pixel. Similarly, if SC >C, where SC is the number of filters

and C is the number of columns in the array, all output channels are computed in

multiple vertical folds. When computing the total runtime for each vertical and/or

horizontal fold, (7.1) is applied by replacing SR and SC with the number of rows and

columns used in the respective fold of the array.

7.1.2 Array Utilization Computation

It is important to estimate the array utilization of a systolic array to determine

the total power consumption when computing the activations in a neural network

layer. The array utilization in SCALE-Sim is modeled by calculating the number

of rows and columns used in the systolic array out of maximum available rows

(array height) and columns (array width), across the total compute cycles. This is

assuming that all the processing elements in a given row and column are used in

each cycle [72]. However, practically due to store and forward nature of the array

and the skewed data distribution, not all PEs are used for computation in a given

cycle. The PEs used for multiplication and accumulation in a given cycle consume

dynamic energy while the inactive PEs consume leakage energy. Note that this

does not take into account power gating or other techniques implemented to reduce

leakage. Based on the total number of cycles required to perform the total multiply-

add operations in a given layer (obtained from SCALE-Sim), the array utilization

for active PEs can be calculated as,

util =
f ilter size×OFMAP size
array size× total cycles

, (7.2)

where total cycles is the total cycle count for computing a layer output.

92

Considering the example of the first convolutional layer in MobileNetV2 with

3×3×3 filter matrix and OFMAP size 112×112×32, the total number of multiply-

add operations in the systolic array required to compute all the outputs is f ilter size

×OFMAP size = 10.838M. The total number of multiply-add units available in the

array for the total compute cycles is array size× total cycles. Since it takes 12630

cycles to compute the output of a layer in a 256×256 systolic array, the utilization

obtained from (7.2) is 1.309%.

Comparing the WS and OS dataflows, the array utilization increases (or de-

creases) at the same rate as the decrease (or increase) in the number of compute

cycles. For instance, if an array has M multipliers and the array is 100% utilized,

the number of cycles to compute N multiply-add operations is N/M. If the array

is 50% utilized, the number of cycles to do the same computation is 2N/M. To

validate the utilization computed for WS and OS dataflows, the rate of increase in

the compute cycles is compared with the rate of decrease in utilization and they are

observed to be the same. These utilizations are then used to compute the power and

energy consumption of the systolic array, as described in the following section.

7.2 Per-Layer Energy Modeling

The power and energy consumption in a systolic array, when performing in-

ference of an input image, can be computed using the compute cycles and array

utilization obtained for each neural network layer (as described in the previous sec-

tion). The processing element is designed in HSPICE and simulated for a given

technology to compute the average power consumption at different voltages (Ta-

ble 7.2). Note that when computing the leakage power consumption of a process-

93

ing element, the clock signal is gated. The per-layer and neural network energy and

power consumption are further described below.

Voltage (V)
Dynamic Power
Pdyn(PE)(µW)

Leakage Power
Plkg(PE)(µW)

0.90 369.7 13.0

0.85 317.9 10.8

0.80 273.6 8.9

0.75 232.6 7.4

0.70 194.5 6.0

0.65 161.2 4.9

0.60 132.5 4.0

0.55 107.7 3.2

0.50 86.3 2.5

0.45 68.1 2.0

0.40 52.8 1.5

Table 7.2: Dynamic and leakage power consumption for a processing element at
different voltages for 700 MHz clock frequency.

7.2.1 Per-Layer Energy Consumption

Given the power consumption of a processing element (Table 7.2), layer utiliza-

tion (util) and array size, the per-layer dynamic and leakage power consumption

can be evaluated as,

Dynamic Power, Pdyn = Pdyn(PE)×array size×util,

Leakage Power, Plkg = Plkg(PE)×array size× (1−util).
(7.3)

94

Given the total number of compute cycles for a layer, the energy consumption

of a layer can be determined using the following equation,

Edyn(or Elkg) =
Pdyn(or Plkg)× compute cycles

fclk
, (7.4)

where fclk is the operating clock frequency.

7.2.2 DNN Energy Consumption

The total energy consumption for a neural network when performing inference

for an input image can be determined by summation of the per-layer energy con-

sumption:

EDNN =
N

∑
n=1

En, (7.5)

where N is the number of layers in the DNN and En is the energy consumption of

layer n. The average power consumption of the entire network can be computed

from the total number of compute cycles (obtained from summation of per-layer

compute cycles) and the operating clock frequency:

PDNN = EDNN×
fclk

∑
N
n=1 cyclesn

. (7.6)

The DNN energy and power consumption obtained analytically from this model-

ing methodology can be used to evaluate the trade-off between DNN accuracy and

energy at different operating voltages.

95

7.3 Network-Level Voltage Scaling

In this section the DNN accuracy and energy consumption during inference are

evaluated with respect to supply voltage scaling, where all layers in the neural net-

work operate at the same voltage. For this analysis, the per-bit errors injected using

the error resilience analysis framework are determined from the timing error prob-

ability methodology proposed in this work (chapter 3 and 4), as described in sec-

tion 7.3.1. The inference accuracy is quantified with respect to different operating

voltages and clock frequency in section 7.3.2.

7.3.1 Timing Error Probability for Systolic Array

The timing error probability for each bit at the output of an 8-bit MAC is de-

scribed in chapter 5. Considering the example of EfficientNet-B8, since the network

is quantized to 10 bits, a 10-bit multiplier is implemented in the systolic array pro-

cessing element (PE), as shown in Fig. 7.4. Note that the 36-bit adder implemented

in the processing element handles the additional guard bits required to avoid over-

flow when accumulating the partial sums. The number of guard bits depends on the

number of accumulations (nacc) required to compute each output of a DNN layer

and can be calculated as log2 nacc. The number of guard bits required for com-

putation in all the layers is determined and the maximum value is considered to

decide the adder bit-width. Note that for all the networks considered in chapter 6,

only EfficientNet-B0 and B2 networks are quantized to 12 bits, so the processing

element in Fig. 7.4 can be implemented for all the networks.

The error probability of the PE is computed in three steps. First, the timing delay

for all the datapaths is obtained for 20nm HP FinFET technology through HSPICE

simulations. Second, the error probability of different bits at the output of the PE

96

Weight9-0

36-bit Adder

In
p
u

t 9
-0

Partial Sum35-0

20 bitsGuard bits

PE output35-0

Systolic Array

Processing

Element

Figure 7.4: Basic block diagram of a processing element in a systolic array.

is evaluated from the voltage distribution by determining the voltage at which one

or more datapaths fail timing. Finally, the per-bit accumulated timing error proba-

bility is obtained based on the number of multiply-add operations in the respective

convolution window, which depends on the filter size for a given layer. Note that

the timing error probability for both WS and OS dataflow is evaluated with respect

to the total multiply-add operations to compute each output and is observed to be

the same. Since the probability is independent of the dataflow implemented for the

systolic array, the inference accuracy is evaluated with the same error probabilities

for both dataflows.

The additional parameters required to compute the timing error probability is the

voltage RMS noise, σ and ClockPeriod-to-PathDelay ratio. Based on the number of

97

Maximum
bit-width Delay (ps) Tclk/dpath

fclk = 1GHz fclk = 700MHz

23 454.47 2.200 3.143

24 461.94 2.165 3.093

25 469.40 2.130 3.043

26 476.87 2.097 2.996

27 484.33 2.065 2.950

28 491.80 2.033 2.905

29 499.27 2.003 2.861

30 506.73 1.973 2.819

31 514.20 1.945 2.778

32 521.66 1.917 2.738

33 528.47 1.892 2.703

34 535.94 1.866 2.666

35 543.40 1.840 2.629

36 550.87 1.815 2.593

Table 7.3: ClockPeriod-to-PathDelay ratio of different accumulator sizes.

accumulations for each output of a layer, the bit width of the adder output (including

the guard bits) varies between 23 to 36 bits. The ClockPeriod-to-PathDelay ratio of

different adder bit-widths are summarized in Table 7.3. The average ClockPeriod-

to-PathDelay ratio for the processing element at 700 MHz and 1 GHz operating

clock frequency is 2.851 and 1.996, respectively, while the noise (σ) considered for

the voltage distribution when computing the timing error probability is 5%.

The per-layer, per-bit timing error probability computed from the model is pro-

98

Accumulator
bit-width 0.9V 0.8V 0.7V 0.6V 0.5V

23 ≈0% ≈0% ≈0% ≈0% 0.0004%

24 ≈0% ≈0% ≈0% ≈0% 0.0017%

25 ≈0% ≈0% ≈0% ≈0% 0.0047%

26 ≈0% ≈0% ≈0% ≈0% 0.0222%

27 ≈0% ≈0% ≈0% ≈0% 0.0959%

28 ≈0% ≈0% ≈0% 0.0000001% 0.2430%

29 ≈0% ≈0% ≈0% 0.0000001% 0.4183%

30 ≈0% ≈0% ≈0% 0.0000003% 0.7080%

31 ≈0% ≈0% ≈0% 0.0000006% 1.1775%

32 ≈0% ≈0% ≈0% 0.0000011% 1.9246%

33 ≈0% ≈0% ≈0% 0.0000021% 3.09%

34 ≈0% ≈0% ≈0% 0.0000041% 4.8699%

35 ≈0% ≈0% ≈0% 0.0000078% 7.5255%

36 ≈0% ≈0% ≈0% 0.0000145% 11.3789%

Table 7.4: Timing error probability of MSB for different adder bits across all layers
in EfficientNet-B8 with respect to different operating voltages at 700 MHz clock
frequency.

vided as an input to the error resilience analysis framework (chapter 6) to quantify

the DNN inference accuracy with respect to different operating voltages. The tim-

ing error probability for different most significant bit positions in different layers of

EfficientNet-B8 is summarized in Table 7.4 and Table 7.5 for 700 MHz and 1 GHz

clock frequencies, respectively. From the results, it is evident that higher operating

frequency and lower operating voltages increase the timing error probability.

99

Accumulator
bit-width 0.9V 0.8V 0.7V 0.6V 0.5V

23 ≈0% ≈0% ≈0% 0.00005% 7.4564%

24 ≈0% ≈0% ≈0% 0.0002% 23.089%

25 ≈0% ≈0% ≈0% 0.0007% 45.4497%

26 ≈0% ≈0% ≈0% 0.0041% 91.079%

27 ≈0% ≈0% ≈0% 0.0211% 99.9842%

28 ≈0% ≈0% 0.0000002% 0.0639% 100%

29 ≈0% ≈0% 0.0000004% 0.1319% 100%

30 ≈0% ≈0% 0.0000010% 0.2674% 100%

31 ≈0% ≈0% 0.0000024% 0.5324% 100%

32 ≈0% ≈0% 0.0000058% 1.0397% 100%

33 ≈0% ≈0% 0.0000138% 1.9889% 100%

34 ≈0% ≈0% 0.0000325% 3.7185% 100%

35 ≈0% ≈0% 0.0000755% 6.7714% 100%

36 ≈0% ≈0% 0.0001732% 11.9436% 100%

Table 7.5: Timing error probability of MSB for different adder bits across all lay-
ers in EfficientNet-B8 with respect to different operating voltages at 1 GHz clock
frequency.

7.3.2 Quantifying DNN accuracy with respect to supply voltage

The per-bit timing error probabilities computed for all the layers in the net-

work are injected in the DNN using the error resilience analysis framework and the

classification accuracy is evaluated as a function of supply voltage. EfficientNet-

B4 network is considered in this section to quantify the accuracy and evaluate the

accuracy-energy trade-off at scaled supply voltages. This neural network has 160

convolutional layers and 1 fully-connected layer, and it evaluates 19M parameters.

100

0.50.60.70.80.9
Supply Voltage (V)

0

20

40

60

80

To
p-

1
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

)

fclk = 700 MHz
fclk = 1 GHz

Figure 7.5: Top-1 classification accuracy of EfficientNet-B4 with respect to supply
voltage scaling for 700 MHz and 1 GHz clock frequency (2.85 and 2 ClockPeriod-
to-PathDelay ratio respectively).

It is observed in the previous chapter that the network can be quantized to 10-bits

with 0.6% degradation in accuracy. The adder bit-width considered for the systolic

array processing element to avoid overflow is 35 bits. For ImageNet, the Top-1

accuracy of the 10-bit quantized, pre-trained network is 82.15%.

The accuracy of EfficientNet-B4 with respect to operating voltage is shown in

Fig. 7.5. As observed in the figure, the inference accuracy starts degrading beyond

0.6V and 0.7V when the operating clock frequency is 700 MHz and 1 GHz, re-

spectively. At 0.57V and 700 MHz, the highest error probability in the network is

0.0006% and the accuracy drops by 1.04%, while at 0.68V and 1 GHz, the accuracy

drops by 1.33% with 0.0008% error probability observed in the network. These re-

sults are consistent with the results obtained when uniform error rates are applied

in the network during the network-level error resilience analysis (Fig. 6.4).

101

0.5

1.0

1.5

Dy
na

m
ic

Po
we

r (
W

) WS
OS

0.2

0.4

0.6

0.8

1.0

Dy
na

m
ic

En
er

gy
 (m

J) WS
OS

1

2

3

4

Le
ak

ag
e

Po
we

r (
W

) WS
OS

1

2

Le
ak

ag
e

En
er

gy
 (m

J) WS
OS

0.50.60.70.80.9
Supply Voltage (V)

1

2

3

4

5

To
ta

l P
ow

er
 (W

)

WS
OS

0.50.60.70.80.9
Supply Voltage (V)

1

2

3
To

ta
l E

ne
rg

y
(m

J)
WS
OS

Figure 7.6: Dynamic, leakage and total power and energy consumption of 256×256
systolic array implementing WS and OS dataflows at 700 MHz for EfficientNet-B4
neural network.

7.3.2.1 Quantifying DNN energy consumption with respect to supply voltage

Considering a 256×256 systolic array with the same number of compute units

as Google TPUv1 [1], SCALE-Sim is used to determine the number of compute

cycles and array utilization is evaluated using the methodology described in sec-

tion 7.1.2 for every layer in the EfficientNet-B4 network. Fig. 7.6 illustrates the

power and energy consumption of the systolic array when performing inference

of an input image, implementing both WS and OS dataflows at 700 MHz clock

frequency. The maximum utilization of the systolic array is 18.63% and 38.31%

for WS and OS dataflows respectively, which results in an average 2.45× higher

leakage power consumption as compared to the dynamic power consumption. It

102

Array size WS OS

utilmax (%) Cycles utilmax (%) Cycles

256×256 18.63 480664 38.31 421839

128×128 43.80 729449 69.94 681721

64×64 71.72 1219798 81.13 1190813

16×16 98.77 5380120 99.99 5210810

Table 7.6: Total cycle count and maximum utilization of EfficientNet-B4 for differ-
ent systolic array size.

is observed that the dynamic energy is same for both the dataflows due to direct

dependence of the dynamic energy on the utilization and compute cycles:

Energy ∝ Utilization×Cycles. (7.7)

The rate of increase in utilization is the same as the rate of decrease in the compute

cycles when comparing the WS and OS dataflows (section 7.1.2), which results in

the approximately same dynamic energy consumption. Comparing the total power

consumption, WS dataflow is better than output stationary, however, the 1.14×

higher number of cycles results in higher energy consumption.

Energy Consumption w.r.t array size -

The power and energy consumption in the systolic array are compared for differ-

ent array sizes. It is observed that as the array size reduces, there is an increase

in utilization. The maximum utilization and total cycle count for different systolic

array sizes are summarized in Table 7.6. The dynamic and leakage power con-

sumption is compared in Fig. 7.7. It is observed that the leakage power becomes

comparable or lower than the dynamic power as the array size reduces. The total

103

0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

Po
we

r (
W

)

256×256 Array
Pdyn (OS)
Pdyn (WS)
Plkg (OS)
Plkg (WS)

0.2

0.4

0.6

0.8

1.0
128×128 Array

0.50.60.70.80.9
Supply Voltage (V)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Po
we

r (
W

)

64×64 Array

0.50.60.70.80.9
Supply Voltage (V)

0.00
0.02
0.04
0.06
0.08
0.10
0.12

16×16 Array

Figure 7.7: Dynamic and Leakage power consumption of systolic arrays of size
256×256, 128×128, 64×64, and 16×16, while considering 700 MHz clock fre-
quency. Both the WS and OS dataflows are compared.

0.9 0.8 0.7 0.6 0.5
Supply Voltage (V)

500

1000

1500

2000

2500

3000

3500

To
ta

l E
ne

rg
y

Co
ns

um
pt

io
n

(
J)

256×256 (OS)
256×256 (WS)
128×128 (OS)
128×128 (WS)

64×64 (OS)
64×64 (WS)
16×16 (OS)
16×16 (WS)

Figure 7.8: Total energy consumption of systolic arrays of size 256×256, 128×128,
64×64, and 16×16. Both the WS and OS dataflows are compared.

104

0.50.60.70.80.9
Supply Voltage (V)

0

20

40

60

80

To
p-

1
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

)

0

20

40

60

80

De
cr

ea
se

 in
 E

ne
rg

y
(%

)

Accuracy
%Edec (256×256)
%Edec (128×128)
%Edec (64×64)
%Edec (16×16)

(a) fclk =700 MHz

0.50.60.70.80.9
Supply Voltage (V)

0

20

40

60

80

To
p-

1
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

)

0

20

40

60

80

De
cr

ea
se

 in
 E

ne
rg

y
(%

)

Accuracy
%Edec (256×256)
%Edec (128×128)
%Edec (64×64)
%Edec (16×16)

(b) fclk =1 GHz

Figure 7.9: EfficientNet-B4 Top-1 classification accuracy and percentage decrease
in total energy consumption for systolic array implementing WS dataflow. The
baseline Top-1 accuracy at 0.9V is 82.4%.

energy consumption also decreases with array size (Fig. 7.8). Even though the total

energy consumption reduces with array size, there is a latency trade-off due to ad-

ditional overhead of the increased cycle count for both WS and OS implementation

(Table 7.6).

105

0.50.60.70.80.9
Supply Voltage (V)

0

20

40

60

80

To
p-

1
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

)

0

20

40

60

80

De
cr

ea
se

 in
 E

ne
rg

y
(%

)

Accuracy
%Edec (256×256)
%Edec (128×128)
%Edec (64×64)
%Edec (16×16)

(a) fclk =700 MHz

0.50.60.70.80.9
Supply Voltage (V)

0

20

40

60

80

To
p-

1
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

)

0

20

40

60

80

De
cr

ea
se

 in
 E

ne
rg

y
(%

)

Accuracy
%Edec (256×256)
%Edec (128×128)
%Edec (64×64)
%Edec (16×16)

(b) fclk =1 GHz

Figure 7.10: EfficientNet-B8 Top-1 classification accuracy and percentage decrease
in total energy consumption for systolic array implementing WS dataflow. The
baseline Top-1 accuracy at 0.9V is 85.59%.

7.3.2.2 Accuracy-Energy trade-off

The trade-off between inference accuracy and improvement in energy efficiency

is illustrated in Fig. 7.9 for EfficientNet-B4, considering 700 MHz and 1 GHz fre-

quencies. The percentage decrease in energy is calculated with respect to the total

106

energy consumption at nominal voltage (0.9V). For 700 MHz operating clock fre-

quency, the inherent resilience of the neural network allows 36.67% reduction in

supply voltage (0.9V to 0.57V) without an impact in the inference accuracy. This

voltage scaling results in a significant reduction in energy consumption (71.89%).

Scaling the supply voltage further to 0.55V reduces the energy, but it is at the cost

of 73.4% lower inference accuracy. The supply voltage scaling at 1 GHz is limited

to 0.68V at which the inference accuracy reduces by 1.3%, while the total energy

reduces by 53.08%. Similarly for EfficientNet-B8 (Fig. 7.10), at 0.6V (700 MHz)

and 0.7V (1 GHz), there is a negligible loss in inference accuracy (85.5%) with an

average 65.84% and 57.95% energy savings, respectively. Depending on the error

tolerance of the neural network application, these results can be used to achieve

significant energy savings with low voltage operation.

7.4 Per-Layer Voltage Scaling

It is observed in the previous section that by scaling the supply voltage for all

the layers in the neural network, significant energy savings can be obtained with-

out impacting the inference accuracy. As shown in Fig. 7.11, MobileNetV2 Top-1

accuracy reduces by 4.49% at 0.55V, but there is an average 72.68% reduction in

total energy consumption at 700MHz. It is also observed in section 6.3.3 that based

on the per-layer error resilience of the network, some layers can tolerate higher er-

ror rates as compared to others and some of these error resilient layers (e.g. the

last convolutional layer) are also more compute intensive (higher MOps). Based

on the per-layer error resilience, the operating voltage of some layers can be fur-

ther reduced to improve the energy efficiency of the neural network. When scaling

107

0.50.60.70.80.9
Supply Voltage (V)

0

20

40

60

To
p-

1
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

)

0

20

40

60

80

De
cr

ea
se

 in
 E

ne
rg

y
(%

)

fclk: 700MHz

Accuracy
%Edec (256×256)
%Edec (128×128)
%Edec (64×64)
%Edec (16×16)

Figure 7.11: MobileNetV2 Top-1 classification accuracy and percentage decrease
in total energy consumption of different systolic array sizes implementing WS
dataflow.

the operating voltage for each layer, it is important to identify the layers which are

more error resilient and also provide significant improvement in power and energy.

The error resilience of each layer can be quantified by injecting per-layer errors at

the given rate (determined from the error probability modeling methodology) using

the framework described in the previous chapter. The layer consuming the highest

power and energy is the layer which also has maximum array utilization over the to-

tal compute cycles (for the respective layer). In other words, higher array utilization

across the compute cycles in a given layer results in higher energy consumption, and

the effect of voltage scaling is significant for these layers.

Therefore, using the per-layer array utilization, compute cycles and Err1% (error

rate at which DNN accuracy is one percent point lower), the ranking metric of a

layer n can be quantified as:

ranking metricn = Err1%n×utiln× cyclesn. (7.8)

108

0.0 0.2 0.4 0.6 0.8 1.0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
FC

DN
N

La
ye

r

9.0 9.5 10.0 10.5 11.0 11.50.0 0.2 0.4 0.6 0.8 1.0
ranking_metric

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.12: MobileNetV2 per-layer ranking metric [eq. (7.8)].

109

Note that for ERRT % metric, T = 1 is chosen in this work as the desired loss in ap-

plication level accuracy, though any value of T can be chosen based on the accuracy

requirements. The ranking metrics evaluated for all the MobileNetV2 DNN layers

are shown in Fig. 7.12. As observed in the figure, the last convolutional layer has

the highest ranking which is expected since the layer is most error resilient and has

highest MOps, based on the per-layer error resilience analysis results in Table 6.3.

Quantifying the per-layer ranking metric provides an organized approach to

per-layer voltage scaling as the layer rankings prioritize the voltage scaling of the

error resilient and compute intensive layers in the network. When the operating

clock frequency is 700 MHz, the supply voltage can be scaled for the entire net-

work to 0.6V. Based on the layer rankings, the per-layer operating voltage is further

scaled to understand the impact on inference accuracy and energy consumption of

the network. The results of per-layer voltage scaling are analyzed in different sce-

narios (S1–S5), each considering a scaled voltage for a given layer while all other

layers are at 0.6V. In these scenarios, the supply voltage of six convolutional layers

with highest ranking metric are scaled, as summarized in Table 7.7. The variation

in inference accuracy and percentage reduction in energy consumption is illustrated

in Table 7.8. It is observed that the inference accuracy reduces from 71.65% to

70.63%, however, the reduction in total energy consumption as compared to the

nominal voltage (0.9V) is 68.82% and 68.11% for WS and OS dataflows, respec-

tively, as opposed to 68.10% (WS) and 67.36% (OS) when all layers are scaled to

the same voltage (0.6V). Therefore, the per-layer supply voltage scaling results in

1.1% lower accuracy (compared to the 10-bit quantized, error-free network) with

1.06% additional energy savings (compared to the scenario when all the layers are

at 0.6V). The energy consumption of each layer considered in the S1–S5 scenar-

110

DNN layers

15 18 30 32 39 52

ranking metricn 0.135 0.135 0.307 0.199 0.692 11.29

Vlayer (S0) All layers at 0.6V

Vlayer (S1) 0.6 0.6 0.6 0.6 0.6 0.5

Vlayer (S2) 0.6 0.6 0.6 0.6 0.55 0.5

Vlayer (S3) 0.6 0.6 0.55 0.6 0.55 0.5

Vlayer (S4) 0.6 0.6 0.55 0.55 0.55 0.5

Vlayer (S5) 0.55 0.55 0.55 0.55 0.55 0.5

Table 7.7: Operating voltage scaling for six convolutional layers with the highest
ranking metric in 5 different scenarios (S1–S5).

Scenario Top-1 accuracy (%) % Decrease in Energy

WS OS

S0 71.65 68.10 67.36

S1 71.45 68.46 67.76

S2 71.61 68.55 67.86

S3 71.24 68.60 67.88

S4 71.32 68.72 67.98

S5 70.63 68.82 68.11

Table 7.8: MobileNetV2 Top-1 classification accuracy and percentage decrease in
total energy consumption in different scenarios described in Table 7.7. The percent-
age decrease in energy is with respect to the energy consumption at 0.9V.

111

ios (Table 7.7) is a small percentage (0.7–3.2%) of the total energy consumption,

which results in smaller energy savings with per-layer voltage scaling as compared

to network-level voltage scaling.

7.5 Discussion

The timing error modeling methodology and the error resilience framework de-

scribed previously are used to analyze the DNN inference accuracy with respect

to supply voltage. Scaling the operating voltage increases the per-bit timing error

probability of a processing element in a neural network, which further affects the

inference accuracy. However, scaling the operating voltage for a neural network

depends on the clock frequency. It is observed that the supply voltage can be scaled

more at reduced operating clock frequency. For instance, the supply voltage for the

entire EfficientNet-B4 network can be scaled to 0.68V and 0.57V when consider-

ing 1 GHz and 700 MHz operating clock frequency, respectively. The inference

accuracy at the respective voltages reduces by ≈1%, while the energy consump-

tion when performing inference of an input image reduces by 53.08% and 71.89%.

Furthermore, the error resilient and compute intensive layer in the network can be

identified by quantifying the ranking metric of each layer with respect to the per-

layer Err1% and array utilization over the compute cycles. The ranking of each layer

guides the per-layer voltage scaling by targeting the resilient layers in the network.

It is observed that scaling six convolutional layers in MobileNetV2 reduces the in-

ference accuracy of the network from 71.73% to 70.63% while a 68.82% (WS) and

68.11% (OS) improvement in energy is observed compared to the nominal voltage.

However, compared to 0.6V, the energy can be reduced by only 0.98×, which is a

112

very small improvement at the cost of 1.1% lower inference accuracy. The accuracy

and energy consumption improvements with bit-level error detection and correction

methodologies are discussed in the next chapter.

113

Chapter 8

Error Detection and Correction in

Systolic Arrays

The previous chapter quantifies the inference accuracy of a neural network with

respect to the timing errors in the systolic arrays at scaled voltages. The per-layer

analysis highlights the increase in energy savings when the operating voltage of

error resilient and compute-intensive layers are futher scaled compared to other

layers. Furthermore, the per-bit error resilience analysis discussed in section 6.3.3

highlights the significant improvement in inference accuracy when one or more

higher order bits are error-free. These results can be leveraged to scale the supply

voltage further as the inference accuracy improves with bit-level error correction,

therefore, enabling aggressive voltage scaling in DNN accelerators. However, it is

important to analyze the trade-off between the design overhead and improvement

in the quality-of-results that can be obtained through per-bit error detection and

correction techniques. An existing error detection and correction technique (iRa-

114

zor [77]) is implemented in this chapter to analyze the energy and latency overhead

of performing inference of an input image, while also evaluating the improvement

in inference accuracy at scaled voltages.

The rest of the chapter is organized as follows. Section 8.1 provides a brief

overview of the existing error detection and correction techniques. The per-bit error

resilience of the neural network is analyzed in section 8.2. Section 8.3 discusses

the implementation of iRazor flip-flop in systolic array and analyzes the design

overhead and related accuracy trade-offs. The limitations to the supply voltage

scaling at higher frequency is evaluated in section 8.4 by determining the lowest

voltage at which the accuracy loss can be recovered with bit-level error correction.

The results and observations are discussed in section 8.5.

8.1 Background

The process, voltage and temperature (PVT) variations can drastically impact

the circuit performance [27]. In addition to providing additional design margins

to account for these variations, various techniques have been proposed to mitigate

this issue. Some of these variation-aware techniques include dynamic scaling of the

voltage and frequency based on the performance requirements (while also improv-

ing the overall energy efficiency of the circuit) [78–85], or implementing an adap-

tive architecture to mitigate critical path timing failures in digital design through

in situ error detection and correction (EDAC) [8, 86–88]. Shan et al. [85] propose

a timing error prediction based adaptive voltage frequency scaling (AVFS) with

on-chip detection window tuning (to overcome the challenge of varying detection

window due to PVT variations). An overview of the differences between error de-

115

tection, prediction and masking is provided in [89]. Error detection is done after

the clock edge while error prediction is based on monitoring the datapath signals for

transitions for a specified period of time before the clock edge. Error masking tech-

nique (e.g. TIMBER [89]) combines both the aspects, where the errors are detected

after the original clock edge, but propagates the correct values by borrowing time

from the next pipeline stage [89,90]. A timing error-masking aware microcontroller

system is presented in [90], where the error borrowing from the next pipeline stage

is achieved through soft edge flip-flops. The error-aware microcontroller realizes

ultra-low voltage operation resulting in significant energy savings.

Additional EDAC techniques implemented at the circuit and architectural level

detect errors in a given datapath and correct the errors by gating the clock for one

cycle giving the pipeline an opportunity to correct the error. For instance, Razor

flip-flop [86] implements a shadow latch operating on a delayed clock with the

regular flip-flop to detect setup time failures in the critical datapaths. The mis-

match in the output of the shadow latch and regular flip-flop raises an error signal

which prompts restoration of the correct data from the shadow latch, while one cy-

cle overhead is incurred to ensure that correct data is processed in the pipeline. An

alternative approach to error correction is proposed in [87], where the razor flip-flop

circuit is modified (with 38.15% fewer transistors) to only detect the errors, while

the correction is done through architectural replay. These techniques have been im-

plemented in error resilient DNN hardware design to mitigate the impact of timing

errors with voltage underscaling [52,53]. In these works, the timing error resilience

is improved by implementing Razor flip-flops to detect errors and bypass the subse-

quent MAC, therefore, dropping the erroneous partial sum. Another recent EDAC

approach is iRazor [77] flip-flop, which suppresses the time margin added to tol-

116

erate process, voltage and temperature (PVT) variations. Significant performance

gains and energy reductions are achieved across 0.6–1V voltage range, at the cost

of area overhead.

As opposed to these prior works, the objective of this work is to analyze the

overhead of implementing bit-level error detection and correction and evaluate the

trade-off between accuracy, energy, and latency overhead. With the error resilience

analysis framework proposed in this thesis, the number of bits which need to be

corrected to obtain the desired accuracy can be identified and the related trade-

offs of bit-level error correction can be analytically evaluated to enable smarter

and efficient implementation of EDAC techniques. To achieve this objective, the

EDAC technique proposed in [77] is implemented in this work. The error detection

in [77] is implemented by substituting a regular flip-flop with an iRazor flip-flop

while the error correction is implemented by gating the clock whenever there is

an error. Since the probability of error is considerably lower (as observed in the

previous chapters) the latency overhead of gating the clock is smaller compared

to the overall computation time. The accuracy, energy and latency trade-offs are

further explored in this chapter. Note that this framework is not limited to the

iRazor EDAC technique and other error correction methodologies can be adapted

to analyze the overheads.

117

(0) Errors in all bits
(1) 1 MSB error-free
(2) 2 MSB error-free
(3) 3 MSB error-free

(0) (1) (2) (3)0

20

40

60

80

To
p-

1
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

)

21.95%

80.53% 81.89%
82.07%

Figure 8.1: Top-1 classification accuracy of EfficientNet-B4 with 1–3 higher order
bits error-free for 0.55V operating voltage and 700 MHz clock frequency. Note that
all the layers of the network are scaled to 0.55V.

8.2 Quantifying Accuracy with Bit-Level Error Cor-

rection

In this section, the per-bit error resilience of the EfficientNet-B4 DNN is ana-

lyzed by quantifying the inference accuracy with respect to bit-level error correc-

tion. Considering the network-level voltage scaling results obtained at 700 MHz

clock frequency, the Top-1 accuracy reduces from 82.46% at 0.9V to 21.95% at

0.55V. The per-bit error resilience of the network is analyzed by considering one

or more higher order bits error-free before evaluating the inference accuracy. The

accuracy results for 0.55V operating voltage and 700 MHz clock frequency are il-

lustrated in Fig. 8.1. As observed in the figure, the inference accuracy improves by

3.67–3.74× when 1–3 higher order bits in all layers of the network are error-free.

In addition, it is observed in Fig. 7.6 that scaling the operating voltage of the neural

network from nominal voltage to 0.55V reduces the total energy consumption by

74.32%. The per-bit error correction of specific higher order bits can enable signif-

118

icant improvement in inference accuracy, therefore, enabling low voltage operation

and significant energy savings in DNNs. It is important to analyze the overhead of

correcting bit-level errors in the circuit to understand the actual trade-off between

accuracy and energy efficiency of neural network when implementing EDAC tech-

niques to mitigate the effect of timing errors in specific higher order bits. Note that

each layer in the network utilizes different accumulator bit-widths, which depends

on the number of accumulations per output in a given layer. Therefore, when im-

plementing error correction in hardware, it is not feasible to correct only the most

significant bit in all the layers in the network. For example, in EfficientNet-B4, im-

plementing error correction in 35th bit position corrects the errors only in 14 layers

(out of 161 layers). The implementation of iRazor flip-flop to detect and correct

errors in the systolic array is discussed in the following section.

8.3 Bit-Level Error Detection and Correction using

iRazor

As discussed previously, there are a number of existing EDAC techniques such

as Razor [86], error masking using soft-edge flip-flops [90] and iRazor [77]. In this

work, iRazor flip-flop is implemented to correct bit-level timing errors in the sys-

tolic array. Zhang et al. proposed a flip-flop design which adds a light-weight error

detection circuit to a latch (with asynchronous reset), as shown in Fig. 8.2. Fig. 8.3

shows the error detection operation of iRazor flip-flop when the input transitions

after the clock edge. Timing violations are detected if the input transitions in the

error detection window, which is defined by setting CTL as low. When the input

transitions before the rising edge of CLK or before the falling edge of CTL sig-

119

Latch

Error Detector

D

CLK

CLK CLK

CLK

RSTN
RSTN

RSTN

CTL ERR

VVSS

Q

M4

M3

M2

M1

M5

M6
M8

M7

M12

M11

M10

M9

M13

M14
Skewed
Inverter

Figure 8.2: Schematic of iRazor flip-flop [77].

0

1

CL
K

0

1

CT
L

0

1

IN
PU

T

0

1

VV
SS

0.7 0.8 0.9 1.0
time (s) 1e 9

0

1

ER
R

(a) High-to-low input transition

0

1

CL
K

0

1

CT
L

0

1

IN
PU

T

0

1

VV
SS

1.6 1.7 1.8 1.9 2.0
time (s) 1e 9

0

1

ER
R

(b) Low-to-high input transition

Figure 8.3: Waveforms illustrating the iRazor flip-flop error detection functionality.

120

nal, no error is flagged and the virtual ground (VVSS in Fig. 8.2 and 8.3) is held at

ground. The input is considered valid before the falling CTL edge due to time bor-

rowing functionality of iRazor latch. However, when the input D transitions within

the error detection window, the virtual ground is raised due to capacitor discharge

through the first tristate inverter (M1–M5 in Fig. 8.2) or the subsequent inverter

(M7–M8), pulling the ERR signal down through the HI-skewed inverter.

The falling ERR triggers the clock gating logic, as shown in Fig. 8.4. To ensure

an even distribution, 16 ERR signals drive the dynamic OR latch stage (as opposed

to 10 ERR signals in [77]). Multiple latch stages drive the OR propagation stages

to generate the global razor error signal which drives the clock gating logic. For a

N×N systolic array, the error correction circuit includes N×N
16 dynamic OR latches.

Considering n input OR gates, the number of propagation stages to get the global

razor error signal can be evaluated as logn
N×N

16 . This error detection and correction

logic is implemented in 20nm HP FinFET technology in HSPICE. The waveforms

in Fig. 8.5 illustrate the proof-of-concept of this logic. As shown in the figure, an

erroneous data transition triggers the en signal for clock gating. The clock gating

logic gates the clock allowing the pipeline an additional cycle to propagate correct

data signal, therefore, adding a latency overhead of one clock cycle.

In the processing element implemented using 20nm HP FinFET technology in

HSPICE, the regular flip-flop is substituted with the iRazor latch for the output

bit position where the timing error is corrected. When computing the output error

probability for a given bit position with iRazor latch, the data path delay which will

result in timing failure in the latch can be determined from the following equation:

tG + tS > 1.5×Tclk, (8.1)

121

Clock gating
logic

OR
propagation

stages

OR
propagation

stages

Dynamic OR
Latch Stage

iRazor Flop

Latch

i-RESET

i-RESET

OR
propagation

stages

CTL

Input D

CLK
R

az
o

r
Er

ro
r

CLK

Gated
CLK

ERR<15:0>

ERR

EN

Figure 8.4: Basic schematic for error detection and correction based on [77].

0

1

CL
K

0

1

IN
PU

T

0

1

ER
R

0

1

en

0

1

iR
ES

ET

0 1 2 3 4 5
time (s) 1e 9

0

1

Ga
te

d
CL

K

Figure 8.5: Waveforms showing iRazor error detection and correction functionality.

122

Bit position fclk =700 MHz fclk =1 GHz

DFF iRazor DFF iRazor

25 0.3838 0.261 0.4494 0.3279

26 0.3869 0.2638 0.4539 0.3308

27 0.39 0.2666 0.4585 0.3337

28 0.3931 0.2694 0.463 0.3366

29 0.3962 0.2721 0.4677 0.3394

30 0.3992 0.2749 0.4724 0.3423

31 0.4023 0.2776 0.4771 0.3450

32 0.4053 0.2804 0.4818 0.3478

33 0.4083 0.2831 0.4866 0.3505

34 0.4113 0.2857 0.4914 0.3533

35 0.4143 0.2884 0.4963 0.356

36 0.4173 0.2911 0.5012 0.3586

Table 8.1: Comparison of the voltage at which the critical data path (of the respec-
tive bit positions) fails timing for D flip-flop and iRazor latch.

where tG is the data path delay, tS is the setup time of the latch and Tclk is the op-

erating clock period (since the latch has an additional half a clock period due to

transparency). Considering this clock period, the timing error probability is com-

puted for the respective bit positions with iRazor latch using the methodology dis-

cussed in chapters 3 and 4. The voltage at which one or more paths driving a given

output bit position fail timing is compared for regular flip-flop and iRazor latch in

Table 8.1. The voltage at which timing error occurs is 0.69× (700 MHz) and 0.72×

(1 GHz) lower for the iRazor latch. The timing error probability computed from this

voltage represents the errors which cannot be detected by the iRazor latch (the data

123

transitions outside the error detection window). This probability is orders of magni-

tude lower than the error probablity obtained without EDAC. For instance, at 0.55V

and 700 MHz frequency, the timing error probability of the 35th bit in layer 86 in

EfficientNet-B4 DNN is 0.0103% without error detection and correction. Substi-

tuting the regular flip-flop with iRazor in the 35th bit position of the PE reduces the

timing error probability for the layer to 4.9×10−12, which improves the inference

accuracy in the network significantly. The improvement in inference accuracy, and

the corresponding latency and energy overhead of implementing EDAC in systolic

array are discussed in the following sections.

8.3.1 DNN Accuracy with EDAC

The inference accuracy with bit-level error correction is evaluated for 10-bit

quantized MobileNetV2, EfficientNet-B4 and B8 DNNs. It is observed that based

on the operating frequency (and available timing slack for critical data path), the

supply voltage for EfficientNet-B4 and MobileNetV2 can be scaled to 0.57V and

0.68V respectively for 700 MHz and 1 GHz respectively with <1% degradation in

Top-1 accuracy. For EfficientNet-B8, the respective voltages are 0.6V and 0.7V.

Scaling the voltage further results in a significant degradation in inference accuracy

(Table 8.2). When implementing bit-level error correction using iRazor, it is ob-

served that correcting only select higher order bits in the network can improve the

inference accuracy significantly (Fig. 8.6). For B4 and B8 networks, the inference

accuracy obtained is within 1% of the baseline accuracy when the timing errors in 5

higher order bits are corrected, whereas for MobileNetV2, correcting only 3 higher

order bits gives the desired accuracy. Note that correcting 3 higher order bits in

MobileNetV2 corrects timing errors in 1–3 bits in 20 layers (37.74% of 53 layers),

124

no EDAC 35th bit EDAC 35-31 bit EDAC0

20

40

60

80

To
p-

1
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

)

Baseline accuracy = 82.46%
0.55V, 700 MHz
0.65V, 1 GHz

(a) EfficientNet-B4

no EDAC 36th bit EDAC 36-32 bit EDAC (700 MHz)
 36-30 bit EDAC (1 GHz)

0

20

40

60

80

To
p-

1
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

) Baseline accuracy = 85.59%

(b) EfficientNet-B8

no EDAC 32nd bit EDAC 32-30 bit EDAC0

20

40

60

80

To
p-

1
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

)

Baseline accuracy = 71.71%

(c) MobileNetV2

Figure 8.6: EfficientNet-B4 and B8, and MobileNetV2 Top-1 classification accu-
racy with bit-level EDAC implementation when considering 0.55V and 0.65V for
700 MHz and 1 GHz clock frequencies, respectively.

125

MobileNetV2 EfficientNet-B4 EfficientNet-B8

0.9V 71.65% 82.46% 85.59%

0.55V
(fclk=700 MHz)

68.51%
pmax = 0.003%

21.95%
pmax = 0.01%

74.65%
pmax = 0.029%

0.65V
(fclk=1 GHz)

68.12%
pmax = 0.006%

0.33%
pmax = 0.018%

2.87%
pmax = 0.06%

Table 8.2: Top-1 accuracy and maximum timing error probability (pmax) for Mo-
bileNetV2, EfficientNet-B4 and B8 networks at different voltages and frequencies.

5 6 7 8 9 10 11
Number of higher order bits corrected

0

20

40

60

80

To
p-

1
Cl

as
sif

ica
tio

n
Ac

cu
ra

cy
 (%

)

Baseline accuracy = 82.46%
0.5V, 700 MHz
0.6V, 1 GHz

Figure 8.7: EfficientNet-B4 inference accuracy improvement with per-bit error cor-
rection at 0.5V and 0.6V for 700 MHz and 1 GHz, respectively. Note that the
highest MSB position for all the layers in this DNN is 35.

and correcting 5 higher order bits corrects the timing errors in 1–5 bits in 48 layers

(29.81% of 161 layers) in EfficientNet-B4 and 62 layers (20.39% of 304 layers) in

EfficientNet-B8.

To further push the boundaries on low voltage operation, EfficientNet-B4 net-

work is evaluated for 0.5V and 0.6V at 700 MHz and 1 GHz clock frequencies,

respectively. The Top-1 accuracy of the network without EDAC at both the volt-

126

ages is 0.16% and the maximum timing error probability in the network is 7.53%

(700 MHz) and 6.77% (1 GHz). As observed in Fig. 8.6(a), correcting 5 higher

order bits recovers the accuracy loss in the network at 0.55V (700 MHz) and 0.65V

(1 GHz). Due to higher error probability at reduced voltages, the number of bits

to be corrected at 0.5V and 0.6V is evaluated by implementing EDAC in 5 to 11

higher order bits and the accuracy is evaluated with each increment in bit correction.

The improvement in inference accuracy with per-bit error correction is illustrated

in Fig. 8.7, and it is observed that the desired accuracy (within 1% of the baseline

accuracy) is obtained by correcting 35–25 bits (700 MHz) and 35–26 bits (1 GHz).

In this case, the timing errors are corrected in 150 layers (93.17%) and 140 layers

(86.96%) of the EfficientNet-B4 network at 700 MHz and 1 GHz frequencies, re-

spectively. The Top-1 accuracy obtained with EDAC is 81.7%, which is within 1%

of the baseline accuracy of 82.49%.

8.3.2 Latency Overhead

In the previous section, it is observed that correcting bit-level errors in systolic

array can provide a significant improvement in inference accuracy, even at low op-

erating voltages. However, the error correction implemented with iRazor flip-flop

gates the clock for one cycle when an error is detected, which adds a latency over-

head to the total output computation in the systolic array, when performing infer-

ence of an input image. This latency overhead can be analytically quantified with

respect to the timing error probability for every layer in the network.

127

8.3.2.1 MSB error correction overhead

A timing error probability of p for a single PE indicates that an error is expected

to occur every 1/p cycles. If N PEs are used for computing the activation in a given

layer, the probability that at least one PE has an error in a given clock cycle can be

evaluated as,

P = 1− (1− p)N . (8.2)

The average number of active PEs in the systolic array for a given layer for each

cycle can be computed based on the utilization obtained from (7.2). The expected

number of errors in a given layer which requires n cycles to compute all the acti-

vations can be analytically determined as: n×P. This is equivalent to the number

of cycles that the clock is gated to prevent erroneous signals to be propagated in

the pipeline during computation. Therefore, the average latency overhead can be

evaluated as the additional timing overhead of gating n×P clock cycles:

Latency overhead, latover = n× [1− (1− p)N]× 1
fclk

, (8.3)

where p is the error probability of the MSB in the PE, N is the average number
of active PEs in the systolic array for a given layer in a given cycle, n is the total

number of compute cycles for the layer and fclk is the operating clock frequency.

Considering the example of the first convolutional layer in EfficientNet-B4 which

computes all the activations in 12646 cycles for WS dataflow, if the final timing

error probability for the MSB at the output of a PE is 7.52×10−10 and the utilization

of a 256×256 array is 1.96%, the average number of active PEs per cycle is 1286.

Therefore, the probability that there is an error in at least one of the PEs per cycle

is 0.0001%, which adds an average latency overhead of 17.5ps.

128

8.3.2.2 Multiple higher order bits error correction overhead

The most significant bit position in different layers of the network depends on

the number of accumulations per output in that layer. When correcting multiple bits

in the network, the number of bits corrected depends on the MSB position of the

layer. For instance, if layer x MSB position is 31 and layer y is 35, and the error

correction is implemented for 31–35 bits; 5 higher order bits are corrected for layer

x while only the MSB is corrected for layer y. Therefore, different layers in the

network have different latency overhead when correcting multiple bits. Given the

error probability of the ith bit position of the PE (pi) and the average number of

active PEs per cycle for a given layer (N), the probability that at least one of the

active PEs have an error in one of the m bits corrected can be computed as,

P = 1−
m

∏
i=1

(1− pi)
N . (8.4)

Therefore, similar to (8.3), the average latency overhead of correcting m bits in a

layer can be calculated as:

Latency overhead, latover = n× [1−
m

∏
i=1

(1− pi)
N]× 1

fclk
, (8.5)

where n is the number of compute cycles for the respective layer and fclk is the op-

erating clock frequency. It is observed that the latency overhead increases as more

errors are corrected due to an increase in the total error probability. Considering

the example of layer 156 in EfficientNet-B4, when only MSB is corrected (bit 35),

the error probability P is 0.0009% and the latency overhead is 0.69ns. However,

when 5 higher order bits are corrected for this layer, the error probability increases

to 0.002% which adds an average latency overhead of 1.48ns.

129

Data-
flow

Array size
0.55V, 700 MHz 0.65V, 1 GHz

tcompute
a

(ms)
latover

b

(ns)
latover

c

(ns)
tcompute

a

(ms)
latover

b

(ns)
latover

c

(ns)

WS

256×256 0.49 0.644 2.616 0.34 0.721 2.322

128×128 0.68 0.644 2.616 0.48 0.721 2.322

64×64 1.09 0.644 2.616 0.76 0.721 2.322

16×16 4.60 0.644 2.616 3.22 0.721 2.322

OS

256×256 0.29 0.638 2.605 0.20 0.714 2.311

128×128 0.44 0.638 2.605 0.31 0.714 2.311

64×64 0.77 0.638 2.605 0.54 0.714 2.311

16×16 3.79 0.638 2.605 2.65 1.020 2.311
a No EDAC, b 32nd bit EDAC, c 32–30 bit EDAC

Table 8.3: Latency overhead (latover) for MobileNetV2 DNN comparing different
systolic array sizes with EDAC implemented at 0.55V, 700 MHz and 0.65V, 1 GHz.

8.3.2.3 Latency overhead results

The latency overhead of MobileNet-V2, EfficientNet-B4 and B8 when perform-

ing inference of an input image are evaluated at 0.55V and 0.65V operating volt-

age for 700 MHz and 1 GHz clock frequency, respectively. Considering the three

scenarios described in Fig. 8.6, the total latency overhead is evaluated for differ-

ent array sizes implementing WS and OS dataflow, and summarized in Table 8.3

(MobileNetV2), Table 8.4 (EfficientNet-B4) and Table 8.5 (EfficientNet-B8). It is

observed that even though the latency overhead increases as more higher order bits

are corrected, it is still orders of magnitude lower than the total compute time in the

systolic array. The results observed in the table are discussed below:

• Different DNNs and Array sizes: The latency overhead is higher for larger

DNNs as the total compute time and MSB error probability increases. For

130

Data-
flow

Array size
0.55V, 700 MHz 0.65V, 1 GHz

tcompute
a

(ms)
latover

b

(ns)
latover

c

(ns)
tcompute

a

(ms)
latover

b

(ns)
latover

c

(ns)

WS

256×256 2.95 23.03 79.85 2.06 45.02 114.64

128×128 4.01 23.03 79.85 2.81 45.01 114.63

64×64 6.28 23.03 79.87 4.40 45.02 114.65

16×16 26.08 23.05 79.91 18.25 45.05 114.72

OS

256×256 1.54 23.03 79.84 1.08 45.01 114.62

128×128 2.28 23.03 79.85 1.60 45.01 114.63

64×64 3.89 23.03 79.85 2.72 45.01 114.63

16×16 21.38 23.03 79.85 14.96 45.02 114.63
a No EDAC, b 35th bit EDAC, c 35–31 bit EDAC

Table 8.4: Latency overhead (latover) for EfficientNet-B4 DNN comparing different
systolic array sizes with EDAC implemented at 0.55V, 700 MHz and 0.65V, 1 GHz.

Data-
flow

Array size
0.55V, 700 MHz 0.65V, 1 GHz

tcompute
a

(ms)
latover

b

(ns)
latover

c

(ns)
tcompute

a

(ms)
latover

b

(ns)
latover

d

(ns)

WS

256×256 9.14 43.76 312.52 6.40 102.62 654.26

128×128 13.07 43.77 312.54 9.15 102.63 654.32

64×64 21.77 43.77 312.58 15.24 102.64 654.40

16×16 105.07 43.82 312.76 73.55 102.74 654.82

OS

256×256 4.61 43.76 312.49 3.23 102.61 654.10

128×128 7.13 43.76 312.50 4.99 102.61 654.19

64×64 12.81 43.76 312.51 8.97 102.61 654.23

16×16 84.70 43.76 312.52 59.29 102.61 654.28
a No EDAC, b 36th bit EDAC, c 36–32 bit EDAC, d 36–31 bit EDAC

Table 8.5: Latency overhead (latover) for EfficientNet-B8 DNN comparing different
systolic array sizes with EDAC implemented at 0.55V, 700 MHz and 0.65V, 1 GHz.

131

instance, the MSB position for all the layers in MobileNetV2 is in the range

of 24–32 while that for EfficientNet-B4 is 23–35. In addition, the total com-

putation cycles for 161 layers in EfficientNet-B4 is 5.9× more than the com-

putation cycles for 53 layers in MobileNetV2. For all the networks, it is

observed that the latency overhead is approximately the same across different

array sizes when only the MSB is corrected. From (8.4), it is evident that

as the average number of active PEs per cycle reduces with array size, the

probability that at least one of the active PEs has an error in one of the bits

corrected (P) also reduces. Since latency overhead is directly proportional to

the total number of compute cycles (n) and the probability P : latover ∝ n×P

(eq. (8.5)), as the number of bits corrected increases (P increases) and the

number of compute cycles increase (as the array size reduces), there is an

increase in latency overhead. However, this increase is negligible for smaller

DNNs.

• Different dataflows: Comparing the WS and OS dataflows, the average uti-

lization for OS is higher which increases the number of active PEs and there-

fore, the probability that one of the active PEs has an error. However, the total

number of compute cycles in OS is comparatively lower, due to which the la-

tency overhead is the same or less than the latency overhead of WS dataflow.

The relative overhead (ratio of latency overhead and tcompute) is higher for OS

due to lower tcompute, i.e., more errors are detected per cycle. For instance, the

relative overhead for EfficientNet-B4 is 1.91–1.22× higher for OS dataflow,

when considering 0.55V and 700 MHz.

The supply voltage can be further scaled to achieve more energy savings by

correcting more higher order bits in the network, but there is a latency and energy

132

Dataflow Array size 700 MHz 1 GHz

tcompute
(ms)

latover (µs)
@0.5V

EC: 35–25 bits

tcompute
(ms)

latover (µs)
@0.6V

EC: 35–26 bits

WS

256×256 2.95 144.73 2.06 48.86

128×128 4.01 149.98 2.81 49.38

64×64 6.28 153.37 4.40 49.74

16×16 26.08 156.60 18.25 50.13

OS

256×256 1.54 129.05 1.08 46.78

128×128 2.28 139.87 1.60 48.21

64×64 3.89 147.59 2.72 49.08

16×16 21.38 156.22 14.96 50.05

Table 8.6: Latency overhead for EfficientNet-B4 at 0.5V, 700 MHz and 0.6V, 1
GHz. The accuracy obtained with this EDAC implementation is 81.7% which is
within 1% of the baseline accuracy.

overhead of implementing bit-level error correction. It is observed in Fig. 8.6(a)

and 8.7 that the loss in inference accuracy due to high error probabilities at scaled

voltages can be recovered by correcting 5 bits (at 0.55V) or 11 bits (at 0.5V) at

700 MHz clock frequency. To evaluate the latency overhead of correcting more bits

in the network at scaled voltages, EfficientNet-B4 is scaled to 0.5V and 0.6V for

700 MHz and 1 GHz frequencies, respectively. The bit positions corrected for the

network are 35–25 bits for 700 MHz and 35–26 bits for 1 GHz to achieve 81.7%

Top-1 accuracy, which is within 1% of the baseline accuracy (82.5%). The latency

overhead evaluated for this scenario is summarized in Table 8.6. Note that at 0.5V,

the timing error probability of the PE is 1.12–6.51× higher for 35–25 bit posi-

tions which results in higher latency overhead compared to 0.6V. Considering the

133

128×128 systolic array, relative to the total compute time without error detection

and correction, the overhead is 3.74% and 6.13% for WS and OS dataflows at 700

MHz. At 1 GHz, the respective overheads are 1.75% and 3.01%. This overhead is

significantly higher compared to that observed in Table 8.4 due to low voltage op-

eration and more bit-level error correction, but it is still orders of magnitude lower

than the total compute time.

8.3.3 Energy Overhead

The error detection and correction in the PE is implemented by replacing the se-

lected flip-flops with the iRazor flip-flop. The additional energy consumption of the

EDAC logic (Fig. 8.4) implemented to correct bit-level errors results in an energy

overhead, which is evaluated in this section. The energy overhead is computed by

first determining the energy consumption of the PE with iRazor flip-flop (number of

iRazor flip-flops depends on the number of bits corrected) and the clock gating logic

through HSPICE simulations. The total energy consumption with EDAC is then an-

alytically computed using the energy model described in section 7.2. As described

in the previous chapter, this energy consumption is the energy consumed by the sys-

tolic array during inference of an input image. Note that the energy consumption

of the array with EDAC discussed in this section does not take into account the en-

ergy cost of routing additional signals (e.g. CTL which is similar to a phase-shifted

clock signal, as shown in Fig. 8.3, and controls the error detection logic in iRazor

flip-flop) for EDAC in iRazor.

It is observed in the previous chapter that the operating voltage of the DNNs

(considered in this analysis) can be scaled to 0.7V at 1 GHz frequency without a

significant loss in accuracy. With bit-level EDAC, the supply voltage can be further

134

scaled to 0.65V and 0.6V while maintaining the inference accuracy within 1% of

the baseline accuracy. However, this is at the cost of energy and latency overhead.

For instance, the latency overhead of EfficientNet-B4 can range between 45.01ns–

156.6µs (Table 8.4 and Table 8.6) based on the array size and dataflow.

The energy consumption of the systolic array with and without error detection

and correction is illustrated in Figs. 8.8, 8.9 and 8.10 for MobileNetV2, EfficientNet-

B4 and B8 DNNs, respectively. The clock frequency considered for all the networks

is 1 GHz and the operating voltage is scaled to 0.65V and 0.6V (for EfficientNet-

B4). It is observed in the figure that even though there is a small increase in the total

energy consumption with EDAC implementation, the total energy consumption is

comparatively less than that at 0.7V without EDAC. Considering different systolic

array sizes, when only the MSB is corrected, the energy consumption at 0.65V re-

duces by 14.7–16.6% and 10.4–15.2% compared to the energy consumption at 0.7V

for MobileNetV2 and EfficientNet-B4. For EfficientNet-B4, the supply voltage is

scaled further to 0.6V (with 35–26 higher order bits corrected) and the total energy

consumption reduces by 31.52–33.22% compared to 0.7V, resulting in significant

energy savings. Since the bit-width of the accumulator increases for larger DNNs,

the timing error probability of the critical path increases. The high timing error

probability causes a larger latency and energy overhead, which results in lower en-

ergy savings at scaled voltages. For instance, the total energy consumption at 0.65V

with EDAC is observed to be only 2.94–10.98% lower than the energy consumption

at 0.7V without EDAC in EfficientNet-B8 DNN.

The total energy consumption at 0.65V and 0.6V (for EfficientNet-B4), and the

percentage energy overhead of implementing EDAC are also summarized in Ta-

bles 8.7, 8.8 and 8.9 for MobileNetV2, EfficientNet-B4 and B8, respectively. For

135

256 × 256 128 × 128 64 × 64 16 × 16
Array size

0

100

200

300

400

E t
ot

al
 (

J)

0.90V (no EDAC)
0.70V (no EDAC)
0.65V (no EDAC)
0.65V (32nd bit EDAC)
0.65V (32-30 bit EDAC)

(a) WS

256 × 256 128 × 128 64 × 64 16 × 16
Array size

0.0

50.0

100.0

150.0

200.0

250.0

300.0

E t
ot

al
 (

J)

0.90V (no EDAC)
0.70V (no EDAC)
0.65V (no EDAC)
0.65V (32nd bit EDAC)
0.65V (32-30 bit EDAC)

(b) OS

Figure 8.8: Energy consumption of MobileNetV2 DNN with and without error
detection for different systolic array sizes considering WS and OS dataflow at 1
GHz clock frequency.

136

256 × 256 128 × 128 64 × 64 16 × 16
Array size

0.0

0.5

1.0

1.5

2.0

2.5

E t
ot

al
 (m

J)
0.90V (no EDAC)
0.70V (no EDAC)
0.65V (no EDAC)
0.65V (35th bit EDAC)
0.65V (35-31 bit EDAC)
0.60V (no EDAC)
0.60V (35-26 bit EDAC)

(a) WS

256 × 256 128 × 128 64 × 64 16 × 16
Array size

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

E t
ot

al
 (m

J)

0.90V (no EDAC)
0.70V (no EDAC)
0.65V (no EDAC)
0.65V (35th bit EDAC)
0.65V (35-31 bit EDAC)
0.60V (no EDAC)
0.60V (35-26 bit EDAC)

(b) OS

Figure 8.9: Energy consumption of EfficientNet-B4 DNN with and without error
detection for different systolic array sizes considering WS and OS dataflow at 1
GHz clock frequency.

137

256 × 256 128 × 128 64 × 64 16 × 16
Array size

0

2

4

6

8

10
E t

ot
al

 (m
J)

0.90V (no EDAC)
0.70V (no EDAC)
0.65V (no EDAC)
0.65V (36th bit EDAC)
0.65V (36-31 bit EDAC)

(a) WS

256 × 256 128 × 128 64 × 64 16 × 16
Array size

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

E t
ot

al
 (m

J)

0.90V (no EDAC)
0.70V (no EDAC)
0.65V (no EDAC)
0.65V (36th bit EDAC)
0.65V (36-31 bit EDAC)

(b) OS

Figure 8.10: Energy consumption of EfficientNet-B8 DNN with and without error
detection for different systolic array sizes considering WS and OS dataflow at 1
GHz clock frequency.

138

Array size Etotal (µJ) at 0.65V

no EDAC 32nd bit 32–30 bits

Top-1 Acc. 68.12% 70.42% 71.36%

WS

256×256 180.7 183.80 (+1.72%) 183.91 (+1.78%)

128×128 105.5 107.88 (+2.26%) 107.85 (+2.23%)

64×64 81.49 83.64 (+2.64%) 83.57 (+2.55%)

16×16 69.98 72.03 (+2.93%) 71.95 (+2.82%)

OS

256×256 130.6 133.27 (+2.04%) 133.30 (+2.06%)

128×128 90.04 92.28 (+2.49%) 92.23 (+2.43%)

64×64 76.27 78.38 (+2.77%) 78.30 (+2.66%)

16×16 68.81 70.84 (+2.95%) 70.76 (+2.83%)

Table 8.7: Energy consumption of MobileNetV2 at 0.65V and 1 GHz frequency,
with and without EDAC.

smaller arrays, the total energy consumption reduces due to lower leakage (com-

pared to larger arrays). However, the lower energy consumption for smaller arrays

increases the relative energy overhead (ratio of energy overhead and energy con-

sumption without EDAC). For instance, the increase in total energy consumption for

different array sizes is 0.036–0.03mJ (WS) or 0.317–0.308mJ (OS) for EfficientNet-

B4 at 0.65V (with EDAC implementation), but as the total energy consumption re-

duces for smaller arrays, the relative energy overhead increases. Overall, there is a

reduction in total energy consumption with EDAC and with this framework, it is ob-

served that based on the DNN, further energy savings are possible by implementing

bit-level error detection and correction in systolic array.

139

Array size Etotal (mJ) at 0.65V Etotal (mJ) at 0.6V

no EDAC 35th bit 35–31 bits no EDAC 35–26 bits

Top-1
Acc. 0.33% 43.36% 81.33% 0.16% 81.68%

WS

256×256 1.079
1.115

(+3.3%)
1.117

(+3.5%) 0.878
0.923

(+5.1%)

128×128 0.610
0.642

(+5.2%)
0.642

(+5.2%) 0.499
0.528

(+5.8%)

64×64 0.463
0.493

(+6.5%)
0.493

(+6.5%) 0.380
0.404

(+6.3%)

16×16 0.394
0.424

(+7.6%)
0.423

(+7.4%) 0.325
0.347

(+6.8%)

OS

256×256 0.724
0.758

(+4.7%)
0.758

(+4.7%) 0.592
0.631

(+6.6%)

128×128 0.500
0.531

(+6.2%)
0.531

(+6.2%) 0.410
0.437

(+6.6%)

64×64 0.424
0.454

(+7.1%)
0.454

(+7.1%) 0.349
0.373

(+6.9%)

16×16 0.387
0.417

(+7.8%)
0.416

(+7.5%) 0.319
0.341

(+6.9%)

Table 8.8: Energy consumption of EfficientNet-B4 at 0.65V and 0.6V, and 1 GHz
frequency, with and without EDAC.

140

Array size Etotal (mJ) at 0.65V

no EDAC 36th bit 36–31 bits

Top-1 Acc. 2.87% 13.99% 84.78%

WS

256×256 3.96 4.282 (+8.27%) 4.286 (+8.37%)

128×128 2.53 2.842 (+12.42%) 2.839 (+12.30%)

64×64 2.07 2.375 (+15.01%) 2.370 (+14.77%)

16×16 1.84 2.147 (+16.68%) 2.142 (+16.41%)

OS

256×256 2.81 3.127 (+11.28%) 3.126 (+11.25%)

128×128 2.15 2.460 (+14.47%) 2.456 (+14.29%)

64×64 1.92 2.228 (+16.04%) 2.223 (+15.78%)

16×16 1.81 2.118 (+17.02%) 2.112 (+16.69%)

Table 8.9: Energy consumption of EfficientNet-B8 at 0.65V and 1 GHz frequency,
with and without EDAC.

8.4 Limitations to supply voltage scaling with EDAC

It is observed that scaling the supply voltage increases the timing error prob-

ability in the DNNs and therefore, reduces the inference accuracy. The results

discussed in the previous section illustrate that the loss in accuracy in the DNNs

can be recovered through bit-level EDAC, such that the voltage for MobileNetV2

and EfficientNet-B4 can be scaled to 0.5V and 0.6V at 700 MHz and 1 GHz clock

frequency, respectively. In this section, the primary objective is to determine the

breaking point in voltage scaling at which the accuracy loss cannot be recovered due

to significantly high timing error probability with and without EDAC. To achieve

this objective, a DNN is analyzed at lower voltages (and higher clock frequency) to

determine the minimum voltage at which the accuracy loss in the network can be

recovered with bit-level error detection and correction using iRazor.

141

For MobileNetV2, it is observed in Fig. 8.8 that the supply voltage can be scaled

to 0.65V at 1 GHz clock frequency, by correcting 3 higher order bits in the network.

To evaluate the effect of reducing the voltage further, the voltage is scaled to 0.55V

and 0.5V. At 0.55V, the maximum error probability (pmax) observed by the network

is 93.4% which results in ≈0% inference accuracy. An accuracy of 71.08% is ob-

tained (within 1% of the baseline accuracy of 71.73%) by correcting 32–22 bits

at which pmax is 0.213%, which is the timing error probability of bit 21. The la-

tency and energy overhead of correcting 32–22 bits is 236.3µs and 28.01µJ (w.r.t.

to energy consumption with no EDAC at 0.55V, 1 GHz) for 128×128 array (WS

dataflow).

Scaling the voltage further to 0.5V increases the timing error probability due

to which more higher order bits need to be corrected. However, it is observed that

as more bits are corrected at this low voltage, the loss in inference accuracy is

due to the highest timing error in the uncorrected bit position or the corrected bit

position. Note that the corrected bit position has a non-zero timing error probability

because the iRazor flip-flop is not ideal and it cannot detect every timing error (the

data transitions outside the error detection window) in the system. To illustrate the

different timing error probabilities with different number of bit corrections at low

voltages, two scenarios are considered. In the first scenario, 32–21 bits are corrected

and the value of pmax observed is 36.93%, which is the error probability of the

uncorrected bit position 20. In the second scenario, 32–14 bits are corrected and

the value of pmax observed is 1.26%, which is the error probability of corrected bit

position 32. Therefore, even with EDAC, the highest error probability of 1.26% at

0.5V and 1 GHz results in 0.1% inference accuracy, as opposed to 71.08% accuracy

at 0.55V (with 32–22 bits corrected). The timing error probability of iRazor is

142

dominant when more bits are corrected, and because both the probabilities are high,

the inference accuracy cannot be recovered at 0.5V and 1 GHz clock frequency.

As the accumulator size increases for larger DNNs, the timing error probability

at low voltage and high frequency operation also increases, therefore, limiting the

supply voltage scaling. It is observed in the previous section that the accuracy of

EfficientNet-B4 is 81.68% (within 1% of the baseline accuracy) at 0.6V and 1 GHz

clock frequency with 35–26 bit error correction (pmax = 0.0066%), and the latency

and energy overhead is 49.38µs and 0.029mJ (w.r.t. the energy consumption with

no EDAC at 0.6V, 1 GHz), respectively. Scaling the voltage to 0.55V at 1 GHz

frequency increases the pmax to 99.86% resulting in ≈0% accuracy. Similar to

MobileNetV2, the highest error probability in the network at 0.55V (with EDAC)

can be the error probability of the uncorrected or the corrected bit position. This is

illustrated by considering two scenarios where bit positions 35–20 and 35–18 are

corrected by replacing the regular flip-flop with iRazor. The accuracy evaluated

with EDAC (for both the scenarios) is 0.5% due to the high error probability with

and without error correction. When correcting 35–20 bits, pmax is 0.0484%, which

is the error probability of bit 19. When 35–18 bits are corrected, pmax is 0.047%,

which is the error probability of bit 35 with iRazor flip-flop. In both the scenarios,

the timing error probability is significantly high for EfficientNet-B4 due to which

the accuracy loss cannot be recovered. Therefore, EfficientNet-B4 can be scaled to

only 0.6V as opposed to 0.55V for MobileNetV2.

143

8.5 Discussion

The error probability model and the resilience analysis framework proposed

in this work provide an opportunity to quantify the DNN quality-of-results with

respect to supply voltage and analyze the performance, energy trade-offs. An exist-

ing EDAC technique [77] is implemented in the processing element of the systolic

array to evaluate the accuracy, energy trade-offs and understand the impact of im-

plementing bit-level error correction techniques in the systolic array. The results

discussed in this chapter are summarized in Tables 8.10 to 8.15. It is observed that

as the supply voltage is scaled, more errors need to be corrected to recover the loss

in inference accuracy, but there is a trade-off between accuracy, latency and energy

consumption with bit-level error correction. Depending on the DNN considered,

the systolic array size and the dataflow, the overhead can be significantly high. For

instance, the latency overhead of correcting 11 higher order bits in MobileNetV2

to recover the accuracy loss at 0.55V, 1 GHz is 0.18–0.54ms (16.65–53.57% of the

total latency) and the energy overhead is in the range of 3.1–81.7µJ (6.64–69%

of total energy). The trade-off between latency and total energy consumption of

systolic array with EDAC implementation is analyzed and it is observed that re-

ducing the systolic array size reduces the energy consumption but at the cost of

higher latency. This overhead increases as more higher order bits are corrected in

the processing element. It is important to note that the supply voltage scaling is

limited by the high timing error probability of the systolic array with and without

EDAC at a given frequency. For EfficientNet-B4, if the supply voltage is scaled to

0.55V at 1 GHz frequency, the accuracy of the network cannot be recovered even

when all the bits are corrected. This is due to the non-zero timing error probability

of the iRazor latch which increases with supply voltage scaling (even though it is

144

less than the regular flip-flop). Therefore, the framework presented in this disserta-

tion can be used to evaluate this trade-off and implement smarter and more efficient

bit-level error mitigation techniques. In the future, the area overhead can also be

analyzed through hardware implementation to compare the power, performance and

area trade-off of low voltage DNN accelerators.

145

D
N

N
f c

lk
(G

H
z)

V
D

D
(V

)
E

D
A

C
bi

t(
s)

p m
ax

To
p-

1
A

cc
.

(%
)

L
at

en
cy

(m
s)

W
S

O
S

25
6

12
8

64
16

25
6

12
8

64
16

M
B

-V
2

0.
7

0.
90

N
/A

1.
11
×

10
−

25
71

.6
5

0.
49

02
0.

69
9

1.
08

52
4.

60
15

0.
28

93
0.

43
62

0.
76

69
3.

78
99

0.
60

N
/A

2.
13
×

10
−

08
71

.6
5

0.
49

02
0.

69
9

1.
08

52
4.

60
15

0.
28

93
0.

43
62

0.
76

69
3.

78
99

0.
55

N
/A

3.
30
×

10
−

05
68

.5
1

0.
49

02
0.

69
9

1.
08

52
4.

60
15

0.
28

93
0.

43
62

0.
76

69
3.

78
99

32
9.

96
×

10
−

06
70

.3
6

0.
49

02
0.

69
9

1.
08

52
4.

60
15

0.
28

93
0.

43
62

0.
76

69
3.

78
99

32
–3

0
2.

84
×

10
−

06
71

.3
4

0.
49

02
0.

69
9

1.
08

52
4.

60
15

0.
28

93
0.

43
62

0.
76

69
3.

78
99

0.
50

N
/A

0.
03

09
0.

06
0.

49
02

0.
69

9
1.

08
52

4.
60

15
0.

28
93

0.
43

62
0.

76
69

3.
78

99

32
–2

4
0.

00
01

71
.3

6
0.

49
02

0.
69

9
1.

08
52

4.
60

15
0.

28
93

0.
43

62
0.

76
69

3.
78

99

1.
0

0.
90

N
/A

5.
19
×

10
−

18
71

.7
3

0.
34

31
0.

47
59

0.
75

96
3.

22
11

0.
20

25
0.

30
53

0.
53

68
2.

65
30

0.
70

N
/A

1.
38
×

10
−

07
71

.7
3

0.
34

31
0.

47
59

0.
75

96
3.

22
11

0.
20

25
0.

30
53

0.
53

68
2.

65
30

0.
65

N
/A

6.
36
×

10
−

05
68

.1
2

0.
34

31
0.

47
59

0.
75

96
3.

22
11

0.
20

25
0.

30
53

0.
53

68
2.

65
30

32
1.

32
×

10
−

05
70

.4
2

0.
34

31
0.

47
59

0.
75

96
3.

22
11

0.
20

25
0.

30
53

0.
53

68
2.

65
30

32
–3

0
2.

59
×

10
−

06
71

.3
6

0.
34

31
0.

47
59

0.
75

96
3.

22
11

0.
20

25
0.

30
53

0.
53

68
2.

65
30

0.
55

N
/A

0.
93

43
0.

05
0.

34
31

0.
47

59
0.

75
96

3.
22

11
0.

20
25

0.
30

53
0.

53
68

2.
65

30

32
–2

2
0.

00
21

71
.0

8
0.

52
69

0.
71

22
1.

06
39

3.
75

75
0.

32
99

0.
47

18
0.

76
36

3.
16

14

Ta
bl

e
8.

10
:M

ob
ile

N
et

-V
2

la
te

nc
y

re
su

lts
su

m
m

ar
y

fo
rd

iff
er

en
tv

ol
ta

ge
,f

re
qu

en
cy

,s
ys

to
lic

ar
ra

y
si

ze
s,

an
d

da
ta

flo
w

s.

146

D
N

N
f c

lk
(G

H
z)

V
D

D
(V

)
E

D
A

C
bi

t(
s)

p m
ax

To
p-

1
A

cc
.

(%
)

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

W
S

O
S

25
6

12
8

64
16

25
6

12
8

64
16

M
B

-V
2

0.
7

0.
90

N
/A

1.
11
×

10
−

25
71

.6
5

0.
59

02
0.

30
50

0.
21

39
0.

17
00

0.
39

97
0.

24
62

0.
17

51
0.

16
59

0.
60

N
/A

2.
13
×

10
−

08
71

.6
5

0.
18

83
0.

10
14

0.
07

37
0.

06
03

0.
13

05
0.

08
36

0.
06

53
0.

05
91

0.
55

N
/A

3.
30
×

10
−

05
68

.5
1

0.
15

14
0.

08
18

0.
05

96
0.

04
89

0.
10

51
0.

06
76

0.
05

42
0.

04
79

32
9.

96
×

10
−

06
70

.3
6

0.
15

2
0.

08
2

0.
05

97
0.

04
89

0.
10

55
0.

06
76

0.
05

48
0.

04
79

32
–3

0
2.

84
×

10
−

06
71

.3
4

0.
15

26
0.

08
22

0.
05

97
0.

04
88

0.
10

58
0.

06
77

0.
05

48
0.

04
78

0.
50

N
/A

0.
03

09
0.

06
0.

12
05

0.
06

53
0.

04
77

0.
03

92
0.

08
38

0.
05

4
0.

04
39

0.
03

84

32
–2

4
0.

00
01

71
.3

6
0.

12
13

0.
06

55
0.

04
77

0.
03

91
0.

08
42

0.
05

41
0.

04
38

0.
03

83

1.
0

0.
90

N
/A

5.
19
×

10
−

18
71

.7
3

0.
45

22
0.

25
22

0.
18

88
0.

15
82

0.
31

88
0.

21
14

0.
17

49
0.

15
52

0.
70

N
/A

1.
38
×

10
−

07
71

.7
3

0.
22

04
0.

12
8

0.
09

85
0.

08
44

0.
15

89
0.

10
9

0.
09

21
0.

08
3

0.
65

N
/A

6.
36
×

10
−

05
68

.1
2

0.
18

07
0.

10
55

0.
08

15
0.

07
0.

13
06

0.
09

0.
07

62
0.

06
88

32
1.

32
×

10
−

05
70

.4
2

0.
18

38
0.

10
79

0.
08

36
0.

07
2

0.
13

33
0.

09
23

0.
07

84
0.

07
08

32
–3

0
2.

59
×

10
−

06
71

.3
6

0.
18

39
0.

10
79

0.
08

36
0.

07
2

0.
13

33
0.

09
22

0.
07

83
0.

07
08

0.
55

N
/A

0.
93

43
0.

05
0.

11
84

0.
06

96
0.

05
41

0.
04

67
0.

08
6

0.
05

97
0.

05
07

0.
04

59

32
–2

2
0.

00
21

71
.0

8
0.

20
01

0.
09

76
0.

06
49

0.
04

98
0.

13
93

0.
07

89
0.

08
29

0.
04

88

Ta
bl

e
8.

11
:M

ob
ile

N
et

-V
2

en
er

gy
re

su
lts

su
m

m
ar

y
fo

rd
iff

er
en

tv
ol

ta
ge

,f
re

qu
en

cy
,s

ys
to

lic
ar

ra
y

si
ze

s,
an

d
da

ta
flo

w
s.

147

D
N

N
f c

lk
(G

H
z)

V
D

D
(V

)
E

D
A

C
bi

t(
s)

p m
ax

To
p-

1
A

cc
.

(%
)

L
at

en
cy

(m
s)

W
S

O
S

25
6

12
8

64
16

25
6

12
8

64
16

B
4

0.
7

0.
90

N
/A

4.
78
×

10
−

25
82

.4
6

2.
94

95
4.

00
84

6.
27

93
26

.0
77

1
1.

54
16

2.
28

44
3.

88
89

21
.3

76
8

0.
60

N
/A

7.
76
×

10
−

08
82

.3
8

2.
94

95
4.

00
84

6.
27

93
26

.0
77

1
1.

54
16

2.
28

44
3.

88
89

21
.3

76
8

0.
55

N
/A

0.
00

01
21

.9
5

2.
94

95
4.

00
84

6.
27

93
26

.0
77

1
1.

54
16

2.
28

44
3.

88
89

21
.3

76
8

35
5.

88
×

10
−

05
69

.8
9

2.
94

96
4.

00
85

6.
27

93
26

.0
77

1
1.

54
16

2.
28

44
3.

88
89

21
.3

76
9

35
–3

1
5.

36
×

10
−

06
81

.4
8

2.
94

96
4.

00
85

6.
27

94
26

.0
77

1
1.

54
17

2.
28

45
3.

88
9

21
.3

76
9

0.
50

N
/A

0.
07

53
0.

16
2.

94
95

4.
00

84
6.

27
93

26
.0

77
1

1.
54

16
2.

28
44

3.
88

89
21

.3
76

8

35
–2

5
0.

00
02

81
.6

6
3.

09
43

4.
15

84
6.

43
27

26
.2

33
7

1.
67

07
2.

42
43

4.
03

65
21

.5
33

1

1.
0

0.
90

N
/A

3.
77
×

10
−

17
82

.4
2.

06
47

2.
80

59
4.

39
55

18
.2

53
9

1.
07

91
1.

59
91

2.
72

22
14

.9
63

8

0.
70

N
/A

7.
55
×

10
−

07
81

.9
7

2.
06

47
2.

80
59

4.
39

55
18

.2
53

9
1.

07
91

1.
59

91
2.

72
22

14
.9

63
8

0.
65

N
/A

0.
00

03
0.

33
2.

06
47

2.
80

59
4.

39
55

18
.2

53
9

1.
07

91
1.

59
91

2.
72

22
14

.9
63

8

35
0.

00
01

77
.5

2
2.

06
47

2.
80

59
4.

39
56

18
.2

54
1.

07
92

1.
59

91
2.

72
23

14
.9

63
8

35
–3

1
5.

89
×

10
−

06
81

.7
8

2.
06

48
2.

80
6

4.
39

56
18

.2
54

1
1.

07
92

1.
59

92
2.

72
23

14
.9

63
9

0.
60

N
/A

0.
06

77
0.

16
2.

06
47

2.
80

59
4.

39
55

18
.2

53
9

1.
07

91
1.

59
91

2.
72

22
14

.9
63

8

35
–2

6
6.

57
×

10
−

05
81

.6
8

2.
11

35
2.

85
53

4.
44

53
18

.3
04

1
1.

12
59

1.
64

73
2.

77
13

15
.0

13
8

Ta
bl

e
8.

12
:E

ffi
ci

en
tN

et
-B

4
la

te
nc

y
re

su
lts

su
m

m
ar

y
fo

rd
iff

er
en

tv
ol

ta
ge

,f
re

qu
en

cy
,s

ys
to

lic
ar

ra
y

si
ze

s,
an

d
da

ta
flo

w
s.

148

D
N

N
f c

lk
(G

H
z)

V
D

D
(V

)
E

D
A

C
bi

t(
s)

p m
ax

To
p-

1
A

cc
.

(%
)

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

W
S

O
S

25
6

12
8

64
16

25
6

12
8

64
16

B
4

0.
7

0.
90

N
/A

4.
78
×

10
−

25
82

.4
6

3.
63

72
1.

85
71

1.
30

01
1.

03
78

2.
28

9
1.

43
99

1.
15

29
1.

01
33

0.
60

N
/A

7.
76
×

10
−

08
82

.3
8

1.
15

5
0.

61
29

0.
44

33
0.

36
34

0.
74

56
0.

48
63

0.
39

86
0.

35
6

0.
55

N
/A

0.
00

01
21

.9
5

0.
93

41
0.

49
98

0.
36

39
0.

3
0.

60
61

0.
39

83
0.

32
81

0.
29

39

35
5.

88
×

10
−

05
69

.8
9

0.
93

45
0.

49
76

0.
36

1
0.

29
67

0.
60

47
0.

39
56

0.
32

5
0.

29
06

35
–3

1
5.

36
×

10
−

06
81

.4
8

0.
93

6
0.

49
76

0.
36

05
0.

29
6

0.
60

51
0.

39
53

0.
32

43
0.

28
99

0.
50

N
/A

0.
07

53
0.

16
0.

74
39

0.
39

97
0.

29
2

0.
24

14
0.

48
4

0.
31

93
0.

26
36

0.
23

65

35
–2

5
0.

00
02

81
.6

6
0.

77
18

0.
40

37
0.

28
96

0.
23

66
0.

50
49

0.
32

16
0.

26
08

0.
23

18

1.
0

0.
90

N
/A

3.
77
×

10
−

17
82

.4
2.

72
57

1.
47

96
1.

08
99

0.
90

72
1.

78
18

1.
18

75
0.

98
65

0.
88

88

0.
70

N
/A

7.
55
×

10
−

07
81

.9
7

1.
31

51
0.

73
85

0.
55

94
0.

47
4

0.
87

94
0.

60
38

0.
51

07
0.

46
54

0.
65

N
/A

0.
00

03
0.

33
1.

07
91

0.
60

96
0.

46
28

0.
39

41
0.

72
44

0.
49

98
0.

42
39

0.
38

7

35
0.

00
01

77
.5

2
1.

11
54

0.
64

16
0.

49
34

0.
42

4
0.

75
75

0.
53

08
0.

45
42

0.
41

7

35
–3

1
5.

89
×

10
−

06
81

.7
8

1.
11

72
0.

64
17

0.
49

3
0.

42
34

0.
75

81
0.

53
06

0.
45

37
0.

41
63

0.
60

N
/A

0.
06

77
0.

16
0.

87
83

0.
49

88
0.

38
01

0.
32

46
0.

59
16

0.
41

01
0.

34
87

0.
31

89

35
–2

6
6.

57
×

10
−

05
81

.6
8

0.
92

32
0.

52
75

0.
40

43
0.

34
67

0.
63

12
0.

43
73

0.
37

25
0.

34
14

Ta
bl

e
8.

13
:E

ffi
ci

en
tN

et
-B

4
en

er
gy

re
su

lts
su

m
m

ar
y

fo
rd

iff
er

en
tv

ol
ta

ge
,f

re
qu

en
cy

,s
ys

to
lic

ar
ra

y
si

ze
s,

an
d

da
ta

flo
w

s.

149

D
N

N
f c

lk
(G

H
z)

V
D

D
(V

)
E

D
A

C
bi

t(
s)

p m
ax

To
p-

1
A

cc
.

(%
)

L
at

en
cy

(m
s)

W
S

O
S

25
6

12
8

64
16

25
6

12
8

64
16

B
8

0.
7

0.
90

N
/A

9.
83
×

10
−

25
85

.5
9

9.
13

66
13

.0
65

5
21

.7
66

5
10

5.
06

92
4.

61
49

7.
13

37
12

.8
11

8
84

.7
01

4

0.
60

N
/A

1.
45
×

10
−

07
85

.5
9

9.
13

66
13

.0
65

5
21

.7
66

5
10

5.
06

92
4.

61
49

7.
13

37
12

.8
11

8
84

.7
01

4

0.
55

N
/A

0.
00

02
74

.6
5

9.
13

66
13

.0
65

5
21

.7
66

5
10

5.
06

92
4.

61
49

7.
13

37
12

.8
11

8
84

.7
01

4

36
0.

00
01

76
.1

2
9.

13
66

13
.0

65
6

21
.7

66
5

10
5.

06
93

4.
61

5
7.

13
38

12
.8

11
9

84
.7

01
4

36
–3

2
9.

96
×

10
−

06
84

.6
6

9.
13

69
13

.0
65

8
21

.7
66

8
10

5.
06

95
4.

61
52

7.
13

4
12

.8
12

1
84

.7
01

7

1.
0

0.
90

N
/A

1.
01
×

10
−

16
85

.5
1

6.
39

56
9.

14
59

15
.2

36
5

73
.5

48
5

3.
23

05
4.

99
36

8.
96

83
59

.2
90

9

0.
70

N
/A

1.
73
×

10
−

06
85

.4
5

6.
39

56
9.

14
59

15
.2

36
5

73
.5

48
5

3.
23

05
4.

99
36

8.
96

83
59

.2
90

9

0.
65

N
/A

0.
00

06
2.

87
6.

39
56

9.
14

59
15

.2
36

5
73

.5
48

5
3.

23
05

4.
99

36
8.

96
83

59
.2

90
9

36
0.

00
03

13
.9

9
6.

39
57

9.
14

6
15

.2
36

6
73

.5
48

6
3.

23
06

4.
99

37
8.

96
84

59
.2

91
1

36
–3

1
5.

89
×

10
−

06
84

.7
8

6.
39

63
9.

14
65

15
.2

37
2

73
.5

49
1

3.
23

11
4.

99
43

8.
96

89
59

.2
91

6

Ta
bl

e
8.

14
:E

ffi
ci

en
tN

et
-B

8
la

te
nc

y
re

su
lts

su
m

m
ar

y
fo

rd
iff

er
en

tv
ol

ta
ge

,f
re

qu
en

cy
,s

ys
to

lic
ar

ra
y

si
ze

s,
an

d
da

ta
flo

w
s.

150

D
N

N
f c

lk
(G

H
z)

V
D

D
(V

)
E

D
A

C
bi

t(
s)

p m
ax

To
p-

1
A

cc
.

(%
)

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

W
S

O
S

25
6

12
8

64
16

25
6

12
8

64
16

B
8

0.
7

0.
90

N
/A

9.
83
×

10
−

25
85

.5
9

12
.8

49
2

7.
44

1
5.

68
63

4.
82

51
8.

5
6.

00
23

5.
13

54
4.

72
09

0.
60

N
/A

1.
45
×

10
−

07
85

.5
9

4.
16

26
2.

51
5

1.
98

04
1.

71
81

2.
84

1
2.

07
8

1.
81

32
1.

68
65

0.
55

N
/A

0.
00

02
74

.6
5

3.
35

47
2.

03
48

1.
60

65
1.

39
69

2.
29

61
1.

68
47

1.
47

25
1.

37
1

36
0.

00
01

76
.1

2
4.

13
03

2.
37

3
1.

80
27

1.
52

23
2.

73
48

1.
91

24
1.

62
7

1.
49

05

36
–3

2
9.

96
×

10
−

06
84

.6
6

4.
13

38
2.

37
17

1.
8

1.
51

88
2.

73
47

1.
91

1.
62

38
1.

36
48

1.
0

0.
90

N
/A

1.
01
×

10
−

16
85

.5
1

9.
84

29
6.

05
73

4.
82

93
4.

22
98

6.
79

81
5.

04
97

4.
44

29
4.

15
28

0.
70

N
/A

1.
73
×

10
−

06
85

.4
5

4.
80

96
3.

05
75

2.
48

93
2.

21
24

3.
40

33
2.

59
23

2.
31

08
2.

17
62

0.
65

N
/A

0.
00

06
2.

87
3.

95
52

2.
52

81
2.

06
53

1.
83

99
2.

81
2.

14
93

1.
91

99
1.

81
03

36
0.

00
03

13
.9

9
4.

28
19

2.
84

19
2.

37
48

2.
14

73
3.

12
68

2.
45

97
2.

22
82

2.
11

75

36
–3

1
5.

89
×

10
−

06
84

.7
8

4.
28

59
2.

83
93

2.
37

01
2.

14
16

3.
12

58
2.

45
55

2.
22

29
2.

11
17

Ta
bl

e
8.

15
:E

ffi
ci

en
tN

et
-B

8
en

er
gy

re
su

lts
su

m
m

ar
y

fo
rd

iff
er

en
tv

ol
ta

ge
,f

re
qu

en
cy

,s
ys

to
lic

ar
ra

y
si

ze
s,

an
d

da
ta

flo
w

s.

151

Chapter 9

Conclusion

As demonstrated in previous chapters, analyzing the impact of voltage scaling

on the classification accuracy is important in error resilient deep learning applica-

tions. This analysis helps designers understand the power consumption and accu-

racy trade-off, and explore the implementation of bit-level error detection and cor-

rection (EDAC) techniques in DNN accelerators. A framework is proposed in this

work to quantify the DNN inference accuracy as a function of supply voltage and

understand the accuracy and energy efficiency trade-offs in low-voltage systolic ar-

rays. This framework is implemented in three steps. First, an error probability mod-

eling methodology is proposed to facilitate the quantification of quality-of-results

vs. error rates at the application level, without relying on time-consuming simu-

lations. Since multiplication and accumulation is the basic computational unit in

deep learning hardware, the proposed methodology is implemented on 8-bit MAC

to evaluate the timing error probability in different operating conditions (clock fre-

quency, supply voltage and noise). Due to different characteristics of the two tech-

nologies explored in this work (FinFET and TFET), several important design con-

152

siderations are highlighted. An important observation is the impact of power supply

noise on the timing error probability. The dependence on noise is stronger for TFET

technology as the voltage is scaled to near-threshold levels due to exponential de-

pendence of delay on voltage, which increases the sensitivity to voltage fluctuations

at such low voltages.

Second, an error resilience framework is designed in PyTorch to investigate the

error resilience of a neural network at per-layer and per-bit granularity. In this

framework, bit-level errors are injected in all or select layers in a quantized neural

network. The error resilience is analyzed for several state-of-the-art DNNs such

as ResNet-18 [63], MobileNetV2 [64] and EfficientNet [65]. The key observation

from per-layer analysis is that the error resilience of different layers in the network

is independent of the computational complexity of the network, such that some

layers (such as the last convolutional layer) are more resilient and implement higher

number of MOps. These robust layers can enable significant improvements in the

energy efficiency of DNN hardware. The per-bit error resilience analysis indicates

that the inference accuracy can be improved significantly if 1–5 higher order bits

(out of 10–12 bits) are error-free. These results can be leveraged to implement

efficient error detection and correction techniques and understand the trade-offs

between accuracy improvement and design overheads.

In the last step, the timing probability model and the error resilience framework

are combined to quantify the DNN accuracy as a function of supply voltage. The

per-bit error rate at the output of a processing element in a systolic array is deter-

mined from the proposed probability model while considering 5% supply noise and

different operating voltages and clock frequency. The error rate for a layer output is

determined by accumulating the error rate based on the number of multiply-add op-

153

erations for each output in the respective layer. These per-bit, per-layer error rates

are then used as an input to the error resilience framework to evaluate the inference

accuracy. For MobileNetV2, EfficientNet-B4 and B8 DNNs, it is observed that the

operating voltage for entire network can be scaled to 0.6V and 0.7V for 700 MHz

and 1 GHz clock frequency, respectively, without affecting the DNN accuracy. This

voltage reduction provides a 64.28–68.09% and 47.6–51.26% improvement for 700

MHz and 1 GHz frequency, respectively. The per-layer voltage scaling is also ex-

plored to exploit the error resilience of compute-intensive layers in the network.

In addition, different systolic array sizes are compared to analyze the dynamic and

leakage power consumption in the systolic array, which can be quantified based

on the array utilization and per-layer compute cycle count (obtained from SCALE-

Sim [72]).

The observations and conclusions drawn from this framework are used to further

explore the bit-level error detection and correction (EDAC) techniques and quantify

the trade-offs between accuracy improvement and design overhead of additional

hardware for EDAC implementation. In this work, iRazor [77] is used to correct

the timing errors in the higher order bits within each layer output in the systolic

array. At lower voltages (e.g. <0.7V at 1 GHz frequency), the higher timing error

probabilities increase the loss in accuracy which can be recovered through per-bit

error correction at the cost of latency and energy overhead. For instance, EDAC

in a systolic array performing inference of an input image for EfficientNet-B4 at

0.6V and 1 GHz frequency, adds a latency overhead of ≈50µs, while the total

energy consumption of the systolic array is 26.64–29.8% lower than the energy

consumption at 0.7V (no EDAC). It is also observed that voltage scaling at higher

frequency is limited by the significant increase in timing error probability, with and

154

without EDAC. To understand this limitation, the minimum voltage at which a DNN

can recover the loss in accuracy with EDAC is evaluated. This minimum voltage

varies for different networks and it depends on the accumulator size since the error

probability is higher for accumulators with higher bit-widths. For instance, at 1

GHz clock frequency, MobileNetV2 can be scaled to 0.55V while EfficientNet-B4

can only be scaled to 0.6V for 1 GHz frequency. Below these supply voltages, the

loss in accuracy cannot be recovered through per-bit error correction. Therefore,

the work presented in this dissertation highlights the importance of analyzing the

impact of low voltage operation in DNN accelerator structures and helps designers

understand the complex trade-offs between accuracy degradation and improvement

in energy efficiency with supply voltage scaling, particularly in the context of bit-

level error detection and correction.

In future work, this framework can be used to explore the overhead and trade-

offs of other error compensation techniques, such [91] in which Ji et al. propose a

compensation-MAC that includes additional adders in existing MAC to compensate

errors in multiplier data-path. This is an interesting approach as it removes latency

overhead in the systolic array due to timing errors, and can be implemented to cor-

rect bit-level errors. Though Li et al. explore the accuracy and energy trade-offs

with this error compensation technique, the framework proposed in this dissertation

can further push the boundaries on low voltage operation by exploiting the error

resilience of different layers. Moreover, the designers can use it to explore the over-

head and trade-offs of different systolic array sizes and neural network structures.

The observations and conclusions drawn from the analysis can also facilitate the

design and optimization of low voltage deep learning hardware. In conclusion, this

dissertation exploits the inherent resilience of neural networks to achieve aggressive

155

voltage scaling with negligible impact on inference accuracy in error-aware, energy

efficient DNN accelerators.

156

Bibliography

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, and et al.,
“In-datacenter performance analysis of a tensor processing unit,” in 2017
ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA), June 2017, pp. 1–12.

[2] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding Error Propagation in Deep Learning Neural
Network (DNN) Accelerators and Applications,” in Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage
and Analysis, 2017, pp. 8:1–8:12.

[3] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and
characterization of inherent application resilience for approximate comput-
ing,” in 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC),
May 2013, pp. 1–9.

[4] C. Chen, J. Choi, K. Gopalakrishnan, V. Srinivasan, and S. Venkataramani,
“Exploiting approximate computing for deep learning acceleration,” in 2018
Design, Automation Test in Europe Conference Exhibition (DATE), March
2018, pp. 821–826.

[5] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Ap-
proximate computing and the quest for computing efficiency,” in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2015, pp. 1–6.

[6] M. Rathore, P. Milder, and E. Salman, “Error probability models for voltage-
scaled multiply-accumulate units,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 28, no. 7, pp. 1665–1675, 2020.

157

[7] S. Datta, R. Bijesh, H. Liu, D. Mohata, and V. Narayanan, “Tunnel Transistors
for Low Power Logic,” in 2013 IEEE Compound Semiconductor Integrated
Circuit Symposium (CSICS), Oct 2013, pp. 1–4.

[8] Y. Zhang, M. Khayatzadeh, K. Yang, M. Saligane, N. Pinckney, M. Alioto,
D. Blaauw, and D. Sylvester, “irazor: Current-based error detection and cor-
rection scheme for pvt variation in 40-nm arm cortex-r4 processor,” IEEE
Journal of Solid-State Circuits, vol. 53, no. 2, pp. 619–631, 2017.

[9] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient Processing of Deep Neural
Networks: A Tutorial and Survey,” Proceedings of the IEEE, vol. 105, no. 12,
pp. 2295–2329, Dec 2017.

[10] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mas-
tering the game of Go with deep neural networks and tree search,” nature, vol.
529, no. 7587, p. 484, 2016.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[12] R. C. Gonzalez, “Deep Convolutional Neural Networks [Lecture Notes],”
IEEE Signal Processing Magazine, vol. 35, no. 6, pp. 79–87, Nov 2018.

[13] A. Hidaka and T. Kurita, “Consecutive Dimensionality Reduction by Canoni-
cal Correlation Analysis for Visualization of Convolutional Neural Networks,”
in Proceedings of the ISCIE International Symposium on Stochastic Systems
Theory and its Applications, vol. 2017, 12 2017, pp. 160–167.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

[16] F. Shahbaz, “Five Powerful CNN Architectures,” https://medium.com/
datadriveninvestor/five-powerful-cnn-architectures-b939c9ddd57b, Nov
2018.

158

[17] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks,” in
IEEE Journal of Solid-State Circuits, vol. 52, no. 1, Jan 2017, pp. 127–138.

[18] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “DLAU: A Scalable
Deep Learning Accelerator Unit on FPGA,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp. 1–1, 2016.

[19] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra,
and H. Esmaeilzadeh, “From high-level deep neural models to FPGAs,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Oct 2016, pp. 1–12.

[20] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN accelerator efficiency
through resource partitioning,” in 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), June 2017, pp. 535–547.

[21] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization and Huffman Coding,”
arXiv, Oct 2015.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[23] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural
networks on CPUs,” in Deep Learning and Unsupervised Feature Learning
Workshop, NIPS 2011, 2011.

[24] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bina-
rized Neural Networks: Training Deep Neural Networks with Weights and
Activations Constrained to +1 or -1,” arXiv, Feb 2016.

[25] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both Weights and Con-
nections for Efficient Neural Network,” in Advances in neural information
processing systems, 2015, pp. 1135–1143.

[26] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network
Computing,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), June 2016, pp. 1–13.

159

[27] E. Salman and E. G. Friedman, High Performance Integrated Circuit Design.
McGraw Hill Professional, 2012.

[28] W. P. Maszara and M. R. Lin, “FinFETs - Technology and circuit design chal-
lenges,” in 2013 Proceedings of the ESSCIRC (ESSCIRC), Sep 2013, pp. 3–8.

[29] C. Sitik, W. Liu, B. Taskin, and E. Salman, “Design Methodology for Voltage-
Scaled Clock Distribution Networks,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 24, no. 10, pp. 3080–3093, Oct 2016.

[30] C. Sitik, E. Salman, L. Filippini, S. J. Yoon, and B. Taskin, “FinFET-Based
Low-Swing Clocking,” ACM Journal on Emerging Technologies in Comput-
ing Systems (JETC), vol. 12, no. 2, pp. 1–13, 2015.

[31] M. Rathore, W. Liu, E. Salman, C. Sitik, and B. Taskin, “A Novel Static
D-Flip-Flop Topology for Low Swing Clocking,” in Proceedings of the 25th
Edition on Great Lakes Symposium on VLSI, 2015, pp. 301–306.

[32] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar,
“Near-threshold voltage (NTV) design Opportunities and challenges,” in DAC
Design Automation Conference 2012, June 2012, pp. 1149–1154.

[33] N. Pinckney, S. Jeloka, R. Dreslinski, T. Mudge, D. Sylvester, D. Blaauw,
L. Shifren, B. Cline, and S. Sinha, “Impact of FinFET on Near-Threshold
Voltage Scalability,” IEEE Design & Test, vol. 34, no. 2, pp. 31–38, April
2017.

[34] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge,
“Near-Threshold Computing: Reclaiming Moore’s Law Through Energy Ef-
ficient Integrated Circuits,” Proceedings of the IEEE, vol. 98, no. 2, pp. 253–
266, Feb 2010.

[35] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm
for energy-efficient design,” in 2013 18th IEEE European Test Symposium
(ETS), May 2013, pp. 1–6.

[36] V. K. Chippa, S. Venkataramani, K. Roy, and A. Raghunathan, “StoRM: A
Stochastic Recognition and Mining processor,” in 2014 IEEE/ACM Inter-
national Symposium on Low Power Electronics and Design (ISLPED), Aug
2014, pp. 39–44.

160

[37] T. Cui, J. Li, Y. Wang, S. Nazarian, and M. Pedram, “An Exploration of Ap-
plying Gate-Length-Biasing Techniques to Deeply-Scaled FinFETs Operat-
ing in Multiple Voltage Regimes,” IEEE Transactions on Emerging Topics in
Computing, vol. 6, no. 2, pp. 172–183, April 2018.

[38] R. Wang, X. Jiang, S. Guo, and R. Huang, “How close to the CMOS voltage
scaling limit for FinFET technology? Near-threshold computing and stochas-
tic computing,” in 2017 IEEE 12th International Conference on ASIC (ASI-
CON). IEEE, Oct 2017, pp. 56–59.

[39] “International Technology Roadmap for Semiconductors (ITRS),” 2015.

[40] F. Balestra, “Nanoscale FETs for high performance and ultra low power oper-
ation at the end of the Roadmap,” in 2018 14th IEEE International Conference
on Solid-State and Integrated Circuit Technology (ICSICT), Oct 2018, pp. 1–
4.

[41] N. Collaert, A. Alian, H. Arimura, G. Boccardi, G. Eneman, J. Franco,
T. Ivanov, D. Lin, R. Loo, C. Merckling, J. Mitard, M. Pourghaderi, R. Rooy-
ackers, S. Sioncke, J. Sun, A. Vandooren, A. Veloso, A. Verhulst, N. Waldron,
L. Witters, D. Zhou, K. Barla, and A.-Y. Thean, “Ultimate nano-electronics:
New materials and device concepts for scaling nano-electronics beyond the Si
roadmap,” Microelectronic Engineering, vol. 132, pp. 218–225, Jan 2015.

[42] N. K. Kranthi and M. Shrivastava, “ESD Behavior of Tunnel FET Devices,”
IEEE Transactions on Electron Devices, vol. 64, no. 1, pp. 28–36, Jan 2017.

[43] S. Datta, R. Pandey, M. Barth, R. Bijesh, and H. Liu, “Tunnel FETs - the Next
Switch in the Post FinFET Era?” July 2016.

[44] S. Datta, H. Liu, and V. Narayanan, “Tunnel FET technology: A reliability
perspective,” Microelectronics Reliability, vol. 54, no. 5, pp. 861–874, May
2014.

[45] M. Sanaullah and M. H. Chowdhury, “Subthreshold swing characteristics of
multilayer MoS2 tunnel FET,” in 2015 IEEE 58th International Midwest Sym-
posium on Circuits and Systems (MWSCAS), Aug 2015, pp. 1–4.

[46] H. Liu, S. Datta, and V. Narayanan, “Steep switching tunnel FET: A promise
to extend the energy efficient roadmap for post-CMOS digital and analog/RF
applications,” in International Symposium on Low Power Electronics and De-
sign (ISLPED), Sep 2013, pp. 145–150.

161

[47] G. Dewey, B. Chu-Kung, J. Boardman, J. M. Fastenau, J. Kavalieros, R. Kotl-
yar, W. K. Liu, D. Lubyshev, M. Metz, N. Mukherjee, P. Oakey, R. Pil-
larisetty, M. Radosavljevic, H. W. Then, and R. Chau, “Fabrication, character-
ization, and physics of IIIV heterojunction tunneling Field Effect Transistors
(H-TFET) for steep sub-threshold swing,” in 2011 International Electron De-
vices Meeting, Dec 2011, pp. 1–33.

[48] T. A. Ameen, H. Ilatikhameneh, P. Fay, A. Seabaugh, R. Rahman, and
G. Klimeck, “Alloy Engineered Nitride Tunneling Field-Effect Transistor: A
Solution for the Challenge of Heterojunction TFETs,” IEEE Transactions on
Electron Devices, pp. 1–7, 2018.

[49] E. Memisevic, J. Svensson, E. Lind, and L. Wernersson, “Vertical Nanowire
TFETs With Channel Diameter Down to 10 nm and Point SMIN of 35
mV/Decade,” IEEE Electron Device Letters, vol. 39, no. 7, pp. 1089–1091,
July 2018.

[50] V. Saripalli, G. Sun, A. Mishra, Y. Xie, S. Datta, and V. Narayanan, “Exploit-
ing Heterogeneity for Energy Efficiency in Chip Multiprocessors,” IEEE Jour-
nal on Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 2,
pp. 109–119, June 2011.

[51] M. Rathore and E. Salman, “Error Probability Models to Facilitate Approxi-
mate Computing in TFET based Circuits,” in 2018 IEEE International Sym-
posium on Circuits and Systems (ISCAS), 2018, pp. 1–5.

[52] J. Zhang, K. Rangineni, Z. Ghodsi, and S. Garg, “ThUnderVolt: Enabling
Aggressive Voltage Underscaling and Timing Error Resilience for Energy Ef-
ficient Deep Learning Accelerators,” in 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC), June 2018, pp. 1–6.

[53] J. J. Zhang and S. Garg, “FATE: Fast and Accurate Timing Error Prediction
Framework for Low Power DNN Accelerator Design,” in 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Nov 2018,
pp. 1–8.

[54] X. Jiao, M. Luo, J. Lin, and R. K. Gupta, “An assessment of vulnerability of
hardware neural networks to dynamic voltage and temperature variations,” in
2017 IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), Nov 2017, pp. 945–950.

162

[55] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu, “Predictive technol-
ogy model,” 2002.

[56] H. Liu, V. Saripalli, V. Narayanan, and S. Datta, “III-V Tunnel FET Model,”
2015.

[57] H. Wang and E. Salman, “Closed-Form Expressions for I/O Simultaneous
Switching Noise Revisited,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 25, no. 2, pp. 769–773, Feb 2017.

[58] T. Enami, S. Ninomiya, and M. Hashimoto, “Statistical Timing Analysis Con-
sidering Spatially and Temporally Correlated Dynamic Power Supply Noise,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 28, no. 4, pp. 541–553, April 2009.

[59] S. M. Ross, A first course in probability. Pearson Prentice Hall, 2010.

[60] M. Saint-Laurent and M. Swaminathan, “Impact of power-supply noise on
timing in high-frequency microprocessors,” IEEE Transactions on Advanced
Packaging, vol. 27, no. 1, pp. 135–144, Feb 2004.

[61] M. Ha, Y. Byun, S. Moon, Y. Lee, and S. Lee, “Layerwise Buffer Voltage
Scaling for Energy-Efficient Convolutional Neural Network,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40,
no. 1, pp. 1–10, 2021.

[62] Y. Chen, Y. Zhu, F. Qiao, J. Han, Y. Liu, and H. Yang, “Evaluating data re-
silience in CNNs from an approximate memory perspective,” in Proceedings
of the on Great Lakes Symposium on VLSI 2017, 2017, pp. 89–94.

[63] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[64] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Inverted
Residuals and Linear Bottlenecks: Mobile Networks for Classification,
Detection and Segmentation,” CoRR, vol. abs/1801.04381, 2018. [Online].
Available: http://arxiv.org/abs/1801.04381

[65] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” CoRR, vol. abs/1905.11946, 2019.
[Online]. Available: http://arxiv.org/abs/1905.11946

163

[66] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[67] W. Choi, D. Shin, J. Park, and S. Ghosh, “Sensitivity based error resilient tech-
niques for energy efficient deep neural network accelerators,” in Proceedings
of the 56th Annual Design Automation Conference 2019, 2019, pp. 1–6.

[68] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee,
N. Mulholland, D. Brooks, and G.-Y. Wei, “Ares: A Framework for
Quantifying the Resilience of Deep Neural Networks,” in Proceedings
of the 55th Annual Design Automation Conference, ser. DAC ’18.
New York, NY, USA: ACM, 2018, pp. 17:1–17:6. [Online]. Available:
http://doi.acm.org/10.1145/3195970.3195997

[69] E. Ozen and A. Orailoglu, “Boosting Bit-Error Resilience of DNN Acceler-
ators Through Median Feature Selection,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, pp. 3250–
3262, 2020.

[70] A. Xichen, “pytorch-playground.”

[71] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le, “MnasNet: Platform-
Aware Neural Architecture Search for Mobile,” CoRR, vol. abs/1807.11626,
2018. [Online]. Available: http://arxiv.org/abs/1807.11626

[72] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna, “SCALE-
Sim: Systolic CNN Accelerator Simulator,” 2019.

[73] Y.-H. Chen, J. Emer, and V. Sze, “Using dataflow to optimize energy efficiency
of deep neural network accelerators,” IEEE Micro, vol. 37, no. 3, pp. 12–21,
2017.

[74] Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam, “Diannao family: energy-
efficient hardware accelerators for machine learning,” Communications of the
ACM, vol. 59, no. 11, pp. 105–112, 2016.

[75] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic,
E. Cosatto, and H. P. Graf, “A massively parallel coprocessor for convo-
lutional neural networks,” in 2009 20th IEEE International Conference on
Application-specific Systems, Architectures and Processors. IEEE, 2009, pp.
53–60.

164

[76] R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S. Dai, M. Fojtik, B. Keller,
A. Klinefelter, N. Pinckney, P. Raina et al., “Magnet: A modular accelerator
generator for neural networks,” in 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 2019, pp. 1–8.

[77] Y. Zhang, M. Khayatzadeh, K. Yang, M. Saligane, N. Pinckney, M. Alioto,
D. Blaauw, and D. Sylvester, “irazor: Current-based error detection and cor-
rection scheme for pvt variation in 40-nm arm cortex-r4 processor,” IEEE
Journal of Solid-State Circuits, vol. 53, no. 2, pp. 619–631, Feb 2018.

[78] P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey, “A voltage reduction
technique for digital systems,” in 1990 37th IEEE International Conference on
Solid-State Circuits. IEEE, 1990, pp. 238–239.

[79] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi,
S. Dwarkadas, and M. L. Scott, “Energy-efficient processor design using mul-
tiple clock domains with dynamic voltage and frequency scaling,” in Proceed-
ings Eighth International Symposium on High Performance Computer Archi-
tecture. IEEE, 2002, pp. 29–40.

[80] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark, “Voltage and frequency
control with adaptive reaction time in multiple-clock-domain processors,” in
11th International Symposium on High-Performance Computer Architecture.
IEEE, 2005, pp. 178–189.

[81] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis of
fast, per-core dvfs using on-chip switching regulators,” in 2008 IEEE 14th In-
ternational Symposium on High Performance Computer Architecture. IEEE,
2008, pp. 123–134.

[82] L. Wang, G. Von Laszewski, J. Dayal, and F. Wang, “Towards energy aware
scheduling for precedence constrained parallel tasks in a cluster with dvfs,” in
2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing. IEEE, 2010, pp. 368–377.

[83] C.-M. Wu, R.-S. Chang, and H.-Y. Chan, “A green energy-efficient scheduling
algorithm using the dvfs technique for cloud datacenters,” Future Generation
Computer Systems, vol. 37, pp. 141–147, 2014.

165

[84] C. Albea, D. Puschini, S. Lesecq, and Y. Akgul, “Advanced coupled voltage-
frequency control for power efficient dvfs management,” in IECON 2012-38th
Annual Conference on IEEE Industrial Electronics Society. IEEE, 2012, pp.
2168–2173.

[85] W. Shan, X. Shang, L. Shi, W. Dai, and J. Yang, “Timing error prediction avfs
with detection window tuning for wide-operating-range ics,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, vol. 65, no. 7, pp. 933–937,
July 2018.

[86] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and
K. Flautner, “Razor: circuit-level correction of timing errors for low-power
operation,” IEEE Micro, vol. 24, no. 6, pp. 10–20, 2004.

[87] D. Blaauw, S. Kalaiselvan, K. Lai, W.-H. Ma, S. Pant, C. Tokunaga, S. Das,
and D. Bull, “Razor ii: In situ error detection and correction for pvt and ser
tolerance,” in 2008 IEEE International Solid-State Circuits Conference-Digest
of Technical Papers. IEEE, 2008, pp. 400–622.

[88] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw, and
D. Sylvester, “Bubble razor: An architecture-independent approach to timing-
error detection and correction,” in 2012 IEEE International Solid-State Cir-
cuits Conference. IEEE, 2012, pp. 488–490.

[89] M. Choudhury, V. Chandra, K. Mohanram, and R. Aitken, “TIMBER: Time
borrowing and error relaying for online timing error resilience,” in 2010 De-
sign, Automation & Test in Europe Conference & Exhibition. IEEE, 2010,
pp. 1554–1559.

[90] H. Reyserhove and W. Dehaene, “Design margin elimination in a near-
threshold timing error masking-aware 32-bit ARM Cortex M0 in 40nm
CMOS,” in ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Con-
ference, Sep. 2017, pp. 155–158.

[91] D. Ji, D. Shin, and J. Park, “An error compensation technique for low-voltage
dnn accelerators,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2020.

166

