Electronic structure, magneto-excitons and valley-polarized electron gas in 2D crystals

Pawel Hawrylak

Department of Physics, University of Ottawa, Ottawa, K1N6N5, Canada

We discuss here the electronic and optical properties of monolayer 2D hexagonal crystals, graphene and transition metal dichalcogenites (TMDC) MoS₂ and WS₂. The *ab-initio* calculations [1-4] establish TMDCs as direct-gap single-monolayer semiconductors with valley-selective optical transitions. In order to develop a better understanding of the electronic properties a tight binding model involving Mo and W metal *d*-orbitals and sulfur dimer S₂ *p*-orbitals is developed based on input from *ab-initio* calculations. The roles of *d*- and *p*-orbitals, as well as nearest and next-nearest neighbor hopping, is clarified. The effective tight-binding model is further reduced to the massive Dirac fermion model, which allows the introduction of a magnetic field. The Landé and Zeeman valley effects and the effect of electron-electron interactions and topology in the magneto-exciton and trion spectra are discussed [3-5]. In the discussion of the exciton spectrum we draw analogies with graphene quantum dots with degenerate valence and conduction band extrema, for which the multi-exciton spectrum based on extensive exact diagonalization has already been reported [6]. Finally, we discuss the possibility of broken symmetry ground states of the electron gas, in particular the existence of a valley-polarized electron gas (VPEG), as a ground state of n-type WS₂. The valley-polarized state leads to spontaneous circular polarization of the emitted light, an effect which has been recently observed [3].

This work was done in collaboration with M. Bieniek, M. Korkusinski, L. Szulakowska, P. Potasz, A. Petrou, I. Ozfidan, J. Jadczak, and L. Bryja.

- 1. E. S. Kadantsev and P. Hawrylak, Solid State Commun. 152, 909 (2012).
- 2. M. Bieniek, L. Szulakowska, I. Ozfidan, M. Korkusinski, and P. Hawrylak, to be published (2017).
- 3. T. Scrace, Y. Tsai, B. Barman, L. Schweidenback, A. Petrou, G. Kioseoglou, I. Ozfidan, M. Korkusinski, and P. Hawrylak, *Nature Nanotechnology* **10**, 603 (2015).
- 4. L. Szulakowska, P. Potasz, M. Bieniek, and P. Hawrylak, to be published (2017).
- 5. J. Jadczak, A. Delgado, L. Bryja, Y. S. Huang and P. Hawrylak, Phys. Rev. B 95, 195427 (2017).
- 6. D. Guclu, P. Potasz, M. Korkusinski, and P. Hawrylak, *Graphene Quantum Dots*, Berlin: Springer-Verlag, 2014; P. Hawrylak, F. Peeters, and K. Ensslin, eds., "Carbononics integrating electronics, photonics and spintronics with graphene quantum dots", *physica status solidi RRL* **10**, 11 (2016).