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On the Thermionic-Diffusion Theory of Minority
Transport in Heterostructure Bipolar Transistors

Anatoly A. Grinberg and Serge Luryi, Fellow, IEEE

Abstract—Theory of the minority-carrier transport in het-
erostructure bipolar transistors (HBT) is reconsidered with a
particular emphasis on the difference between the cases of
abrupt and graded emitter-base junctions and the role in the
former case of the quasi-Fermi level discontinuity at the inter-
face. Exact analytical formulas are derived for the current-
voltage characteristics of a double-heterojunction HBT, valid
for arbitrary levels of injection and base doping, including the
degenerate case. The theory is applied to the static characteri-
zation of HBT which compares the forward and reverse depen-
dences I(Vip) and Iz (V(p). It is shown that these characteristics
coincide in the low-injection limit, if both the emitter-base and
the collector-base diodes have ideality factors close to unity.
The ratio of base currents in the reverse and forward modes of
operation can be used to determine the abrupt emitter-
base conduction band discontinuity and estimate the scattering
length in the base.

I. INTRODUCTION

S IS WELL-KNOWN, the minority-carrier transport

in the base of a bipolar transistor is adequately de-
scribed by the drift-diffusion equation, provided the base
width W is sufficiently large, W >> [, where I, ~ D /vy
is the characteristic scattering length in the base, D is the
diffusion coefficient, and vy the thermal velocity of mi-
nority carriers. For shorter bases, W < [, the drift-dif-
fusion equation breaks down, and a more refined Boltz-
mann-transport model is required. In the present work, we
confine ourselves to the long-base limit. Even in this limit,
the analysis of minority transport should carefully distin-
guish between the cases of a graded-gap (g-HBT) and an
abrupt (a-HBT) emitter-base heterostructure. The g-HBT
case is essentially similar to the homojunction transistor,
except that forces acting on the electrons and holes must
include energy-gap variations in addition to the electric
fields [1]. A detailed theory, first presented by Marty et
al. 2], and reproduced essentially without change in
modern textbooks [3], [4], really applies only to the
g-HBT case. However, the apparent generality of the ap-
proach [2] has often led to its uncritical use in the general
case of HBT, even though since the publication of that
paper, a number of authors [5]-[10] have pointed out that
the correct mechanism of transport across an abrupt het-
erointerface is thermionic emission. One of the purposes
of the present work is to develop a theory applicable to
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the case of a-HBT by following the method used in [2]
and introducing the appropriate corrections along the way.

The basic relations of Marty er al. [2] in need of revi-
sion when applied to a-HBT are

(o]
J, d
S ,,_Z = eV (N
c un
np = n? e’/ )

where J, is the electron current, V the applied voltage, p
= eD /kT the electron mobility, and n, p, n; are, respec-
tively, the electron, hole, and intrinsic concentrations in
the base near the emitter junction. The integral in (1) is
taken between the emitter contact C; and an auxiliary con-
tact C, deep in the base.

Both of these relations implicitly rely on the continuity
of the quasi-Fermi level (imref) Eg, for electrons at the
emitter-base junction, an assumption which breaks down
for a-HBT. For a continuous Eg,, (1) can be derived by
integrating the drift-diffusion expression

:']l = VEFn (3)
un
from ‘‘contact to contact.”” However, (3) is not valid in
the vicinity of an abrupt interface, where, as is well-
known from the theory of Schottky diodes, the imref Ep,
suffers a discontinuity. Therefore, the integral (1) should
be understood as a sum of integrals {¢f and [, excluding
a small region +¢ from the interface. In that small region,
the transport is governed by thermionic emission instead
of (3) and a correct model of the imref variation must
include a finite drop 8Eg, = Eg(+e€¢) — Ep(—¢). The
contribution of 8Eg, drops out in the proper integral and
therefore in the right-hand side of (1) one should have eV
replaced by eV — 8Ep,. The value of 6Ep, may depend on
the current density, the base width W, and the recombi-
nation rate for electrons in the base.
As will be shown in Section II, the correct expressions‘
replacing (1) and (2) are of the form

2 E
J,d N®
S 2 eV — A+ kTl <M%> @
c phn ny N¢

)
Ne ney apr

_ 2 eV/kT
NP+ NE e, = nje”/ )]

'"Equation (5) is valid only for nondegenerate p, ., just as its homojunc-
tion analog (2). The more general relation, valid for arbitrary hole concen-
trations in the base, is (19).
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Fig. 1. Band diagram of an abrupt-junction heterostructure bipolar tran-
sistor under bias and a schematic electron concentration profile.

where A is the conduction-band discontinuity, cf. Fig. 1,
n(+y and p(,, are, respectively, the electron and hole con-
centrations in the base near the emitter junction, ney is
the electron concentration on the emitter side of the abrupt
boundary, and N& and N are the conduction band den-
sities of states in the emitter and base, respectively, in the
vicinity of the discontinuity. The assumption of a contin-
uous electronic imref (8Eg, = 0) is equivalent to

ne, _ N¢

— X

—A/kT
= e . (6)
Ny N

Equations (4) and (5) reduce to (1) and (2), respectively,
if (6) is assumed.

As will be discussed in Section III, the actual value of
the ratio n,_,/n.., can be determined from the boundary
condition on the electronic flux

J, ne_ Ny
where vy is the Richardson velocity, vy = VkT/27m, and
m is the effective mass of electrons in the base.? The den-
sity-of-states factors enter because of the kinetics of elec-
tron transmission across an effective mass discontinuity
[11]. Apart from these factors, the boundary conditions
(7) have been first used by Grinberg et al. [5] in a theory
of minority transport, applicable to both g-HBT and
a-HBT cases, and subsequently by other authors [6]-[10].
For practically important a-HBT designs [9], the key dif-
ference from g-HBT arises from the fact that the emitter
current becomes independent of the base width when
A/kT >> 1. This leads to significant modifications of the
Early effect both in the static limit and at high frequencies
[12].

In the present work, we shall be only concerned with
the static limit. Section IV is devoted to the derivation of
general analytic expressions for the current-voltage char-
acteristics of a double-heterojunction HBT with one junc-
tion abrupt and the other continuous. The presented the-

*It is assumed here that the electron effective mass in the emitter is higher
than that in the base. In a thermionic emission process between materials
of different effective mass, the effective Richardson constant corresponds
to the lower mass [11].
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ory is valid for arbitrary levels of injection and includes
the case of a degenerate base doping. In Section V we
consider a commonly used [3], [4] characterization of the
HBT comparing the forward and the reverse dependences
Ic(Vge) and Ig(Vpe). We show that in the low injection
limit these characteristics coincide, quite irrespectively of
the value of A. Contrary to assertions commonly encoun-
tered in the literature, it does not matter whether the cur-
rent is limited by the potential barrier or by the base trans-
port, so long as the ideality factors of both the emitter—
base and the collector-base diodes are close to unity.
Comparison of the common-emitter (respectively, com-
mon-collector) current gains § in the forward and reverse
configurations allows an accurate determination of the
conduction-band discontinuity A and at the same time
gives a good estimate of the ratio between /. and W. Our
conclusions will be summarized in Section VI.

II. GENERAL RELATIONS

The drift-diffusion equation for electrons in a graded-
gap semiconductor is of the form (3) with the imref Ej,
given by

Ep, = Ec + kTIn (n/N¢) (8)

where the coordinate dependence of the conduction band
edge Ec = —e(¢ + x) results from both the electrostatic
potential ¢ and the variable affinity x. Let us rewrite (3)
in full

o ey (1)

eun dz e dz IVC

Consider an abrupt N, junction, Fig. 2, where e(x, — x)
= A. As discussed in the Introduction, integrating (9) over
any region including the band discontinuity (taken at z =
0), for example, between the two contacts C; (z < 0) and
G, (z > 0), we must exclude a special region of infinites-
imal thickness near the origin

SQJ" dz B S-e Jn dz . SCz Jn dz
c epn c epn +e epn

(10)

Substituting (9) into (10), we obtain (4) or, equivalently,

SCZ J, dz
G upn

= eV — OEy, (11)

where the imref jump at the abrupt interface is given by

(E) A/kT
_ n( )NC J,,e
8Ep, = A — kTIn <—*W> = kT In <1 - —>
n-y Ne ency)Ur

(12)

In the second equation in the right-hand side of (12) we
have used the boundary condition (7). It should be noted
that if, in addition to the discontinuity, there is some af-
finity grading in the emitter and/or base regions, so that
the quantities N& and N themselves have a coordinate
dependence, then in (12) one must take

N =NE(- N =N+,  (13)
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(b)

Fig. 2. Schematic band diagram of a forward-biased n-p heterojunction.
(a) Case of N, << N, so that base depletion is negligible. The band bend-
ing in the base illustrates the high-injection conditions. (b) Case of non-
negligible base depletion (Np < N,).

Let us now discuss the derivation of (5). This equation
enables one to include the effects of high injection. Just
like (2) for a homogeneous p-n junction, (5) is valid only
to the extent that the variation of Ef, on the n side of the
junction and the variation of the hole imref Ep, on the p
side are both negligible. A qualitative difference between
these two equations lies in the fact that while (2) estab-
lishes a connection between the electron and the hole con-
centrations at the same point, its a-HBT analog; (5) con-
nects the concentrations 1, and p., evaluated at different
points.

At a high level of injection, the concentration of holes
in the quasi-neutral part of the base increases to maintain
neutrality

p=potn-—n (14)
where p, and ny = n}/p, are the equilibrium hole and
electron concentrations, respectively, and #; is the intrin-
sic carrier concentration in the base
B)
n = NONP e Ee /T, (15)
The increased p implies an additional band bending in the
base, cf. Fig. 2(a), such that the valence band edge moves
upward with respect to Eg,, and consequently, at a given
forward bias, the barrier for electron injection increases.
Assuming that at the top of the barrier the electron con-
centration n_, is nondegenerate (which is almost always
a good approximation for a-HBT), we have

ney = N(CE)e—[EC(—E)—EFnl/kT

T B
— N(CE'e [EE + A1 /KT jeV /KT lERy = Ev (+)l /KT (16)

where E, = E- — E is the valence band edge. In deriv-
ing (16) we have used eV = Ep, — Ep, and the obvious

relations
[Ec(—€) — Ep,) + eV + [Ep, — Ey(—6)]
= Eg(—¢)
= Eg(+€) + A + [Ey(+¢) — Ey(—0)].
In general, the factor n = elE ~Ev(+Il/AT i (16) is re-
lated to p,4, by the Fermi transform p,, = NP &, (),
where

2 S"’ x'/? dx

-1 [P
F =7 , =FhlTem) (7
v =TT e ! 1/2< > (17

B
NP

and fff/]z is the inverse transformation to &, /. Using (15)
and (17), we can bring (16) in the following general form:

2
NEn /KT GV INT =) <P_(+_)> (18)

Ny = " €
(-) N(g)N(lf) N(lf)

Equation (18) represents a generalization of (5) for de-

generate distribution of majority carriers in the base.
Using (12), we can eliminate n_, from (18) to obtain

SEpn /KT n; vkl =1 [P
nyy€ =N—(IET)€ 5]/2 N(P . (19)

For a nondegenerate hole concentration, we have F(n) =
7" and (19) becomes

SEn /KT eV /KT

)P+ € =nje (20)

which is equivalent to (5). For a strongly degenerate case,
n << 1, often encountered in HBT, the Fermi integral
and its inverse transform are asymptotically given by

4[—In 7]*/?
Fipn) = =7 —

2/3
gl P exp | — 37"1/2P(+) /
1/2 N(‘f) p 4N([5?)

and the relation between n,, and p ., assumes the form

2
SEra/kT _ _TH

o eeV/kT ev(37r'/2p1+,/4N'f))2/3‘
Ny

Ny € @2n

Equation (19) is the main result of this section. Con-
sider first the case illustrated in Fig. 2(a), when the het-
erointerface coincides with the doping junction and the
base doping N, is much higher than the emitter doping
Np, so that the entire drop of the electrostatic potential
occurs on the emitter side of the boundary. In this case,
the values of n,, and p, are practically coincident with
the boundary concentrations n(0) and p(0) of the quasi-
neutral base region and can be used as the boundary con-
dition for the drift-diffusion equation in the base. Equa-
tion (19), combined with the neutrality condition (14),
thus provides an expression for the boundary concentra-
tion n 4, in terms of the emitter-base bias Vgg.

In a more general case, illustrated in Fig. 2(b), there is
an additional potential drop on the base side of the het-
erointerface. Tracing the above derivation, it is easy to
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see that (16), (18), and (19) remain valid in this situation.
Of course, n,, no longer equals n(0) and p,, # p(0).
However, we can relate these concentrations by using the
well-known fact that the imref variation in the depletion
region of a forward-biased p-n junction is negligible®
(outside the small +e¢ layer at the heterointerface). So long
as both Er, and Er, remain constant in the depletion layer
on the base side of the junction, (19) retains its form for
n and p at any point in that layer. Therefore, we have in

general
2
n o, -1 [ p(0)
N® € Gl ( e
Vv 14

If 6E, is known in terms of the current density, then (22)
together with a similar relation at the base-collector in-
terface determines the current-voltage characteristics of
the transistor, cf. Section IV.

n(0) &Fr /KT = 2)

III. EVALUATION OF THE IMREF DISCONTINUITY AT AN
ABRUPT HETEROINTERFACE
Let us first evaluate 6Ef, neglecting recombination in
the base. Assume a sufficiently high forward emitter-base
bias and a reverse (or zero) collector-base bias. In the
simplest case of the emitter-base junction as in Fig. 2(a),
we have to a good accuracy, J, = —eDn,,/W and from

(12) we find
DeA/kT
Wug >

415(.&/”)

8Ep, = kT In (1 +

(23)

~ kTl (1 +
“( W

where the approximate relation in the second line corre-
sponds to the simplest model of collisions in the base when
the scattering length /. is independent of the electron en-
ergy, in this model one has [13]

Ur ls('

3

Our very use of the concept of a quasi-Fermi level for
electrons in the base relies on the validity of the diffusive
transport model and hence the assumption /;,, << W must
hold. It is then easy to see from (23) that 6Ep, is negligible
for low values of the discontinuity, A < k7. On the other
hand, for a practical a-HBT with A >> kT the imref dis-
continuity cannot be neglected. Boltzmann transport stud-
ies [13] show that the diffusion approximation is quite rea-
sonable already for W = 4/, and nearly perfect for W =
10/;.. Modern transistors are rarely designed with a thicker
base. Taking W/l ~ A/kT ~ 10, we find 6Ep, ~ 8T,
a tangible contribution indeed.

In the more general situation, corresponding to Fig.
2(b), n(0) = nH)e‘eéd’/kT where 6¢ is the electrostatic po-

D= (24)

3We have already used this condition in writing down (16), where we
assumed constancy of Ep, on the emitter side and of Eg, on the base side
of the interface.
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tential drop on the base side of the junction

{$o — VexNp

o =
¢ EEND + EBNA

¢ is the built-in potential, and €g, €p are the permittivities
of the emitter and the base, respectively. Substituting
these expressions in (12) with J, = —eDn(0) /W we find

Des ) /kT>

Wor (25a)

8Ep, = kT In <1 +

To include the effect of recombination, neglected above,
one has to solve the diffusion equation in the base with a
recombination term. The result, derived in the next sec-
tion, is

De'd = ) /AT

4+ -
LDvR tanh (W/LD)

where L, is the diffusion length of electrons in the base.
Equation (25b) reduces to (25a) when the diffusion length
is not too short, L, >> W.

It may appear that (25) are inaccurate because 6Ey, does
not vanish when J, — 0. However, the correction to (25),
which takes care of this discrepancy, occurs at nearly in-
finitesimal currents, corresponding to the regime when
n.+, approaches the equilibrium concentration ng in the
base. As soon as the forward emitter bias is sufficiently
large, Vgg >> kT, the imref discontinuity is accurately
given by (25) and in the case (25a) it is practically inde-
pendent of the current.

As an aside, let us briefly digress from transistors and
stress that the existence of an imref discontinuity is a gen-
eral feature of forward injection ‘‘over a cliff.”” Consider,
for example, a double-heterostructure laser whose active
narrow-gap layer W is sufficiently thin that the injected
carrier concentration n can be regarded as uniform. In this
case, the current is given by enW /7, and the imref dis-

continuity by
Wel /AT
TeUR )
where 7, is the electron lifetime in the active layer. A

similar expression holds for holes at the other heteroin-
terface.

SEm /KT — |

e (25b)

8Ey, = kT In <1 +

IV. ANALYTIC FORM OF THE STATIC CHARACTERISTICS
oF AN HBT

Consider a double-heterostructure transistor in which
the emitter-base junction is abrupt while the collector-
base junction is graded, Fig. 3. (The double heterostruc-
ture assumption is made for the sake of simplicity, as it
allows us to neglect the hole component of the current.)
The base bandgap and doping are assumed uniform and
we shall further assume N, >> Np. The diffusion equa-
tion in the base is of the form

- = 3 (26)
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Fig. 3. Double-heterostructure transistor in the normal and reverse mode:
(a) band diagram and (b) schematic electron concentration profile.

and subject to the boundary conditions n(0) = n., and
n(W) = ny, it has the following solution:

_ [n4) — ng) sinh [ANp(W — 2)]
sinh (Ap W)

n — ny

[nw — ng) sinh (Ap2)
sinh (Ap W)

@n

where we have denoted N\, = 1/L,. Expressed in terms
of the boundary concentrations, the emitter (Jz) and the
collector (J.) currents are

Je _ _Molney = nol | Aplnw — nol

D" " tanh 0pW) | sinh Ogw) 20
Jo _ _Molngy = ngl | Nplnw — nol (28b)
eD sinh (A\p W) tanh (\p W)~

In order to relate the boundary conditions n,, and ny,
to the applied voltages, we use (19) which is a general
relation valid for abrupt as well as graded heterojunctions
and homojunctions. For the latter two cases, of course,
0Er, = 0. We shall assume that this applies to the base-
collector junction* so that the corresponding imref factor

*The case when the base-collector junction is also abrupt is treated with-
out any additional complications.

exp (8Er, /kT) equals unity

2
i eves/kr @=L [ Pw
= {?)eew/ 51/2( B ) Pw — Nw = Py — No.

ny N N(B)
(29)
At the base-emitter junction we have
2
SEm/kT _ M . =1 [ Pe+y
sy e JKT _ W oeVeEs/KT SF'/2<N—‘I§)>’
P+ = My =Ppo — ng (30

where the imref factor’ is given by (12) or, taking into
account that J,(0) = Jg by

Tt/

eﬁEFn/kT =1 .
en Vg

€2))

Because of the nonlinearity introduced by the inverse
Fermi transform, it is impossible to explicitly solve (29)
and (30) for n(, and ny. Nevertheless, a close-form an-
alytic expression of the transistor characteristics can be
obtained in the general case. Inverting (28), we can ex-
press n,, and ny in terms of the currents

_JE cosh ()\DW) - JC
eD\p sinh (Ap W)

Ny — Ny = (32a)

‘IE - JC cosh (XDW)
eD\p sinh (Ap W)

Ry — Ny = — (32b)
Substituting (32) into (29)-(31), we obtain analytic
expressions of the form

Vig = Ves(Jg, J¢) Ves = Vep(Jg, Jo) (33)

for the current-voltage characteristics of a double-het-
erojunction bipolar transistor. These formulas, too cum-
bersome to put down explicitly, are valid for arbitrary in-
jection levels and include the case of a degenerate base
doping.

For low injection levels, we can replace py and p, in
(29) and (30) by the equilibrium hole concentration py and
use the identity

2
n; —1{ Po \ _
NT[P)fFI/2<W> = N

In this case it becomes possible to write down the char-
acteristics in the ‘‘direct’” form

(€2))

JE 3 )\DED eeVyB/kT ~1
engD (1 + £p) tanh (\p W)
>\D£D et’VCB/kT -1

(1 + £p) sinh (\p W)’ (35a)

*For a sufficiently strong forward emitter-base bias and a zero or reverse
collector-base bias, both n, and ny, can be neglected in (28). In this case
(28a) gives n(,, = —(Jz/eD) tanh (A, W)/\p, whence we obtain (25a)
of the preceding section. Equation (25b) is obtained in a similar way.
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Je Mobp (€T — 1)

engD (1 + £p) sinh (\pW)

)\D[tanh2 ()\DW) + ED] (eeVCB/kT _ 1)
(I + £&p) tanh (A\p W)

(35b)

where

URe_A/"T tanh (A\p W)
D\p ’

tp = (36)

Equations (35) have been obtained earlier [5] for nonde-
generate base doping levels; we see that they retain the
same form in the degenerate case.

For high-injection levels, the transistor characteristics
in the ‘‘direct form’’

Jg = Jg(Veg, Vea) Jo = Jc(Ves, Vea) 37

can be determined only for nondegenerate hole concen-
trations in the base. In this case, the substitution

-1 (/p N(f)
k(i)

simplifies (29) and (30) so that they can be solved explic-
itly for ny and n,

2 1/2
Py @ + (VAT — 1)> (39)

(3%

Ry — Ry =

2
1
=7 (P -

[1 < Ry — Ry >2
+ | = po +
4 (1 + &p) cosh (\pW)
np(e T — 1]
1+§&p jl '

Equations (39), when substituted in (28), yield the char-
acteristics in the form (37).

Ry — Ny = w =~ Mo
SO (1 + £p) cosh (\p W)

(39b)

V. NorMAL AND REVERSE-Bias CONFIGURATIONS

One of the common [3], [4] static characterizations of
an HBT consists in the comparison of the collector cur-
rents J& and J® in the ‘‘normal’’ and ‘‘reverse’’ mode

JO = JeVep =V, Vep = 0) (40a)

JE = Jp(Veg = 0, Vg = V). (40b)

Fig. 4 shows these characteristics, calculated from (28)
and (39), valid for a nondegenerate base doping. We see
that

JIOWy = IRW) @n

except in the high injection limit. The fact that J & and
J® should coincide at low injection levels, is evident from
the exact analytic expressions (35), which remain valid at
degenerate doping levels. Examining these expressions,
we see that the validity of (41) is independent of the height
of the heterojunction spike A. This means that the asser-
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Fig. 4. Room-temperature dependences J¥(V)Jc as a function of Vel
and J®(V) [J as a function of Vg, calculated from (28) and (39) for the
normal and reverse modes of operation of a double-heterojunction transis-
tor with a graded base-collector junction and abrupt base-emitter junction.
The following parameters were used: A = 0.2 eV, EDP = 1.424¢eV,p, =
10 em™, D = 20 cm?/s, A\p = 5 X 107% cm, W = 3 x 1077 cm, and
vg = 10" cm/s.

tion commonly encountered in the literature that devia-
tions from (41) are indicative of the electron flow being
limited by the emitter-base junction, as opposed to the
base transport, is incorrect. At high values of A (which is
the case illustrated in Fig. 4) the electron flow is clearly
limited by the emitter barrier.

Experimentally, (41) is sometimes violated. Precisely
why this happens is not well understood. One obvious
reason may be related to different ideality factors for the
forward and reverse diodes. For example, if the base dop-
ing N, is not too heavy, then an appreciable fraction of
the applied forward bias Vg drops in the base, leading to
an ideality factor

eeNp
EBNA

as discussed already by Anderson [14] in his early paper
on heterojunction diodes.® However, the different ideality
factors imply different slopes of the characteristics J M)
and J®(V) on the semi-logarithmic scale, whereas exper-
imentally [4], [15] these characteristics are sometimes
parallel over many orders of magnitude—displaced along
the voltage axis by as much as 55 mV [15], with 15_5’ >
J® at the same bias. This discrepancy is hard to under-
stand. Small deviations from (41) can result from an ef-
fective lowering of the barrier A by the junction electric
field—for example, due to thermally assisted tunneling
[16]. Our estimates show that in an AlGaAs/GaAs het-
erojunction with N = 10'® cm ™ the effective A may be
lowered by about 60 meV at Vg = 0. However, similar
lowering occurs also at moderate forward biases and the
difference at low injection levels can hardly exceed 20
meV. Moreover, such effects are necessarily bias-depen-
dent and must be accompanied by an ideality factor greater

®This factor readily follows from (25).
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Fig. 5. Calculated [from (43)] temperature dependences of the base current ratio JP /18 of a double-heterostructure transistor
with parameters similar to those in Fig. 4, except A which is varied for two examples. The temperature dependence of D is
assumed in accordance with (24) with an energy-independent scattering length [, = 140 A.

than unity. In light of our results it should be really sur-
prising if a device with both ideality factors close to unity
would show a significant deviation from (41).

Next, consider the base currents J% and J% in the nor-
mal and reverse configurations, respectively. Let us re-
strict ourselves to low injection levels, where the com-
mon-emitter (common-collector) current gains 8%( B®)
are easily found from (35)

w _ & 1
= = 42
B = 0 = S sinn? W /2) (422)
6(R) = J_g_) — —1__
J® 7 2 sinh? (\p,W/2)
. ! (42b)
1 + (DN\p/vR) e coth (\yW/2)"
In light of (41) we then have
Y Dy )
Mo g® vg tanh (\pW/2)

For an a-HBT with A >> kT, (43) clearly shows that
J® >> J™. The physical origin of this is obvious: the
concentration of minority carriers in the base in the re-
verse mode is much higher. For the same reason, the on-
set of high-injection condition occurs at lower current
(Fig. 4).

The base current ratio is a strong function of the band
discontinuity A. Equation (43) suggests that studies of the
temperature dependence of this ratio can be used for a
measurement of A. Fig. 5 shows an Arrhenius plot of
JP /18 calculated for two values of A. In this calcula-
tion we have assumed that the diffusivity D varies with
the temperature in accordance with (24) where the scat-
tering length [, is energy-independent. Besides the value
of A, determined by the slope in the linear region, the
intercept with the ordinate axis of the linear region, ex-

trapolated to high temperatures, permits a determination
of the prefactor in (43). For A\p W << 1 (the case shown
in Fig. 4) the intercept determines the ratio 2D/vx W
which in our model equals 8/,./3W. These quantities are
of interest to device physicists.

VI. CoNCLUSIONS

Detailed analysis of the difference between phenome-
nological models of graded-gap and abrupt-heterojunction
bipolar transistors has been carried out. It is shown that
the approach of Marty et al. [2] can be modified without
a loss of generality, so as to take into account the quasi-
Fermi level discontinuity at an abrupt emitter-base inter-
face. This permits a unified treatment of both abrupt-junc-
tion and graded-gap HBT’s, as well as homojunction tran-
sistors. The model is valid for both high and low levels
of injection, including the case of degenerate distribution
of majority carriers in the base. Explicit analytical for-
mulas are derived for the current-voltage characteristics.

The model is applied to the static characteristics
[Ic(Veg)lyez=o in the normal mode of operation, and
[Ze(Vc)lves =0 in the reverse mode. It is shown that these
characteristics coincide in the low-injection limit, diverg-
ing only at high levels of injection, provided both the
emitter-base and the collector-base junctions have near-
unity ideality factors. It is also shown that measurements
of the temperature dependence of the ratio of base cur-
rents in the reverse and forward modes can be used to
determine the emitter-base conduction band discontinuity
and estimate the scattering length in the base.
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