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Abstract—The proliferation and daily congregation of modern
mobile devices have created abundant opportunities for peer edge
devices to share valuable data with each other. The short contact
durations, relatively small sharing sizes, and uncertain data
availability, demand agile, light weight peer based data sharing.
In this paper, we propose Peer Data Sharing (PDS) that enables
edge devices to discover which data exist in nearby peers, and
retrieve interested data robustly and efficiently. PDS uses novel
lingering queries, mixedcast and en-route message rewriting
techniques to minimize redundant transmissions and maximize
opportunistic overhearing thus caching in data discovery and
retrieval. Extensive evaluations based on an Android prototype
show that PDS discovers and retrieves almost 100% data in
tens of seconds, and remains robust despite wireless contention,
simultaneous consumer requests and user mobility.

Index Terms—Peer Data Sharing; Mobile Sensing; Data Dis-
covery; Data Retrieval;

I. INTRODUCTION

The proliferation of modern sensor-rich mobile devices
(e.g., smartphones) and opportunistic congregation of users
have created novel opportunities for peer data sharing. Many
times spontaneous, agile data exchange among nearby users is
desired. For example, during large outdoor events (e.g., music
festivals, university commencements), smartphones carried by
people can capture diverse data, including human activities,
their locations, and image/video clips. When shared among
peer devices, such data can help people avoid food stands of
long lines, discover interesting souvenirs and artifacts, or enjoy
images, video clips of special, memorable moments.

Peer data sharing in such pervasive edge environments has
some unique characteristics. Each user may possess certain
data and need data by others. However, which devices are
around, and what kinds of data they carry, occur opportunisti-
cally and cannot be foretold. The limited durations (e.g., a few
to tens of minutes) devices are in proximity, and the modest
amount yet unforeseeable kinds of data, stipulate fast, light
weight discovery and exchange on a peer basis. This decentral-
ized sharing differs from most crowdsensing [1] applications
where a central backend receives data from all devices and
then distributes among them. A dedicated backend demands
significant monetary, operational costs and overheads in its
development, deployment and maintenance. If peer mobile
devices can discover and retrieve desired data collaboratively,
such costs and overheads are eliminated. 1

1Some popular apps provide sharing (e.g., SHAREit [2]) but only between
two neighbors and requires manual discovery and retrieval.

We propose Peer Data Sharing (PDS) that enables mobile
devices to quickly discover what data exist in nearby peers
and retrieve desired data from possibly multiple devices. PDS
achieves robust, efficient and timely data discovery and re-
trieval, despite the dynamic and uncertain environment where
nodes may move in/out and data appear or disappear (created,
deleted or carried away) frequently. It discovers all existing
data and retrieve required data faithfully across opportunis-
tically gathered peers, under limited wireless bandwidth and
potentially frequent message losses, with low overhead and
latency.

PDS differs from existing data discovery and sharing work
in mobile ad hoc networks [3]–[5] by adopting a content
centric design [6], [7] where data are self-contained entities
that can be referenced, stored and accessed independently from
their original producers. Thus data can be widely cached at and
retrieved from any willing and capable nodes. This decoupling
offers great performance and robustness opportunities. The
consumer can retrieve data from a close by cached copy, or dif-
ferent chunks from multiple cached copies, to reduce latency
and aggregate bandwidth. When a node moves and carries
away its data, other nodes can cache the data and preserve the
availability. Compared to mobile ad hoc routing [8], [9] that
maintains paths to destination addresses, PDS derives paths
to data instead of addresses. It eliminates the complexities in
mapping data to node addresses, which is difficult to accurately
track in dynamic and uncertain pervasive edge environment.
It also differs from existing content centric networks [6], [7]
due to the wireless medium and network scale, which will be
discussed in Section VIII.

We make the following contributions:
• We devise robust and efficient pervasive data discovery

(PDD) that returns all data existence information faith-
fully, despite dynamic changes in both device and data
sets. Compared to existing content centric designs [6],
[7], it uses lingering queries each can retrieve a contin-
uous stream of returning metadata entries, mixedcast to
deliver partially overlapping data efficiently to multiple
consumers, and en-route message rewriting to minimize
redundant metadata collection.

• We design two-phase pervasive data retrieval (PDR)
that retrieves different portions of data from multiple
cached copies robustly and efficiently. It gathers chunk
distribution information to derive data reachability, and



recursively divides retrieval queries to precisely choose
closest data chunk copies to minimize overhead.

• We implement a PDS prototype on android phones that
supports opportunistic caching and mixed cast by over-
hearing. Using characteristic parameters from the proto-
type, we conduct extensive simulations and show that
consumers can discover almost 100% data and retrieve
sizable files (20MB) in tens of seconds, in both static
and mobile scenarios, even under heavy traffic.

The rest of this paper is organized as follows: In Section
II, we present assumptions and preliminaries about peer data
sharing. Then in Section III and IV, we introduce our detailed
design of Peer Data Discovery (PDD) and Peer Data Retrieval
(PDR). We describe a few implementation issues in Section
V, and present a comprehensive evaluation in Section VI. We
discuss limitations of this work and plans for future works in
Section VII, compare related work in Section VIII, conclude
and discuss future work in Section IX.

II. ASSUMPTIONS AND PRELIMINARIES

A. Assumptions and Goals

We make the following assumptions: the environment is
uncertain and dynamic. Which devices are in proximity and
what data they possess, are opportunistic and not known
beforehand. At any time, devices may join or leave, bringing
in or carrying away their data. Although users are free to move
in/out any time, many of them stay for extended periods of
time from a few to tens of minutes. Thus the mobility is low
to moderate. The geographical area where users congregate
(e.g., restaurants, parks, airports) and thus the network size are
usually limited. Devices have reasonable storage (e.g., 16GB
or higher) and they can cache others’ data, both relayed or
overheard. The amount and duration of data exchange are usu-
ally moderate (e.g., a few MBs and minutes), due to the limited
bandwidth and contact durations. To enable opportunistic
caching, we assume nodes will overhear transmitted frames
whenever possible (e.g., network/MAC broadcast, pseudo-
broadcast [10], or monitor mode [11]) and act on the content.
We do not assume any specific radio technology. Devices can
connect to each other through different technologies (e.g., Wi-
Fi ad hoc, Wi-Fi Direct [12], D2D [13], Bluetooth, etc.). All
devices are cooperative and play by the rules. Only publicly
sharable data are exchanged and we do not consider security
or privacy issues in this work.

Each device can be a consumer that requests desired data,
or a producer that provides them (either generated locally or
cached). We focus on two typical scenarios: the consumer
needs many small data items meeting certain criteria (e.g.,
air pollution samples in certain area), or one large, possibly
popular data item (e.g., a video clip) consisting of many small
chunks, each available from multiple nearby devices. Due to
the uncertainty, a consumer has to discover what data exist in
nearby devices. Otherwise he may be blindly requesting non-
existing data. This is similar to customers requesting a menu
so they only order what a restaurant can serve. The Peer Data

Discovery (PDD) provides such a “menu” of available data
as completely and faithfully as possible. Peer Data Retrieval
(PDR) should return at least one copy of each requested data
item/chunk. Both are best effort: occasionally missing existing
or reporting disappeared data is allowed because applications
are not mission-critical.

B. Data Descriptors

When generating a new data item, a node creates and
associates to it a data descriptor (i.e., metadata) consisting
of multiple attributes each having a name and taking a certain
value of some primitive type (e.g., string, integer, float, Unix
time). For example, an NOx pollutant sample may have data
type of NOx, time of the sample generation at 2016-01-01
08:00:00, and location the GPS coordinates of the sample.
To avoid conflicts, a namespace where the data type is defined
(e.g., environment monitoring) can be added. For a
large data item divided into many chunks, an attribute total
chunks indicates how many chunks exist. The descriptor of
each chunk is simply the data item descriptor appended by a
chunk id attribute.

C. Metadata and Queries

Each descriptor is a metadata entry that indicates the
potential availability of the corresponding data item/chunk.
Thus all such entries together describe what data may exist
in the environment. Because metadata entries have small sizes
and are frequently requested by many consumers, they are
widely cached. Any node receiving, relaying or overhearing
metadata entries will cache them to serve potential future
requests.

On any device, a metadata entry exists as long as the
corresponding data item (or any chunk of the data item) exists.
If an entry is cached by a node without respective payload,
an expiration time is added to this entry. Upon expiration, the
node removes the entry if it does not yet have the payload.
These simple rules make metadata and corresponding data
roughly synchronized in the network. The existence of a
metadata entry indicates respective data item is likely available
(or at least partially available) somewhere in the network.

A consumer sends queries to specify desired data and
retrieve them from other devices. A query consists of a
collection of predicates specifying desired values on attributes
using a relation (e.g., =, >, ∈, etc.) to a value or value
range. Queries can be specified for data items, chunks and
metadata. The retrieval of them follows similar query-response
mechanisms, to be presented in Section III and IV.

III. PEER DATA DISCOVERY (PDD)

Peer Data Sharing (PDS) consists of two components:
Peer Data Discovery (PDD) and Peer Data Retrieval (PDR).
They share similar message formats, processing procedures
and routing mechanism. We present PDD in this section,
and introduce PDR design in Section IV focusing on its
differences.



Fig. 1. PDD Query Processing: When receiving a query, a node should
perform 4 steps: Lingering Query Table Lookup, Data Store Lookup, Receiver
Check and Forwarding.

Algorithm 1 PDD Query Processing
Input: query

1: {LQT Lookup}
2: if lingering query table.Exist(query.id) then
3:
4: return
5: else
6: lingering query table.Insert(query)
7: end if
8: {DS Lookup}
9: matching metadata← data store.Match(query)

10: if not matching metadata.Empty() then
11: response← CreateResponse(matching metadata)
12: response.receiver ids.Insert(query.sender id)
13: SendResponse(respone)
14: end if
15: {Receiver Check}
16: if query.HasReceiverIds()

and not query.receiver ids.Exist(self.id) then
17:
18: return
19: end if
20: {Forwarding}
21: UpdateReceiverIds(query)
22: query.sender id← self.id
23: SendQuery(query)

PDD collects metadata through multi-round requests. In
each round the consumer sends a query message requesting
metadata, and waits for response messages carrying metadata
entries to return. Each node receiving that query should reply
all the metadata entries it holds back to the consumer. The
consumer dynamically decides whether and when to start a
new round, or terminate the data discovery if it determines
that almost all data entries are returned.

A. Basic Peer Data Discovery

A metadata query contains the namespace (set to system),
data type (set to metadata since metadata is also a type of
data), a globally unique query ID to detect redundant copies,
an expiration time beyond which the query is removed, the
ID of the node transmitting the query (at the current hop) for
returning the response, and an optional list of receiver IDs of
the intended next hop receivers (when not all neighbors). This
will retrieve all metadata entries. If the consumer is interested
in a particular type of data in certain spatial-temporal scope,
it can include filters on those attributes. A response contains
a namespace (system), data type (metadata), an optional
set of attributes corresponding to filters in the query, a random
thus globally unique response ID to detect redundant copies,

Fig. 2. PDD Response Processing: When receiving a response, a node should
perform 5 steps: Recent Responses Lookup, Data Store Lookup, Receiver
Check, Lingering Query Table Lookup and Forwarding.

Algorithm 2 PDD Response Processing
Input: response

1: {RR Lookup}
2: if received response ids.Exist(response.id) then
3:
4: return
5: end if
6: {DS Lookup}
7: for all metadata entry in response.payload do
8: if not data store.Exist(metadata entry) then
9: data store.Insert(metadata entry)

10: end if
11: end for
12: {Receiver Check}
13: if not response.receiver ids.Exist(self.id) then
14:
15: return
16: end if
17: {LQT Lookup}
18: matching queries← lingering query table.Match(response)
19: if matching queries.Empty() then
20:
21: return
22: end if
23: {Forwarding}
24: response.receiver ids.Clear()
25: for all query in matching queries do
26: response.receiver ids.Insert(query.sender id)
27: end for
28: SendResponse(response)

a list of receiver IDs of the intended next hop receivers, and
metadata entries as the payload.

1) Query Processing: Figure 1 and Algorithm 1 show
how PDD processes incoming queries. A node first examines
whether the query has been received before (LQT Lookup). It
checks the Lingering Query Table (LQT) that holds all recent
received, unexpired queries. A redundant copy having the same
query ID should be discarded. Otherwise, the new query is
inserted into the LQT. Then the node examines whether it has
matching data in its Data Store (DS Lookup). Since metadata
are requested, it creates and sends a response message that
contains all its metadata entries.

Next, the node examines the receiver list of the query
(Receiver Check). If the receiver list contains the ID of itself,
or the list is empty (indicating all neighbors should relay), the
node should continue to forward the query. Before relaying
the query, it updates the receiver ID list with intended next
hop receivers (or empty list if all neighbors should relay),
and changes the sender ID to that of its own (Forwarding).
Thus its neighbors know whether to forward the message,



and to which node to return response messages. Only for
newly formed networks or generated data where no routing
information is available, a query is flooded; otherwise it is
forwarded only in directions where the requested data exist.
As we discussed in Section II, the size of network that PDS
targets is usually limited, thus we do not limit the scope of
query propagation. However, such limiting can be achieved
easily with a hop counter if needed.

The lingering query is very different from Interest messages
in some content centric work [6], [7]. A lingering query stays
in the LQT until its expiration, upon which it is removed.
Because many nodes have metadata entries and they will come
back over extended period of time, one lingering query can
direct the continuous stream of returning responses back to the
consumer. In contrast, the Interest is removed upon one single
response message. Thus many Interest messages are needed to
retrieve all matching metadata entries. By setting appropriate
expiration, PDD incurs only one or a few lingering queries.

2) Response Processing: Figure 2 and Algorithm 2 show
how PDD processes returning responses. A node first examines
whether the response has been received before (RR Lookup)
from other neighbors (e.g., overheard). It examines the re-
sponse ID against the IDs of recently received responses.
A redundant one will be discarded. To enable opportunistic
caching, it detects if any new metadata entries exist in the
response. They will be added to its data store (DS Lookup).
Thus any overheard metadata entry could be served to other
consumers in the future.

Then the node examines whether the receiver list contains
itself (Receiver Check). If so, it is the intended receiver back
to the consumer, and should continue to relay the response.
The receiver ID checking ensures only nodes on the right
path (e.g., reverse) will relay the response. Without it, the
response would be flooded throughout the whole network,
causing severe contention and overhead.

Before relaying the response, it finds unexpired matching
lingering queries in LQT (LQT Lookup), and sets the Re-
ceiver IDs to neighbors who transmitted these queries, then
sends the message (Forwarding). When overhearing is pos-
sible, one response can be overheard and relayed by multiple
neighbors on return paths to possibly different consumers.
This avoids sending multiple responses with same content to
different neighbors.

B. Efficiency and Robustness Enhancements

1) Mixedcast: The above assumes every query asks for all
metadata entries. If some of them have filters, metadata entry
pruning is needed. An entry is kept in the response only if it
has at least one matching lingering query (i.e., requested by at
least one consumer). The Receiver IDs are set to neighbors
who sent matching queries (according to LQT). Thus the
payload is the union of desired entries of consumers generating
those queries: an entry might be needed by one or multiple of
these consumers, while one response message carries all these
entries. Thus any entry, regardless of requested by how many
consumers, is transmitted only once. This pruning is conducted

by all nodes on return paths. Thus only entries desired by
downstream consumers are forwarded at each hop.

We call the above mixedcast. Multiple consumers may
request partially overlapping sets of metadata. One “joint”
response message contains the union of entries requested
by consumers, while each entry is sent only once, even
needed by multiple consumers. This differs from multicast
where the same content is delivered to multiple receivers.
Mixedcast ensures all needed entries are included for each
receiver (consumer) while pruning ensures only needed ones
are returned towards the consumers.

2) Multi-round Discovery: Depending on network quality
and node mobility, messages can get lost and nodes can be
temporary disconnected. Thus the above single round method
may fail to discover some data items. PDD adopts a multi-
round discovery algorithm to obtain as many metadata entries
as possible.

The consumer makes two decisions: when the current round
is finished, and whether to start the next round. Upon each
response, it computes the ratio of number of responses re-
ceived within a recent time window T to that since sending
the query. If the ratio is less than a threshold Tr, the current
round is considered (almost) finished. As time goes, less and
less responses return. Thus the rule detects the “diminishing”
of this trend. It then computes the proportion of new meta-
data entries received in this round compared to all received,
including previous rounds. If the proportion is greater than a
threshold Td, showing many new entries are received in the
current round and more might be out there, the consumer starts
a new round.

To avoid receiving redundant entries, the consumer applies
a redundancy detection technique. It appends to the query a
Bloom filter [14] including entries already received. 2 Bloom
filter is a space-efficient data structure representing a set of
elements and widely used to test whether a given element is
in the set, with low and controllable false positive rate. Upon
receiving a query, the Bloom filter is cached together with the
lingering query.

The Bloom filter is used to rewrite response and query
messages en-route to reduce redundancy. When sending back
or relaying a response, a node should test each metadata entry
against the Bloom filter in the matching query. It should send
back only those not included in the Bloom filter (thus not yet
received by the consumer); it also inserts them in the Bloom
filter of the lingering query in LQT, thus the same entries
returned by other nodes later will not be transmitted again.

A node possessing local data may return a response before
further propagating a query. It should rewrite the query by
inserting new entries that it just sent into the Bloom filter of
the query. It then forwards the updated query. Thus down-
stream nodes will not return the same entries. Both response
and query are rewritten en-route at each hop. Such message

2We have compared histogram, wavelet [15] and Bloom filter and found
Bloom filter has the highest compression ratio for discrete and unrelated
individual items like metadata entries. We do not elaborate due to space limit.



rewriting can significantly reduce redundant metadata returned
and contention losses.

IV. PEER DATA RETRIEVAL (PDR)

After nearby data are discovered, a consumer can retrieve
interested data items. PDD handles two typical scenarios:
retrieving one large data item, or collecting many small data
items that satisfy a query (e.g., air pollution samples in a
radius). The latter follows almost the same process as metadata
discovery because these samples are of small sizes. The only
change is the filters in queries specify desired data type, and
location/durations instead of metadata. Therefore, we focus
on retrieval of large data items. We are aware that there are
other potential scenarios: retrieving many large data items, or
subscribing to a data item that keeps growing (e.g., live video
streams). While the former can be achieved by applying PDD
for each data item separately, the latter brings more challenges
such as real time performance and quality of service, which
we plan to address in future work.

PDR has two phases: chunk distribution information (CDI)
retrieval and chunk retrieval. In phase 1, the consumer
requests the large data item’s CDI, which describes where the
nearest copy of each chunk can be found. The CDI is built on
demand by propagating a query in the network and soliciting
responses. In phase 2 the consumer requests and retrieves each
chunk from its nearest provider.

The purpose of CDI retrieval is to build routing entries for
different chunks of the requested data item. The principle is
similar to Distance-Vector Routing [16]. However, instead of
finding one shortest path to a given address, PDR maintains
that to a given data chunk. Such information is used to find
the nearest copy among all candidates, and recursively rewrite
the query to divide requested chunks en-route.

The use of CDI ensures each chunk is retrieved only once
from a nearest copy to minimize message overhead. The cost is
building and collecting CDI. When data items have small sizes
(e.g., pollution samples), CDI retrieval may have comparable
overhead. However, for large data items such overhead is much
smaller than transmitting redundant data chunks. Thus the two-
phase mechanism is intended mainly for data items of many
chunks (e.g., video clips).

A. Phase 1: Chunk Distribution Information Retrieval

When chunk routing entries do not exist or outdated, CDI
retrieval is conducted in manner similar to PDD. We focus
on the differences: the query specifies namespace “system”,
data type “cdi” and “descriptor” whose value is the
requested data item’s metadata, which includes possibly its
unique name. A node creates a response if its Data Store
(DS) has chunks or unexpired CDI entries of the requested
data item. An entry contains a chunk id, a hop count to the
nearest chunk copy, and a neighbor id via which the copy can
be retrieved. The latter two are set to 0 and the node’s own ID
if its DS contains the chunk. When a chunk can be retrieved
with the same least hop count via multiple neighbors, a CDI
entry is created for each neighbor. If a node does not have the

chunk in its Data Store, the respective CDI entry is removed
after an expiration time. Thus obsolete CDI entries do not stay
forever.

A CDI response has namespace “system”, data type
“cdi”, the same “descriptor,” and a list of ChunkId-
HopCount pairs each indicating which chunk can be retrieved
at the specified hop count from the transmitting node. Upon
a response, a node creates a new CDI entry for each received
ChunkId-HopCount pair, with hop count = HopCount + 1,
and neighbor id set to the transmitting neighbor. The new
CDI entry replaces existing ones in the DS if it has smaller
distance for the same chunk, or is added in the DS if no
CDI entries exist for that chunk. Responses will return to the
consumer along reverse paths of query propagation. Eventually
CDI entries are created on demand at each node, indicating
which neighbors have the shortest paths to which chunks.

B. Phase 2: Recursive Chunk Retrieval

Since one large data item may have many chunks, the
consumer sends multiple chunk queries, each requesting a
subset of the chunks and directed at a different neighbor
closest to those chunks. A node receiving a chunk query will
reply requested chunks that it holds, and further divides the
subset of remaining chunks into multiple sub-queries, each
directed at a different neighbor. This recursive query division
allows simultaneous requests of different chunks from different
(and nearest) neighbors, both aggregating the bandwidth and
reducing latency.

Given CDI entries, each chunk should always be retrieved
from the neighbor with the least hop count. When multiple
such neighbors exist for one chunk, any one is fine. This
may lead to unbalanced loads among neighbors, thus more
traffic, contention and losses in some directions. PDR tries to
balance the loads when assigning chunks by minimizing the
maximum load among neighbors. The problem can be formally
represented:

min
X

max
i∈N

∑
j∈C

dijxij

s.t. xij ∈ {0, 1}
xij ≤ eij∑
i∈N

xij = 1

(1)

where N and C denote the sets of neighbors and requested
chunks respectively. While eij ∈ {0, 1}, eij = 1 indicates
chunk j can be retrieved from neighbor i with the least
distance, 0 otherwise. dij ∈ D is the least hop count to retrieve
chunk j from neighbor i. xij’s are decision variables. xij = 1
indicates assigning chunk j to neighbor i, 0 otherwise. The
above problem assigns chunks among neighbors to minimize
the maximum load among neighbors. The constraints guaran-
tee that each chunk is always assigned to only one neighbor
where it can be retrieved with the least distance.

The above problem formulation balances the load among
all immediate neighbors but not necessarily all downstream
nodes. The latter would require global knowledge about the
distribution of copies of all chunks, which incurs too much
complexity and overhead.



The constraint xij ≤ eij can presented as (1 − eij)xij ≤
0, equivalent to a max-min version Generalized Assignment
Problem (GAP), which is proved to be NP hard and many
approximate algorithms are proposed [17]. We use a simple
heuristic algorithm. It first assigns chunks to neighbors with
the least hop counts. Then it finds the neighbor of the highest
load, moves one chunk from it to another neighbor that can
retrieve the chunk at the (possibly next) smallest hop count.
This is repeated until the highest load no longer decreases. Its
complexity is O(|N ||C|2), which is acceptable because both
|N | and |C| are small to moderate (e.g., ∼ 10) in each query.

V. PDS PROTOTYPE IMPLEMENTATION

PDS is designed at application level above the network
stack. It can leverage different underlying network (e.g., IP)
and link technologies (Wi-Fi infrastructure/ad hoc mode, Blue-
tooth, ZigBee, Wi-Fi Direct [12], D2D [13], etc.) with proper
adaption. At application level, PDS treats all network/link
technologies as “faces” [6], [7]. Such abstraction provides a
uniform high-level interface while hiding heterogeneous lower
level details of different network/link technologies.

To enable opportunistic overhearing critical to reduce mes-
sage overhead thus efficient caching, PDS should take advan-
tage of the broadcast nature of the wireless medium whenever
possible. Many PDS query/response messages are intended
for multiple neighbors, and if supported, overhearing allows
non-intended neighbors to cache the overheard content. Thus
overhearing transmissions is key to improve data availability
and retrieval performance. Reliable wireless broadcast and
multicast techniques [10], [18]–[20] have been studied and
should be leveraged if available. However, many of them
require changes at network/link level, thus inconvenient for av-
erage users of commodity mobile devices (e.g., smartphones),
which constitute a large fraction of edge devices.

Recent work [21], [22] has proposed methods to create
multi-hop networks among commodity devices using Wi-Fi
Direct [12], supported natively in many smartphones. The
network is formed by interconnecting multiple single-hop Wi-
Fi Direct groups. Certain devices in each group serve as gate-
ways providing connectivity across groups. Thus opportunistic
overhearing can be enabled by network level (e.g., UDP)
broadcast within one hop neighborhood, without changes to
network/link levels. By design, PDS messages may contain
an explicit list of the ID(s) of intended neighbor(s). Thus
while all neighbors overhear the same transmission from UDP
broadcast, only those intended receivers (i.e., those whose IDs
appear in the intended receiver list) continue to transmit, while
others only cache useful content. Thus a PDS UDP broadcast
message does not cause a network wide “storm”.

We build a PDS prototype on Android phones to measure
the practical performance of such single-hop performance.
The parameters are plugged into our simulator later to ensure
realistic large-scale simulation. For simplicity in enabling
overhearing, all messages are sent by UDP broadcast. We
will discuss further strategies dealing with different network

mechanisms in Section VII. We present a few implementation
issues:

1) Per Hop Ack/Retransmission: UDP broadcast is unreli-
able, and may suffer high loss rate in wireless networks. We
adopt application level ack/retransmission to improve per hop
reception. After sending a message, a node waits for acks
from intended receivers. A receiver should send back an ack,
including the ID of the response and its own ID, so that the
sender knows which receiver has received which response.
Upon a RetrTimeout, if the sender has not received acks
from all intended receivers, it transmits the message again
with receiver IDs set to those not yet acknowledged only. A
message is retransmitted up to MaxRetrTime times.

2) Leaky Bucket to Pace Sending Rate: We observe that the
Android non-blocking UDP send API has very low reception
ratio. Even with one phone sending to another phone in a
quiet wireless environment without other senders, only about
14% messages are received. We find that the low reception is
caused by an internal buffer overflow in UDP send API. When
the API is called to send a message, the message is put into
an internal buffer. However, the rate that the MAC can send
data in broadcast mode is low (e.g., 7.2 Mbps in 802.11n
20MHz [11]). If the application sends UDP packets at data
rates much higher than MAC broadcast data rate, messages
arrive at the buffer much faster than they can leave. When the
buffer is full the phone’s OS simply discards newly arrived
messages. Thus those lost messages are never transmitted by
the radio. We validate this observation by having 4 receivers (1
laptop running Wireshark [23] and 3 phones) listening to the
same sending phone. We find that almost all of the first 658
messages (about 1MB) are received by all receivers (while the
buffer is not yet full). After that, messages start getting lost.
Lost messages are never heard by any receiver, indicating that
they were not transmitted.

We use a classical leaky bucket mechanism [24] at appli-
cation layer to pace the PDS data sending rate. The bucket
has a BucketCapacity and LeakingRate, which are the
size of internal buffer PDS plans to use and the data rate that
messages (if any) are taken from the buffer (i.e., transmitted).
We conduct experiments to find the leaky bucket parameters
for the best performance.

3) Bloom Filter Size: Given estimated number of elements
in the set and desired false positive probability, the proper size
of a Bloom filter can be calculated [14]. When generating a
query, the consumer examines how many entries are already
received, then computes a small Bloom filter size to achieve
a small (e.g., < 0.01) false positive rate. When the amount
of received entries is large, the Bloom filter size may still be
big. To address this issue, the consumer uses different hash
functions to build Bloom filters in each round. With more
rounds, thus more different hash functions, the probability
that an entry remains a false positive becomes smaller and
smaller (e.g., 0.02 in 2 rounds and 0.003 in 3 rounds for 10,000
entries). Thus the size of Bloom filters can be limited.

4) Prototype Performance Characteristics: We use 5 An-
droid phones (3 Samsung Galaxy Nexus, 1 LG Nexus 5 and



Fig. 3. UDP broadcasting recep-
tion.

Fig. 4. Impact of max hop count
on recall of single round PDD.

1 Motorola Nexus 6) to measure single-hop performance. All
phones are within one hop radio range. Packets each 1.5KB
size are sent as quickly as possible.

One sender and one receiver phone in a quiet wireless
environment shows only 14% reception rate (Figure 3) due
to internal buffer overflow. We further explore leaky bucket
parameters to improve the reception (figure omitted). When
LeakingRate grows (1-5Mbps), the reception first stays
high (> 97%) for a while and then starts to drop, because too
high leaking rates exceed how fast radios can broadcast. A
large BucketCapacity also lowers the reception, because
it may overestimate the available internal buffer size, thus
causing overflow. We find 300KB BucketCapacity and
4.5Mbps LeakingRate achieves a balance between recep-
tion and data rates.

Leaky bucket addresses message losses by internal buffer
overflow. Ack/retransmission help reduce those by exter-
nal wireless collisions. We explore how RetrTimeout or
MaxRetrTime impact the reception for two concurrent
senders sending to one receiver (figure omitted). We find
that as RetrTimeout or MaxRetrTime increases, the
reception first improves then plateaus. This is because longer
RetrTimeout allows more time for ack to return. Thus the
sender does not prematurely retransmit to cause more con-
tention. More retries directly improve the chances of reception.
However, the benefits diminish beyond 0.2s RetrTimeout
or 4 MaxRetrTime.

We compare the data rate (network layer throughput) and
reception rates of raw UDP broadcast, leaky bucket only and
with ack. Multiple phones send data to one phone concurrently.
Figure 3 shows the reception rate have great improvements
with leaky bucket (from ∼ 10% to 40 ∼ 90%), and increases
further to 85 ∼ 99% when ack/retransmission is also added.
We conclude that proper leaky bucket and ack/retransmission
parameters can achieve reasonable one hop data rates and
high reception even with multiple concurrent senders. These
parameters are used in multi-hop simulations next.

VI. PERFORMANCE EVALUATION

A. Methodology

We implement PDS in NS-3 [25], a popular network simu-
lator including lower layer Wi-Fi MAC stack. Single-hop data
rate and reception measured from the prototype are ported
as parameters to the simulator. We simulate both static and
mobility scenarios. For static scenario, we distribute 100 nodes
as a 10 by 10 grid at proper neighboring distances such that
each node can communicate directly with its 8 surrounding

neighbors. A consumer is at the center of the field; for multiple
consumers, they are randomly located in the center 5 by 5 sub-
grid.

We generate mobility traces based on 8-hour observation
of two real world scenarios in a university, and consumers
are picked randomly from all nodes. Each metadata entry is
30 bytes, enough to cover most common data type, time and
location attributes. Each data chunk is 256KB, large enough
to avoid too many chunks while small enough to fit in the
internal buffer and transmit as a unit.

We use several metrics: Recall is the fraction of distinct
metadata entries or chunks received by the consumer, rep-
resenting the correctness of PDS. Latency is the time from
the consumer sending the query to the arrival of the last
returned metadata entry or data chunk, which is strongly
related to the system performance and user experience. For
energy efficiency, the main consumption of the communi-
cation intensive PDS design comes from wireless network
communication. Therefore, for simplicity we use message
overhead, which is the number of bytes of all messages, to
show the cost of data transmission. We distribute metadata
entries or data chunks among all nodes uniform randomly
at the beginning of simulation. Several factors impact the
performance: metadata amount is the number of different
metadata entries; data item size is the size of the complete data
item; redundancy is the number of copies of each metadata
entry or data chunk. We also evaluate how parameters in
different components (e.g., MaxRetrTime, RetrTimeout,
Td) affect their performance. Unless specified, results are
averaged over 5 runs.

B. Multi-hop Simulation

We first run single round PDD without ack/retransmission
under different metadata amounts and redundancy. We observe
a saturation point around 10,000 total metadata entries, beyond
which the recall becomes much lower. E.g., with one copy, the
recall remains around 0.35, but decreases obviously beyond
10,000 entries (0.20 at 20,000 entries); with two copies, it
remains around 0.55 before 5,000 distinct entries. Unless
specified, in the following we use 5,000 distinct entries as
the normal load and those beyond 10,000 for stress tests.
Redundancy is always set to 1 since each entry initially has
only one copy on its original producer.

1) Single Round PDD: Next we study how
ack/retransmission and multi-round affect the performance.
Single round PDD (with ack/retransmission) achieves 76%
recall, 3.2s latency and 1.54MB message overhead (figure
omitted). Despite the significant improvement in recall
brought by ack/retransmission (76% vs. 32%), there are still
1/4 of data items that are not discovered. According to Figure
3, ack/retransmission can improve the reception to higher than
90% when two devices send to one receiver concurrently, all
within one hop. However, the reception between provider and
consumer can decrease sharply when there are more hops,
and even one hop reception might be lower since there might
be more than 2 concurrent senders in the simulation scenario.



Fig. 5. Recall of multi round PDD Fig. 6. Impact of metadata amount
on PDD recall and latency.

To validate this, we change the nodes distribution: while
keeping the consumer at the center, the size of grid varies
from 3 by 3 to 11 by 11, thus maximum hop count to the
consumer from 1 to 5. We keep the average metadata entries
at each node to 50 (same average load as 5,000 entries in 100
nodes). Figure 4 shows that as the maximum hop count grows
from 1 to 5, recall drops from 100% to 72.3%. Latency and
message overhead increase from 0.3s/0.04MB to 3.5s/1.71 MB
(figure omitted), because both the network size and metadata
amount increase. The result shows that a single round cannot
achieve high recall at large network size, because message loss
increases over multiple hops. Thus multi-round data discovery
is necessary.

2) Multi-round PDD: Three parameters affect the number
of rounds and their durations: the recent time window T in
which the number of received entries are counted, the fraction
of such entries must be less than a threshold Tr of all entries
in the current round to stop this round, and the ratio of entries
in the current round to all received entries must be greater than
Td to start a new round. Larger T, smaller Tr, Td are more
aggressive to extend the current round or start a new round.

Figure 5 shows how T and Td impact recall when Tr = 0.
Recall increases and becomes stable once T reaches 0.6-0.8s,
because a larger T extends the current round and receives more
entries until there are no more entries to return. Smaller Td

leads to higher recall (e.g., 1 for Td = 0 vs. 0.95 for Td = 0.3).
Similar trend can be observed for latency and overhead (figures
omitted), which grow fast initially and become gradual or flat.
Smaller Td, thus more rounds, also increases the latency and
overhead (e.g., 3.4s and 3.85MB for Td = 0.3 vs. 5.6s and
5.13MB for Td = 0). When we keep Td = 0, varying Tr

does not have significant impact on recall, latency or overhead
(thus those figures not presented). After more trials we use
Td =Tr = 0, and T= 1s as the best combination.

Next we evaluate multi-round PDD under normal and stress
load, multiple consumers and real world mobility. Figure
6 shows when metadata amount increases from 5,000 to
20,000, recall remains at 100%, while latency increases sub-
linearly from 5.6s to 11.2s. Message overhead increase almost
linearly from 5.13MB to 22.21MB (figure omitted due to space
limit). This demonstrates PDD has great robustness against
network saturation because: 1) there are less and less metadata
entries to collect in subsequent rounds. Redundancy detection
filters out already received entries; 2) metadata entries lost in
previous rounds leave cached copies along return paths, and
more copies are created progressively closer to the consumer.
Thus it takes much less hops and latency to retrieve them in

Fig. 7. Recall and latency of
PDD with multiple sequential con-
sumers.

Fig. 8. Recall and latency of PDD
with multiple simultaneous con-
sumers.

Fig. 9. Impact of node mobility on
PDD recall in student center.

Fig. 10. Impact of node mobility
on PDD latency in student center.

later rounds.
Then we evaluate PDD when multiple consumers, either

sending queries sequentially or simultaneously. Figure 7 shows
that all sequential consumers achieve nearly 100% recall.
Latency becomes smaller for later consumers: 5-7s for the
first two, 4.8s, 3.2s for the third and fourth. This is due to the
overhearing and caching: more redundant copies are created,
and closer to consumers. So a consumer has more cached
entries and needs to collect less entries from closer copies. The
last one takes only 0.2s because it has already cached more
than 95% entries even before sending its own query. Figure
8 shows simultaneous consumers also have 100% recall,
while latency increases sub-linearly and becomes stable as the
number of consumers grows. This is because one mixedcast
transmission delivers data for multiple lingering queries, thus
less latency for each additional consumer. Message overhead
trends for both sequential and simultaneous consumers are
similar to respective latency, thus figures omitted.

We further study how node mobility impacts PDD. To make
our evaluation as close to real world scenarios as possible, we
observe people’s movements in a Student Center and Class-
rooms in a university. The student center is about 120×120m2,
while classrooms 20 × 20m2. We monitor how many people
stay, how frequently people join, leave and move within the
area. The observations last 1-1.5 hours and is repeated 6 times
(in total 8 hours). We find that there are usually about 20/30
people stay in the area, on average 1/0.5 people join or leave
and 4/0.5 people move inside the area per minute for the
two locations. We generate mobility traces based on these
observations, and vary the joining/leaving/moving frequencies
from 0.5 to 2 times of what are observed.

Figures 9 and 10 show that as node mobility increases,
recall remains nearly 100% while latency remains within 2s
for the Student Center. Message overhead also remains within
3MB (figure omitted). Simulation in classroom scenario have
similar results, whose figures are omitted due to space limit.
The results show that PDD is robust under real world mobility
scenarios.



Fig. 11. Impact of data item size
on PDR recall and latency.

Fig. 12. Impact of node mobility
on PDR latency in student center.

Fig. 13. Impact of chunk redun-
dancy on data retrieval latency.

Fig. 14. Impact of chunk redun-
dancy on data retrieval message
overhead.

3) PDR Performance: First we vary data item size from
1MB to 20MB, which covers the size of most commonly
shared files (e.g., a photo to a 5min 720p video clip). All ex-
periments achieve 100% recall. Thus we only present latency
and message overhead. Figure 11 shows that, as data item size
grows from 1MB to 20MB, latency and message overhead
increase almost linearly from 8.2s/4.83MB to 46.1s/54.22MB.
We notice that, with 4.5Mbps broadcast data rate of 802.11n
20MHz, it takes the consumer at least 35.6s just for receiving
a 20MB file. Thus PDR’s 46.1s total latency (including col-
lecting CDI and data over multiple hops, and potential mes-
sage loss/retransmissions) is quite small. Message overhead is
about 2-3 times of the data item size, because most chunks
travel several hops to reach the consumer, adding chunk size
overhead at each hop.

We compare PDR with a baseline Multi-round Data Re-
trieval (MDR) mechanism which is similar to PDD except data
chunks instead of metadata entries are retrieved: a consumer
sends queries in multiple rounds. Each query requests all the
chunks that are not yet received. Nodes receiving queries
reply requested chunks they hold, and redundancy detection
techniques are used to avoid multiple nodes along a reverse
path replying the same chunk.

While both methods achieve 100% recall in all experiments,
Figures 13 and 14 show the impact of chunk redundancy on
latency and message overhead for a 20MB data item. When
only one copy exists, MDR has slightly better performance
than PDR (10.7s and 51.34MB vs. 13.5s and 54.22MB). How-
ever, in reality, popular files will have more copies exist. MDR
shows almost linear increase, while PDR has flat and slight
decrease in latency and overhead, about half of MDR’s. (e.g.,
11.9s and 45.98MB vs. 27.6s and 94.23MB when redundancy
is 5).

This is because those redundancy detection techniques can
not completely eliminate redundant retrieval, especially those
along different reverse paths to the consumer. In contrast, PDR
always retrieves exactly one closest copy of each chunk. When
more copies of each chunk exist, the nearest copy becomes

Fig. 15. Latency and message
overhead of PDR with multiple
consumers.

Fig. 16. Latency and overhead
of PDR with multiple simultaneous
consumers.

closer, thus the slight drop in both latency and message
overhead. Similar observations are found for other data item
sizes. The results show that PDR’s two-phase data retrieval
mechanism is necessary and can significantly reduce latency
and message overhead for popular data items with redundant
copies.

We also study how multiple consumers and node mobility
impact PDR. Recall is always 100% for both sequential and
simultaneous consumers. Figure 15 shows that, from the 1st
consumer to the 5th, latency of sequential consumers de-
creases from 46.1s to 38.1s, while message overhead decreases
from 54.22MB to 23.11MB. The significant overhead drop is
because more copies of chunks are cached during previous
retrieval, thus the average hop each chunk is transmitted
become much smaller. Closer chunk distance also decreases
latency. Chunks from different directions eventually have to
wait for the consumer to receive, thus the drop in latency
is somewhat limited. For simultaneous consumers, Figure 16
shows that when the number of consumers increases, both
latency and message overhead first increase then become
stable. This is because initially there is only one copy of each
chunk, thus all simultaneous consumers request the same copy.
Consumers at the same direction to a chunk can all benefit
from one transmission in that direction.

Finally, we study how node mobility impacts PDR. We
present PDR latency retrieving a 20MB data item in Student
Center (Figure 12). When mobility increases, latency re-
mains roughly the same (42s-48s). Message overhead remains
24MB-27MB while recall is always 100% (figures omitted).
Results in classrooms are similar. The results show that PDR
is robust under real world mobility.

VII. DISCUSSION AND FUTURE WORK

PDS is designed for spontaneous, agile data exchange
among nearby opportunistically gathered users. It targets
small-scale networks with low to moderate mobility. The
proposed mechanism in this paper is our first step towards
regional data sharing among nearby mobile devices, especially
for crowdsensing data. It is difficult to apply such pure peer
based design on a larger scale region (e.g., the whole campus
of a university). Increasing amounts of both peer devices and
distinct data items require maintaining metadata in a more
structured and concise way. Our next step is to leverage edge
servers to scale the data sharing service to campus size regions.

PDS can leverage different network/link technologies. In
the prototype we choose one hop UDP broadcast to enable



overhearing without changing network/link stacks. By includ-
ing an intended receiver ID list, only neighbors appearing in
the list will retransmit the message (e.g., responses). Only
when routing entries for certain data do not exist (e.g.,
newly produced data), a query may need to be flooded.
Well studied mechanisms [26], [27] reducing broadcast and
contentions in flooding can be used. When allowed, non-
application level techniques can enable overhearing without
network level broadcast. Reliable multicast or broadcast tech-
niques at MAC level have been studied [18], [19]. Rooting
the device can enable monitoring mode thus overhearing of
unicast messages [10], [20] when network/link broadcast is
not allowed.

Compared to Wi-Fi ad hoc mode [11] which has little
support, Wi-Fi Direct is natively available in commodity
mobile devices. It can be used to form multi-hop networks
among them [21], [22], with no or minimal change to the
OS. Certain devices in single-hop Wi-Fi Direct groups act as
“bridges” to interconnect groups. PDS can use the same one
hop UDP broadcast to enable overhearing in such networks.
Adaptation of query/response delivery may be necessary to
avoid overloading those “bridge” devices.

In this paper, we evaluate the performance of PDS by a
combination of simulation and a small single-hop network
prototype of real phones. There are still some limitations.
A large scale prototype testbed would produce more reliable
measurements of the performance of proposed mechanisms,
such as energy consumption and robustness to mobility. Build-
ing and deploying such a testbed is also one future work that
we are working on.

The current PDS design does not consider security or pri-
vacy issues, and handles publicly sharable data only. In reality
a provider may share some data with only certain specific
users. Mechanisms that encrypt/sign the data and distribute
respective keys to relevant parties have been proposed [28],
[29], and studied in content centric networks [30], [31]. Thus
encrypted data can still be cached anywhere, but the content
accessible to only authorized parties.

Incentive mechanisms that motivate users to consume their
resources to participate in such sharing have been studied [32],
[33]. With such incentives, PDS provides the data discovery
and retrieval part for sharing.

Current PDS caches all metadata entries due to their small
size. Data chunks are much bigger, thus cannot always be
cached due to limited storage capacity. We plan to study proper
data chunk caching strategies based on their popularity and
devices’ resource availability.

To enable overhearing, the radio must be kept on, which
may lead to high energy consumption. Mechanisms for radio
schedule synchronization and power management [34], [35]
can be used to ensure message reception and overhearing while
preserving energy by radio duty cycling.

VIII. RELATED WORK

PDS differs from existing data discovery and sharing work
in mobile ad hoc networks [3]–[5]. They are mostly designed

for traditional endpoint based networks, where data are bond
to specific nodes with certain network address. Sailhan et al.
discuss how to discover services in the network, where each
service has only one provider and the discovery is actually
collecting addresses of service providers [4]. Existing endpoint
based ad hoc routing protocols [8], [9] focus on finding one
path to a specific destination address. PDS adopts a content
centric design where routing entries are for data instead of
addresses. Data are cached opportunistically by any capable
and willing nodes. Thus consumers do not need to know or
care at which addresses the data exist, as long as existing data
are discovered and at least one copy (probably the nearest one)
is retrieved. PDS focuses on application level mechanisms of
lingering queries, mixed cast and en-route message rewriting
to find and retrieve data efficiently and robustly.

Information centric networks [6], [7] have been studied
extensively. PDS shares similar query-response processing to
Content Centric Network (CCN) [6] and Named Data Network
(NDN) [7]. Casetti et al. focus on establishing connectivity in
multi-hop Wi-Fi Direct networks [22] and use content centric
routing tables similar to those in [6], [7]. Due to differences
in wireless medium, network scale, PDS differs from them
in important aspects: 1) Both CCN and NDN are initially
intended for wired networks where each “face” is connected
to a different neighbor, whereas PDS leverages the broadcast
wireless medium to reduce message overheads and enable
opportunistic overhearing. Explicit intended receiver list is
used to specify which neighbors should continue forwarding
the message. 2) Bandwidth is a scarce resource in shared
wireless medium. In CCN/NDN, each Interest is removed
upon the return of any matching Data, and Interest/Data are
delivered as-is. While PDS uses lingering queries each can
guide the return of many response messages to avoid repeating
a query many times. It further joins the partially overlapping
content of multiple response messages in one mixed cast,
and rewrite both queries and responses en-route to minimize
transmissions of redundant data, and maximize opportunistic
caching.

IX. CONCLUSIONS

In this paper, we propose content centric data discovery and
retrieval among peer edge devices, which is fundamental to
many novel applications where opportunistically congregated
devices need to share each other’s sensing data. We design
multi-round data discovery, and recursive data retrieval by
combining lingering queries, mixed cast, and en-route message
rewriting techniques that minimize redundant transmissions
and maximize opportunistic caching. Evaluations based on an
Android prototype demonstrate almost 100% data retrieval in
short time under multiple consumers and real world mobile
scenarios.
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